
processes

Article

Incremental Modeling and Monitoring of Embedded
CPU-GPU Chips

Oussama Djedidi * and Mohand Djeziri

Aix-Marseille University, Université de Toulon, CNRS, LIS, 13397 Marseille CEDEX 20, France;
mohand.djeziri@lis-lab.fr
* Correspondence: oussama.djedidi@lis-lab.fr

Received: 25 April 2020; Accepted: 30 May 2020; Published: 9 June 2020
����������
�������

Abstract: This paper presents a monitoring framework to detect drifts and faults in the behavior of
the central processing unit (CPU)-graphics processing unit (GPU) chips powering them. To construct
the framework, an incremental model and a fault detection and isolation (FDI) algorithm are hereby
proposed. The reference model is composed of a set of interconnected exchangeable subsystems that
allows it to be adapted to changes in the structure of the system or operating modes, by replacing
or extending its components. It estimates a set of variables characterizing the operating state of the
chip from only two global inputs. Then, through analytical redundancy, the estimated variables are
compared to the output of the system in the FDI module, which generates alarms in the presence
of faults or drifts in the system. Furthermore, the interconnected nature of the model allows for the
direct localization and isolation of any detected abnormalities. The implementation of the proposed
framework requires no additional instrumentation as the used variables are measured by the system.
Finally, we use multiple experimental setups for the validation of our approach and also proving that
it can be applied to most of the existing embedded systems.

Keywords: analytical redundancy; embedded systems; modeling; monitoring; smartphones;
system-on-chip

1. Introduction

Heterogeneous systems-on-chips (SoC) combine more than one type of processor, generally
central processing units (CPU) and graphics processing units (GPU) [1]. They rose to popularity in
the early 2000s, thanks to their suitability for most households and entertainment uses. Nowadays,
heterogeneous SoCs are at the hearts of most modern computer systems and handheld devices,
including those used in safety-critical systems (military, aerospace, automobile, etc.) [2]. In these
increasingly embedded and mobile systems, manufacturers are evermore dealing with the challenge
of designing chips offering high performance while maintaining minimal power consumption and
manageable thermal output.

The goal of the project behind this study is to develop touchscreens to serve as both the primary
displays and controls in the cockpits of the future. Reliability being a primordial aspect of these systems,
in this particular study, we propose a monitoring framework for the surveillance of the embedded
systems powering the said touchscreens.

To monitor such chips, we propose an incremental model with an incorporated fault detection
and isolation (FDI) algorithm. Together, the pair allows for the early detection of faults and drifts in
the system [3]. The idea is to construct an incremental and interconnected modeling structure that is
composed of simpler subsystems, each written to estimate only one variable or characteristic [4].
This approach would result in separating the different—and mostly irreconcilable—dynamics,

Processes 2020, 8, 678; doi:10.3390/pr8060678 www.mdpi.com/journal/processes

http://www.mdpi.com/journal/processes
http://www.mdpi.com
https://orcid.org/0000-0001-9218-545X
https://orcid.org/0000-0002-1597-3193
http://www.mdpi.com/2227-9717/8/6/678?type=check_update&version=1
http://dx.doi.org/10.3390/pr8060678
http://www.mdpi.com/journal/processes

Processes 2020, 8, 678 2 of 26

like discrete and continuous ones. This modeling methodology constitutes the first contribution
of this work.

The FDI algorithm aims to detect errors or anomalies in the behavior of the system,
mainly in power consumption, operating temperature, and possible software bugs affecting critical
system programs or drivers such as the frequency scaling governor. The algorithm relies on
analytical redundancy, and as will be described later, the interconnected structure of our model
makes it easy to detect and isolate such anomalies, since every subsystem only estimates one variable.

The main advantage of our modeling framework and monitoring algorithm is that they only rely
on data and sensors present on most modern chips and therefore can be deployed on most of the
current and forthcoming SoCs with no additional development nor adaptation—apart from model
adapting and training. Once the program is implemented, one can easily use its alarms and fault
indicators to watch over the operating state of the device and isolate faulty subsystems. It can also be
used to investigate the effect of these errors on the rest of the system, and even view wear-traits for
diagnosis and prognosis purposes.

The remainder of this paper is organized into eight sections. We start by exploring and
summarizing established works studying the subject of modeling and monitoring embedded chips,
in Section 2. Then, the proposed modeling and monitoring approach is presented in Section 3, and the
experimental setup in Section 4. In Section 5, we detail the modeling process of each subsystem and
explain the modeling choices. Section 6 is used to present the FDI algorithm and describe the process
of residual generation and evaluation (the decision-making process). In Sections 7 and 8, we proceed to
present and discuss experimental results where The fault detection algorithm is validated by examining
residuals in normal and faulty scenarios. Finally, we draw a conclusion from the collected data and
obtained results.

