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Abstract: This paper presents an estimation of 3D UAV position in real-time condition by using Intel 
RealSense Depth camera D435i with visual object detection technique as a local positioning system 
for indoor environment. Nowadays, global positioning system or GPS is able to specify UAV 
position for outdoor environment. However, for indoor environment GPS hasn’t a capability to 
determine UAV position. Therefore, Depth stereo camera D435i is proposed to observe on ground 
to specify UAV position for indoor environment instead of GPS. Using deep learning for object 
detection to identify target object with depth camera to specifies 2D position of target object. In 
addition, depth position is estimated by stereo camera and target size. For experiment, Parrot 
Bebop2 as a target object is detected by using YOLOv3 as a real-time object detection system. 
However, trained Fully Convolutional Neural Networks (FCNNs) model is considerably significant 
for object detection, thus the model has been trained for bebop2 only. To conclude, this proposed 
system is able to specifies 3D position of bebop2 for indoor environment. For future work, this 
research will be developed and apply for visualized navigation control of drone swarm. 
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1. Introduction 

The application to deploy drone in indoor environments has been needed, for instance using 
UAV to silos inspection, disaster relief, warehouse management etc., Nevertheless, positioning for 
indoor environment is the main challenge for researcher. Because GPS hasn’t a capability to 
determine UAV position as discussed by Mainetti et al. (2014) [2] and Mautz et al. (2009) [4]. Thus, 
sensors with high precision, accuracy performance (centimeter level) and low latency are necessary 
for UAV indoor applications.  

Motion tracking systems use reflected markers to detect position, speed and orientation of object. 
UAVs are able to flight at the same time by using markers with different shapes. Each camera has 
coverage area depending on the field of view. A ground station receives and processes camera data, 
allowing motion-tracking reconstruction. For conclude, Motion tracking systems work as an artificial 
GPS for indoor environment. Therefore, with high performance and accuracy they have to exchange 
with high cost for maintenance and calibration [7]. 

Stereo or IR depth perception cameras technologies in robotics are able to reconstruct 3D model 
and understand the environment. The high accuracy position and orientation accuracy make these 
sensors suitable to perform visual odometry algorithms [7]. Intel RealSense Depth camera D435i 
combines the robust depth sensing capabilities of the D435 with the addition of an inertial 
measurement unit (IMU). The maximum range Approx. 10 m. Accuracy depending on calibration, 
scene, and lighting condition. Depth field of view approx. 87° ± 3° × 58° ± 1° × 95° ± 3° with Intel 
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RealSense Vision Processor D435i as a vision processor board. Due to lower cost than motion tracking 
systems stereo depth camera used in this research as a sensor. 

Therefore, this paper present 3D position estimation by using object detection with Intel 
RealSense Depth camera D435i as sensor for indoor environment application. For conclusion, this 
proposed system is able to specifies 3D position of bebop2 for indoor environment. 

The paper is organized as follows: Section 2 Materials and Method describe about model 
training, detection, connection and working flow chart. Section 3 Results and Discussion describes 
testing result in static and flying test. Section 4 Conclusion describes conclusions of the work and 
future work. 

2. Materials and Methods 

This section provides a description of the Model Training and Detection and Positioning Method 
used in this research. 

2.1. Model Training and Detection 

Model training is one of procedure for deep learning. Accuracy of trained model depends on 
dataset, epochs, learning rates and other parameters. In this research, model is trained to detect 
bebop2 while flying, take-off and landing with 8000 images of dataset that based on YOLOv3(coco) 
model with Supervisely platform. Dataset’s preparation is important procedure before training. After 
images was labeled, these have to do data transformation language (DTL) process viz vertical flip 
and horizontal flip. This process is defined with a JSON based config file. YOLO architecture is 
provided FCNN (fully convolutional neural network). The images (nxn) are passed through the 
FCNN, then output is (mxm) prediction. The convolutional neural network has 24 convolutional 
layers with 2 fully connected layers. Alternating 1 × 1 convolutional layer reduce the features space 
from preceding layers. The convolutional layers pretrained on the ImageNet classification task at half 
the resolution (224 × 224 input image) and then double the resolution for detection [1] as shown in 
Figure 1. 