2. Literature Overview

In the approach proposed hereafter, we select a set of variables that characterize the operating state
of the SoC (functioning correctly, normal power consumption, etc.). In the first step, our monitoring
framework estimates these variables. Then, it monitors them to detects faults and drifts.

To our knowledge, there is no work treating the problem of online monitoring the operating state
of CPU-GPU chips as we do, which in itself shows the gap we are trying to address in the literature,
and indicate novelty of this work. Nevertheless, some works study problems that are close to ours.
In the remainder of this section, we explore the main research done in these areas, limiting our scope
to works done on embedded or mobile SoCs.

2.1. Power Consumption Modeling in Embedded SoCs

Power consumption in embedded systems is a vivid and active field of research, particularly in the
case of smartphones. These devices are abundantly available, and easy to program. More importantly,
they come with a limited power supply, which incited developers to study the battery life [5],
construct energy and power consumption models [6–8], and closely follow the influence of user
actions and applications on power consumption [9]. Furthermore, studying the embedded systems’
power profile has led to improving energy efficiency [10], reliability [11,12], and also monitoring and
detecting anomalies [13–15] and energy hogs [16].

There exists three main literature reviews detailing power profiling and modeling in
smartphones [17–19]. In the first review, Hoque et al. [17] gave an overview of the steps of building an
energy profiler. Then, they went onto detailing the different energy measurement mechanisms (external
instruments and self-metering), types of models (utilization-based, event-based, and code-based),
modeling philosophies (white-box vs. black-box), and profiling schemes. Finally, the authors proposed
a taxonomy of the studied profilers based on their deployment; either internally on the device,
or externally, and for where the model is constructed, on or off the device.

Processes 2020, 8, 678 3 of 26

Amongst the surveyed profilers and models, several fall within the scope of our work according
to their granularity. The latter describes the level at which the profiler can estimate energy
consumption [18]. Of these profilers, there are those built by system providers like Google’s Android
Power Profiler [20,21], and Qualcomm’s Trepn Profiler [22]. We also cite works published in the literature
such as PowerBooter [23], Sesame [24], and DevScope [25].

The second review mentioned essentially the same works, but it looked at them through the lens
of their implementation (hardware and software-based) [18], whereas the third review focused on
network simulation [19].

Apart from the works mentioned in the reviews, Kim et al. [26] proposed a polynomial model of
which every term reflects the power consumption of one component of the smartphone, whereas a later
version of this study improved upon the power estimation for the GPU [27]. More recently, several new
models were also published, either for the system as a whole [28–32], or just the CPU [7,33]. Some of
them even offered better accuracy [7,28,33] and proved that software profiling is as and reliable as the
hardware counterpart [29,31].

Most of the models estimating power consumption use either finite state machines (FSM) like
Eprof [34] and DevScope [25], or the more popular regression-based models as is the case for at
least Kim et al. [26], Kim et al. [27], Shukla et al. [30], and Xu et al. [35], or a combination of both
Jung et al. [25]. There is also a new trend of using nonlinear methods like neural networks [36–38].

Black-box techniques—like regression and data-fitting—are popular for these systems, mainly
because of the latter’s complexity and the interactions of physical phenomena underhand. Moreover,
the inputs of the models constructed by machine learning or regression-based approaches are not
subject to a formal proof of interaction with the estimated outputs [23]. The choice of inputs is generally
the result of observations and data analysis, and experimental tests [17].

2.2. Temperature Modeling in Embeded SoCs

The thermal performance of the SoC is an important variable for its proper functioning and
determining its life cycle. Thus, temperature modeling is usually achieved for optimization purposes.
During the design phase, it is established to define the temperature thresholds [39] or the size of the
heat evacuation apparatus (radiators, heat pipes, etc.). During the operating phase, certain models are
built to optimize thermal behavior [12,40]. While, other models are used to study the reliability of the
system by investigating the effects of internal and external temperatures on the chip [41], or on the
lifetime of the system [42,43] to improve it [44].

In addition to the models designed for optimization, the literature contains models focusing
on energy and thermal management. For instance, Mercati et al. [45] proposed a method to adapt
the operating conditions (processors’ frequencies, screen brightness, etc.) to the needs of the user
(usage, applications running, etc.). Other works aim at the same goal by proposing new scheduling
policies [11,46] or new Dynamic Voltage and Frequency Scaling (DVFS) algorithms [12].

The closest work to our framework—models used online estimation and monitoring—is the
Therminator [47] simulator and its second version ThermTap [48]. These programs are developed for the
online estimation of temperature in mobile devices for debugging purposes.

2.3. SoC Monitoring and Diagnosis

In the monitoring field, Gao et al. [49] summarized most of the work on fault diagnosis and
detection in a two parts survey. In this survey, they categorized and divided these works into four
categories: model-based, signal-based, knowledge-based, and hybrid/active approaches. The survey
also went to highlight fault diagnosis application, and fault tolerance methods [50].

This study falls into the second category (signal-based approaches [49]). However, most of the
existing work does not specifically study the SoC independently but rather studies electronic boards as
a whole. These boards are often viewed as discrete systems whose functioning depends on the proper
operation of all the components, with the assumption that there is a strong dependence of operation

Processes 2020, 8, 678 4 of 26

between each of these components [51]. Accordingly, the developed diagnosis methods are based on
causal models such as multi-signal flow graph [52], information flow model [53], directed graph [54],
and the fault tree [55].

Cui et al. [56] introduced an improved dependency model and used it for fault detection and
isolation on an electronic board harboring a CPU-GPU chip. The chip, like our case, was used in the
field of avionics. The new model is capable of eliminating multiple faults by disconnecting them from
the main model via switches in the Dependency Graphical Model (DGM). The model also is the first
implementation of dynamic reconfiguration concepts, and takes into consideration the malfunctions
of tests.

Additionally, Gizopoulos et al. [57] provided a classification and a detailed study of existing
online error detection techniques applied to multicore processor architectures. These approaches are
classified into four main categories: redundant execution [58,59], periodic Built-In Self-Test (BIST)
approaches [60], dynamic verification approaches [61,62], and anomaly detection approaches [63,64].
The results of this comparative study highlight the effectiveness of the dynamic verification approaches
in targeting transient faults, permanent faults, and design bugs. The latter was the focus of the recent
work by Sinha et al. [65] who studied the reliability of the hardware-software combined system at the
design stage and proposed a unified functional model that can be simulated to detect potential failures.

In a different approach, Mercati et al. [45] viewed reliability as a convex optimization problem
and proposed the Workload-Aware Reliability Management (WARM); an optimal policy for multicore
systems, while Zadegan et al. [66] used the networking capabilities of the Institute of Electrical and
Electronics Engineers Standard (IEEE Std) 1687–2014 standard for in-field monitoring of embedded
systems and fast localization of the faults.

Finally, Löfwenmark and Nadjm-Tehrani [67] published a survey that regrouped works focusing
on multicore systems in avionics. They suggested that there is an increased sensitivity to faults due to
shrinking transistor sizes, and highlighted areas where research is still needed.

2.4. Contributions

All of the works mentioned above describe novel methods with great results in their respective
fields. Each of them focuses on a specific aspect or a component of the embedded system or the
SoC (reliability or power consumption modeling, hardware components or software components,
etc.). This work, on the other hand, presents a new modeling framework that is capable of estimating
and monitoring all of the SoC’s characteristics variables online at once, and link of the software
and hardware parts. The obvious obstacle to overcome, however, was creating a model capable of
estimating all of these variables.

The dynamics of CPU-GPU chips are quite diverse and can be considered from different angles.
They can be described with discrete variables (like the CPU load) or seen as discrete event subsystems
(such as the frequency), not to mention the nonlinear continuous dynamics like temperature and power
consumption. To model all of these dynamics, the chip is viewed as a system with a variable structure,
in which the speed, power consumption, and the generated heat depend on both the software load
and the operation mode (power saving, performance, etc.). This causal link between the variables
allows for the creation of an incremental modeling structure that simplifies the modeling process.
Hence, the emphasis in this work is on streamlining and organizing both the modeling and monitoring
processes into a manageable and adaptable framework, rather than presenting novel modeling for all
the individual dynamics. Moreover, the incremental model naturally accounts for the variability in the
structure of the system and estimates different dynamics at once, and more importantly, it is easily
adaptable to changes in components or operating modes. Additionally, it gives the model builder
the freedom of choice between writing new novel models—as was done hereafter—or selecting ones
from the library of existing models—like PowerBooter [23]—allowing for better monitoring results and
greater control over the whole model.

Processes 2020, 8, 678 5 of 26

3. Modeling and Monitoring Approach

The monitoring approach proposed in this paper is complementary to the methods mentioned in
the previous paragraph because it aims to provide early detection of drifts in the system’s characteristics
caused by wear, or harsh conditions, or over-solicitation.

Since it is going to be deployed in safety-critical systems and environments (airplanes),
the monitoring algorithm’s main job will be to ensure that the SoC is behaving correctly and working
under optimal conditions. To do so, we first describe the operating state that the algorithm has
to monitor.

3.1. The Selection of Variables

The operating state of an SoC needs to be described by both software and physical aspects of
the said SoC since both are intricately linked. Furthermore, the selected variables have to be either
readable directly from the system or measurable to ease model validation. Thus, we selected the
following variables to describe the operating state of The SoC:

• Per-core CPU load (Load1, ..., Loadn): Sometimes also called CPU utilization [68]. The load is the
sum of times the processor spends either busy or waiting (e.g., for I/O) during a sampling period,
relative to that sampling period in percent [69].

• GPU Load (LoadGPU): Same definition as for the CPU load, it is the sum of times the processor
spends either busy or waiting during a sampling period, relative to that sampling period in
percent [70].