However, the connection of YOLOv3 with Intel RealSense Depth camera D435i aren’t able to 
directly connect each other. By the way, this problem solved by using YOLOv3 base on Robot 
Operating Systems (ROS) or Darknet ROS package work as ROS bridge. 

 
Figure 1. YOLO’s architecture [1]. 

2.2. Positioning Method 

3D positioning systems for indoor environment using Intel RealSense Depth camera D435i is 
utilized as a positioning sensor which set origin coordinates X = 0 at middle of camera’s frame, Y = 0 
at ground level and Z = 0 at position of depth camera and detect Bebop2 with YOLOv3 object 
detection. The bounding box pixels of target object on screen size 640 × 480 pixels send to points cloud 
topics of Intel RealSense Depth camera D435i that collect the coordinate x, y and z in every single 
pixel. For receives the coordinate x, y and z in meter unit, coordinates pixel center x and y from 
darknet ros [3] send to points cloud topic with point cloud library (PCL) for transformation of pixel 
to meter. Moreover, there is some noise from the position x, y and z in meter after transformation 
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that could filter. This research, using average method with 50 window size of data as a Noise filtration 
method. In additional the schematic diagram of working flow shown in Figure 2. 

 

Figure 2. The schematic diagram of working flow. 

3. Results and Discussion 

In test implementation, Bebop2 was employed as a target object the camera by setting above 
the ground 45 cm. Testing area for indoor environment with area size width (X) 2.5 m., depth (Z) 
2.5 m. and height (Y) 1.5 m. and minimum depth 0.5 m. The camera calibrated before testing in 6 
positions randomly. The coordinate X and Z is the camera position and Y is ground. Setting up for 
testing is illustrated in Figure 3. 

 

 

 

 

Figure 3. Setting up of camera for testing. 

3.1. Static Testing 

The testing performed to estimate the indoor position of UAVs. The estimated x, y and z position 
of the UAV at several positions are collected and the example results is shown in the Table 1.  

Table 1. The indoor positioning system result. x, y and z between the measure and actual position of 
the UAV. 

X (m.) Y(m.) Z(m.) Mean X(m.) Mean Y(m.) Mean Z (m.) 
1 1.5 2.5 0.99 1.5 2.55 

0.5 1 2 0.58 1.09 1.97 
−0.5 0.5 1.5 0.46 0.48 1.5 

0 0 1 0.04 −0.06 0.97 

The system able to measure accurate position in x, y and z where the mean of the estimated 
position values is close to the actual values. The system has standard deviation about 0 due to noise 
filtration from calculation process in coding. Moreover, comparison with GPS system for outdoor 
environment which has accuracy about ±3 m, Thus, this positioning system is more reliable. The 
additional results of object detection are demonstrated in Figure 4. 
  

45 cm. 
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Depth camera at 

 x = 0, y= 0,  

z = 0.45 m.  

 

 

 

 

 

Figure 4. Result of object detection while static testing. 

3.2. Flying Testing 

Testing perform to estimate indoor position of UAV while flying and 3D trajectory plot with 
MATLAB program. Height (Y values from system) is altitude from ground in unit of meter, depth (Z 
from system) is distance from depth camera to UAV in unit of meter and X value is width from 
middle of camera. Moreover, the calculation process with fast process since position is update at a 
frequency less than 10 Hz and variance is acceptable. However, there is some mistake during testing 
due to model that is sometime unable to continuously detect. The result of flying test is shown in 
Figure 5. 

 

 

 

 

 

 

 

Figure 5. 3D trajectory plot of UAV by MATLAB with indoor positioning system. 

4. Conclusions 

UAV for indoor application has become increasing popular in application viz disaster release, 
mapping, indoor inspection etc. This research present one of choices to specify 3D position of UAV 
for indoor environment by using deep learning with Intel RealSense Depth camera D435i. The testing 
results show satisfy performance of system with low variance, high accuracy with maximum error 
about 10 cm. and fast by updating position at frequency less than 10 Hz. However, sometimes the 
camera system was unable to detect object due to trained model. Therefore, for future work, the 
trained model performance need to more improve by training more accuracy model. Moreover, 
filtration process will be applied with advanced techniques including Karman filter for more 
accuracy and this system will be applied to specify 3D position and navigation of swarm drone. 
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