• Memory Occupation Rate (MOR): Memory usage plays a huge role in power consumption [71]
and thermal output of a SoC [72]. To characterize the influence of the Random Access Memory
(RAM) on the temperature of the SoC and its power consumption, we needed to include its value
as an input to those models. However, the value of the Random Access Memory (RAM) on its
own is indicative of neither the base value used nor the maximum. Thus, we define MOR as the
ratio of the occupied RAM (memory) relative to its full size.

• Physical measurements of the SoC:

– Per-core CPU frequencies and the frequency of the GPU (f1, ..., fn, fGPU)
– Per-core CPU voltages and the voltage of the GPU (V1, ..., Vn, VGPU)
– Temperature of the SoC (TSoC), and the temperature per core if available (T1, ..., Tn, TGPU)
– The power consumed by the board or the device (P)

3.2. Interconnected and Incremental Modeling

The set of aforementioned variables all follow different dynamics and are influenced by
different factors, which makes establishing a global model for all of them arduous. However,
investigating these variables, we find clear causal relationships between most of them. Firstly,
the CPU load dictates the frequency on which the CPU should run, and it is the same for the GPU.
Consequently, the voltage will change according to the chosen frequency through DVFS [40]. Secondly,
power consumption in processors is a direct function of the voltage and the frequency [12]. Thirdly,
higher frequencies always cause the temperature to rise indicating a clear link and correlation between
these two variables [46]. Finally, modern CPU always include a thermal regulator that will either limit
the highest frequency possible or shutdown the processor (or one of its core), whenever its temperature
crosses a certain threshold it [40].

Therefore, instead of trying to build a global model for all these variables, we adopted a gradual
approach and a modular structure for the modeling of the SoC in hand.

The modeling scheme is composed of a set of subsystems each written to estimate only
one variable. In addition, by exploiting previously mentioned causal relationships and connecting the
subsystems accordingly, the result is a model capable of estimating all the variables we defined and also

Processes 2020, 8, 678 6 of 26

accounting for the variable structure of the system. As shown in Figure 1, such a modular approach,
indeed, allows to incrementally and progressively analyze each of the variables, and model it.

⋮

Frequency
Governor

Load1

Load2

Load3

Loadn

⋮

f1

f2

f3

fn

Thermal
Regulator

On/Off
On/Off
On/Off
On/Off

Voltage
Model

GPU
Governor

LoadGPU

fGPU

V1, V2, V3… Vn

T1,…,Tn ,TSoC

PSoC

MOR

X

Thermal
Model

Power
Model

Figure 1. General diagram of the proposed incremental modeling of an embedded system-on-chip
(SoC). MOR: Memory Occupation Rate.

Another clear advantage of this modeling scheme is that it allows for easy integration or
replacement of subsystems in the case of changes or updates. Thus, giving the user the flexibility
to use whichever subsystem he finds most suitable. For instance, during the course of this work,
we developed three power models; a Nonlinear Autoregressive with eXogenous input (NARX) neural
network—which will be presented later in the article, a regression-based model similar to the one
developed by Kim et al. [26], and a regression-tree. All of these models were easily interchangeable
and the library can be amended even by models from the literature. Figure 2 shows how easy it is to
interchange subsystems and connect them into the general model.

Frequency
model

Load Frequencies

Thermal
Regulation

On/Off

Voltage
Model

Voltage

Temperature

Pconsumed

MOR

X

Power
consumption

models

PowerBooter

NARX
Neural Net

ANN Thermal
Model

Power Model

Figure 2. The incremental structure of the general model makes very simple to adapt it to changes in
the structure and even exchange components at will. ANN: Artfical neural network. NARX: Nonlinear
Autoregressive with eXogenous input.

The interconnected model is required to have the least overhead. Thus, it only uses readings and
sensors available on the system. Additionally, variables like the frequency—and consequently voltage
and power consumption—are reevaluated every 20 ms [73]. The model needs to read these variables
and generates estimations at this sampling time. During the building of the monitoring framework,
we have built and experimented with several types of models—notably for the temperature and
power consumption. However, in this work, we present the models that delivered the best accuracy
while satisfying the speed of estimation requirements.

The variables estimated by the model, characterize the operating state of the SoC (i.e., both the
CPU and GPU) and are used as inputs to the monitoring algorithm.

3.3. Monitoring Approach

Most of the fault diagnosis techniques, presented in Section 2, are based on the dependency theory,
hardware and software redundancy, and online verification tests. The method proposed in this work,
on the other hand, is based on analytical redundancy, created by the construction of a reference model
of the system. This technique compares the real outputs of the system to reference ones generated by
the developed estimation model. In the presence of faults, the system’s outputs deviate from their
reference values, thus, generating fault indicators. The latter, commonly called residuals, are evaluated
by a probabilistic method to account for modeling uncertainties in the decision-making process.

The use of analytical redundancy is fairly common for the diagnosis of fault in the hardware
section of systems. Yet, to our knowledge, this is the first use of this technique to monitor both

Processes 2020, 8, 678 7 of 26

hardware and software components. Figure 3 presents an overview diagram of our approach to
monitoring an SoC with an embedded CPU and GPU.

SoC

Reference
Model

Residual generation
and Analysis

Residuals
Evaluation and

Threshold
Calculation

Load Measured
outputs

Simulated
outputs

Residuals

MOR

Decision and Alarm
Generation

Processed Residuals

Thresholds

Figure 3. Overview of the proposed monitoring method.

Finally, the modularity of the incremental estimation model allows for each of the generated
residuals to be associated with an identified module. Hence, in the presence of faults, faulty subsystems
can be easily isolated.

4. Experimental Setup

Two systems were used in this study for testing and experimental validation; an Android
smartphone and an ARM-based development board.

4.1. The Android Smartphone

These devices are ubiquitous and developed application can be effortlessly transferred from one
device to another. Moreover, the availability of the source code for their operating systems makes some
of the needed parameters accessible for reading and even modification. Additionally, they are equipped
with the all necessary sensors for the measurement of all the variables mentioned in Section 3.1.

The smartphone we used in this study is a Samsung Galaxy S5 [74]. It was equipped with an
SoC harboring a quad-core processor with variable frequencies—through frequency and voltage
scaling—ranging between 0.3–2.45 GHz. It also has a GPU with frequencies ranging between
200–578 MHz. The SoC is covered by the system’s 2 GB low power RAM.

After much experimentation, this phone was no longer usable. For the last part of experimentation
(see Section 8.3), we used a second device equipped with an octa-core processor arranged in a
big.LITTLE configuration (Arm Holdings, Cambridge, United Kingdom, 2007) [75], running at
frequencies up to 2.3 GHz, a state of the art GPU, and 4 GB of RAM.

4.2. The ARM-Based Development Board

For the actual prototype of the project, we use a safety-critical certified development board.
The board runs on Linux and is Android capable. It has a one core ARM Cortex-A9 processor (ARM
Holdings, Cambridge, United Kingdom, 2007) [76] and is equipped with 1 GB of RAM. Since it is only
a prototype, the board is not equipped with sensors to measure consumed power (or drawn current
for that matter), yet. We used an external ampere meter and an oscilloscope.

4.3. The Monitoring Equipment

There are two possible ways of implementing a monitoring algorithm; either implement it directly
on the monitored board or use external equipment to do so. Even though we tested both ways,
especially on the phone where it was feasible and had a utility that the phone monitors its own
operating state. From a reliability standpoint, the operating state of an electronic board should be
monitored externally, to reduce overhead on the board, and if the board freezes or fails, warnings and
fail indications could still be generated. Hence, for this prototype, we used a PC and linked it to the
monitored device through a TCP/IP connection. An application that we developed would send data

Processes 2020, 8, 678 8 of 26

from the device to the PC which would generate estimated reference variables and compares them to
the readings.

Figure 4 shows the actual development board alongside its touch screen and the multimeter used
to measure the power it draws. The monitoring PC with the monitoring program is alongside as well.

Figure 4. Setup with the development board, its touchscreen, and the ampere meter.

5. System Modeling

In the following paragraphs, we detail the modeling process of each of the subsystems. Firstly,
we start by reverse engineering algorithms of the frequency governor, voltage scaling, and the
thermal regulator. Then we move onto the black-box modeling of power and temperature.

5.1. Reverse Engineering the Algorithms

These algorithms are already present on the system. To generate similar outputs as they do,
we studied and repurposed their code for simulation and monitoring.

5.1.1. Frequency Governor

Frequency scaling is carried out by programs called Governors. In the studied systems, several
frequency governors exist; they calculate the frequency according to usage needs as well as several
other factors (responsiveness, power consumption, etc.). Smartphones usually tend to use the
Interactive Governor (Google Inc, Mountain View, CA, United States, 2015) [77], which is also
compatible with the ARM-based board. Thus, it has been used in our case study. Nevertheless,
thanks to the modular structure of the model, any other governor can replace it, if needed. Figure 5
displays a simplified flowchart of the governor’s algorithm. It is inspired by the source code available
in the code deposits of the manufacturer of the studied smartphone [73]. In a summary, it increases
and decreases the frequency of each core as a function of the load, specific constants (goHispeedLoad,
targetLoad, hispeedFreq, etc.), and timers (timerRate, downTimer...).

Begin

wait

tRCounter ≥ timerRate

freq < HiSpeedFreq freq = HiSpeedFreqLoad ≥ goHiSpeedLoad

newFreq = min
freq× Load

targetLoad
− FREQUENCY_TABLE

newFreq < freq

newFreq > freq

downTimer ≥ minSampleTime

freq = newFreq
downTimer = 0

upTimer = 0

upTimer ≥aboveSpeedDelay

tRCounter = 0

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Figure 5. A simplified flowchart for modeling of the Interactive Governor.

Processes 2020, 8, 678 9 of 26

5.1.2. The Thermal Regulator

The manufacturers of the SoCs used in this study programmed three of thermal regulators that
can be selected to control the temperatures of the SoC. These regulators are Proportional Integral
Derivative (PID), Single Step (SS), and the one used in our systems; Monitor. This algorithm simply
samples the temperature at a predefined rate (samplingMs), and if a core’s temperature is higher
than the predefined threshold, the core will be shut down, until it drops below a second threshold
(thresholdsClr), when the core can be turned on again.

5.1.3. Voltage Scaling

Recovered voltage readings of the CPU cores show that, like the frequency, voltage is discreet
and varies in a set of well-defined values. To see the relationship between these two variables,
voltage readings are plotted against the frequencies (Figure 6a). It shows an almost linear trend
(in red) where the values are concentrated, indicating that each frequency is associated with a fixed
voltage value.

Furthermore, by analyzing the measurements, we find 15 frequency values (plus a zero frequency
for a turned-off core) against 14 voltage values, leading to the belief that some frequencies share the
same voltage value. Thus, to better investigate the relationship between the frequencies and voltages,
we use the histogram of voltage values for each frequency. As shown in Figure 6b for f = 1.49 GHz,
the histogram clearly indicates that the core voltage for this frequency value is V1.49 = 0.875 V. All of
the other voltage values are obtained in the same manner.

0 0.5 1 1.5 2 2.5

Frequency per CPU core (GHz)

0.75

0.8

0.85

0.9

0.95

1

1.05

V
o
lt
a
g
e
 p

e
r

C
P

U
 c

o
re

 (
V

)

(a)

0.84 0.85 0.86 0.87 0.88

Voltage values (V)

0

1000

2000

3000

4000

5000

6000

7000

N
u

m
b

e
r

o
f

ti
m

e
s

(b)
Figure 6. Frequency vs. voltage for the Samsung Galaxy S5 Central Processing Unit (CPU). (a) The
voltage values drawn against the frequency values (in red), show a quasi-linear trend (in blue). (b) A
histogram of voltage values for f = 1.49 GHz.

5.2. Black-Box Modeling

White-box modeling of temperature and power in an SoC would require design level knowledge
of all the inner components of the chip [23]. It would also require constructing finite state machines [17]
or simulating differential equations [48]. Identification techniques, on the other hand, train the model
to fit its outputs to observations using statistics [17]. Good expertise of the factors influencing the
output is appreciated, but not required, nor is the formal theoretical proof of the relation between the
inputs and outputs [23]. Still, these methods require large amounts of data, time, and computational
resources for training and validation to account for all cases [17], unlike white-box models.

Processes 2020, 8, 678 10 of 26

5.2.1. Power Model

Before starting the model construction and training processes, it is necessary to determine the
inputs of the model. For microprocessors, the power consumption is often given by the [78]:

PCPU = C× f ×V2 (1)

where f is the frequency, V the voltage and C the capacitance of the microprocessor. C depends on
the design, the internal wiring, and gate switching in the microprocessors [78]. While we cannot
directly use Equation (1) to compute power consumption, we can use it as a guide to select the variables
that correlate the most with power consumption in the microprocessor—in this case, the frequency
and voltage.

It was also shown in the previous paragraph that the voltage and the frequency data are tied one
to the other. Therefore, the frequencies of the cores, the frequency of the GPU, and the MOR are used
as the inputs to our power model. Some of the models in the literature also multiplied the frequencies
by the load. Nonetheless, our experimental results showed that the load—which defines the frequency
in the first place—had no further effect on the final accuracy of the model. Hence, for optimization
purposes (limiting the input size of the model), we omitted its use.

Most power models in the literature are constructed using data fitting techniques like linear
regression and tend to be of a polynomial form [23,24,26,27]. These models assume a linear relationship
between the inputs and the outputs, which is not always the case [23], thus increasing the error when
the change in power consumption is not linear [17]. Although we also use data-based techniques
for identification, the model we construct is a nonlinear autoregressive model with exogenous input
(NARX) [79], since they would overcome the shortcomings of regression-based ones [36,37], giving it
an advantage over linear regression models.

The neural network is composed of two layers. The hidden layer contains neurons with sigmoids
as activation functions, and the output layer contains a single linear neuron. Figure 7 shows the general
structure of the NARX model with the output feedback and the time delay line (TDL), which in our
model is equal to 1.

y(k)

u(k) TDL f1(u(k), u(k -1))

TDL f2(y(k), y(k -1))

Σ

Figure 7. The general structure of the NARX neural network model. TDL: Time Delay Line.

Since this work is focused around the SoC, in order to minimize the influence of other
system components, all communication and secondary peripherals Wi-Fi, modem, cameras, screen,
etc.) were disabled and assumed to consume a static constant amount of power in that state [28,80].
The measured consumed power becomes:

PConsumed = PSoC + PStatic (2)

During our experimentation, we found the static power PStatic to be marginal, thanks to the power
management capabilities of modern devices, but we still included it in the model for better accuracy.

5.2.2. Thermal Model

Temperature dynamics are different from those of the other studied variables. For a starter, it is
continuous, and going to be sampled (discretized). In addition, it does not depend only on the inputs,

Processes 2020, 8, 678 11 of 26

but also on its own previous values. Since our aim is to monitor the operating state of the SoC, we will
not focus on the mechanics of heat generation and transfer. Thus, we focused our attention on finding
variables affecting the temperature.

Recorded data show that temperature is directly correlated with the frequency of the CPU and
the GPU. The data also confirm the correlation in the measurements between the recorded temperature
and power consumption, as concluded in the literature [45,46]. Therefore, the considered inputs of the
model of the temperatures are only the frequencies of the CPU and the GPU, along with the MOR and
the power consumption.

To better represent these dynamics, we tried several model and settled on an
Autoregressive–Moving-Average with Exogenous Inputs (ARMAX) model. ARMAX models use
the regression of inputs and previous outputs, along with the moving average to simulate or predict
the current output as follows [81]:

A(q−1)y(k) = B(q−1)u(k− τ) + C(q−1e(k)) (3)

y(k) is the output to estimate (or predict), u(k) is the exogenous (X) variable or the input,
and e(t) is the moving average (MA) variable. q−1 is the delay operator. A(q−1) holds of
the autoregressive parameters, B(q−1) holds the input parameters, and C(q−1) holds the MA
parameters [81].

In the case of this work, the ARMAX model is ideal to model the temperature, as it takes into
account previous inputs and values of the output. In the identification process, temperature TSoC is the
output y(k) to be estimated, and the inputs are:

u(k) = [f1, ..., fn, fGPU , MOR, PSoC]

6. Monitoring: Residuals Generation and Evaluation

The design of a monitoring system goes through two major steps. The first is the
residuals generation, whereas the second consists of their evaluation. In theory, generated residuals
have a value of zero in normal operating conditions. However, in practice, due to uncertainties,
it is uncommon that residuals are equal to zero. Thus, two types of approaches can be found in the
specialized literature for residual evaluation:

• Model-based approaches use the analytical expression of the residuals to generate thresholds
that take into account parameter and model uncertainties along with measurement noises [82–86].

• Signal-based approaches consider residuals as a signal and do not take into account its
physical origin. The idea consists of the extraction of statistical and probabilistic properties
of residual signal in normal operation and using them as a reference to make a decision (generate
an alarm, for instance) [87–90].

6.1. Residual Generation

In this work, raw residuals are generated by comparing the current outputs of the system with
those estimated by the reference model (cf. Figure 3). They are expressed as follows:

rT = (Testm(t)− Tmeas(t))/Testm(t)
rP = (Pestm(t)− Pmeas(t))/Pestm(t)
riV = (Viestm(t)−Vimeas(t))/Viestm(t)
ri f = (fiestm(t)− fimeas(t))/ fiestm(t)

(4)

where i = {1, ..., n, GPU} denotes either the GPU or the core number of the CPU, the subscript estm

denotes model estimations and meas is for measured values (or readings).

Processes 2020, 8, 678 12 of 26

This approach for residuals generation is well suited for the detection of progressive deviations in
the characteristics of the system and thus allows for early detection of degradation. Interpretations of
these drifts in characteristics, on the other hand, are performed using relationships of causality arising
from the expertise of manufacturers and system operators. Hence, this method employs a large part of
the available information (physical knowledge, expertise, measures, etc.).

6.2. Residual Evaluation

This step allows us to determine the presence or absence of a fault. The raw residuals generated
in the previous paragraph are evaluated each with methods suited for their type. The purpose of this
evaluation is to generate a normalized residual R which can only take two values; 1 or 0. This residual
serves as an indicator for users of the presence (or not) of faults in the system.

To generate the normalized residual, we need to define thresholds values. In this work, taking
into account how residuals are generated, their evaluation is carried out using signal-based approaches.
Additionally, since each subsystem is modeled by the most appropriate method for its dynamics,
thresholds calculation is also adapted to the said dynamics.

6.2.1. Frequency and Voltage Residuals Evaluation

Analysis of the frequency raw residuals r f and those of the voltage rV (given in Section 7) show
that these signals are equal to zero, but include momentary differences during the moments when the
frequency or the voltage changes. These spikes are caused by a delay in the computation of estimated
values relative to measured ones. To take this delay into account in the decision-making process, the
maximum values of the delay, noted τre f , is identified and then used to calculate normalized residuals
R f and RV as follows:

Rx =

{
1 if rx 6= 0 and τxd > τfre f

,

0 elsewhere
(5)

x = { f , v} denotes either the frequency or the voltage, and τxd is the value of the computed delay for
each of these two variables.

6.2.2. Power and Temperature Residuals Evaluation

Analysis of the raw residuals rP and rT show that these signals have a high-frequency noise with
an average close to zero. They are also normally distributed around that average (Figures 9b and 10b),
which indicates that 99.7% of the residuals will be present between values of the mean µ plus or minus
three times the standard deviation σ (in our case, it is 99.2% for the temperature residuals and 99.4%
for the power residuals). However, errors will still arise from estimation and scheduling errors [91].
These errors are especially prevalent in periods of high loads where readings and estimations might be
out of synchronization (as seen with the frequency and voltage).

Knowing that drifts of characteristics are rather contained in the average value of the signal,
and in order to minimize the effect of the noise and avoid false alarms coming from estimation
and synchronization errors, we use the moving average method to compute averaged residuals for
power and temperature, rmP and rmT , respectively, from raw residuals rP and rT , respectively (Moving
average is the unweighted sum of data over a window of n samples). Then, we use µ and σ of the
averaged signals as thresholds to form an envelope around each of the residuals (Equation (6)). Thus,
normal operating thresholds are generated as follows for power (temperature averaged residuals and
thresholds are obtained using the same formula):

Processes 2020, 8, 678 13 of 26

rmP =

1
n

n

∑
i=1

rP ,

th+rP
= µrmP

+ 3× σrmP
,

th−rP
= µrmP

− 3× σrmP

(6)

To further simplify the process of decision making, we generate normalized residuals RP and RT
from the averaged residual rmP and rmT as follows:{

Rx = 1 if ‖rxm‖ > ‖thrx‖,
Rx = 0 elsewhere

(7)

x = {P, T} denotes either the power or the temperature.

6.3. Fault Isolation

After fault detection comes isolation of the faulty subsystems, which remains an area of ongoing
and developing research. In this paper, fault isolation is achieved through the incremental and
interconnected structure of the model (Figure 1). Indeed, since in our model, each subsystem represents
a functional component of the system and describes a relationship between its inputs and outputs
during normal operation. In the case of presence of faults, these latter will first be detected in the
faulty subsystems readings and alarms. Once a fault is detected, the next step is either to analyze its
propagation and effect on the rest of the subsystem or just isolate it. In this work, we aim for isolation.
Since the subsystems are interconnected, a fault would normally propagate. Thus, outputs from
the model of the faulty component are replaced with readings which will allow for the rest of the
subsystems in the model to continue generating the same outputs as measured.

7. Validation of the Model and Monitoring Algorithm

The results presented in this section were recorded in a default usage and benchmarking scenario.
This scenario is composed of three main steps. The first is a series of standard benchmarks (for both
CPU and GPU). These benchmarks are PCMark [92], 3D mark [93], AnTuTu Benchmark [94], and
Geekbench 4 [95]. The second step is a less complex video playback task, and the third one is the
device left idle for a while.

Since we used two experimental setups, in this section, we will alternate showing results from
both setups to highlight the flexibility and portability of the models and algorithm we propose here.

7.1. Model Validation

7.1.1. Frequency and Voltage Models

Evolution of the measured frequencies from the CPU cores of the Android phone and the
frequencies estimated by the model of the governor is given in Figure 8a. It shows near-identical
results with a small delay at the instants of frequency change. This delay explained by the time needed
by the model to assess the change. The maximum recorded delay is τfre f

= 0.1 s, during a period of
high loads, due to scheduling delays [91]. This value will be used in the residual evaluation step.
Analyzing Figure 8b, we arrive at the same conclusion for the voltage model with the difference of the
maximum recorded delay being τVre f = 0.12 s.

Processes 2020, 8, 678 14 of 26

4270 4275 4280 4285

Time (s)

0

0.5

1

1.5

2

2.5
F

re
q
u
e
n
c
y
 (

G
H

z
)

f
meas

f
estm

(a)

282 284 286 288 290 292

Time (s)

0.8

0.85

0.9

0.95

1

1.05

C
o
re

 V
o
lt
a
g
e
 (

V
)

V
meas

V
estm

(b)
Figure 8. Frequency and voltage models performances. (a) Frequency model estimations vs.
system readings. (b) Voltage model estimations vs. system readings.

7.1.2. NARX Power Model

To train and evaluate the NARX model, the data recovered during the default scenario, is split—as
per standard training and validation procedure—into three sets; a training set (60%), a validation set
(20%), and a test set (20%). The first two sets are used during the training process, while the test set is
used to judge the performance of the model. Once the model was validated and tested offline, it was
then further tested online to evaluate its estimation speed and its capacity to withstand scheduling
delays during periods of high-loads and input lag.

Table 1 shows the training, validation, and test results for the NARX model in addition to the
online test results which are required to validate the model in our use case. In Figure 9a, the measured
power draw from the phone is displayed against values estimated by the NARX model, in the
online test. The estimations follow the measured values accurately with minimal errors. The model
has an accuracy of 97.12%, and the recorded Mean Absolute Error (MAE) 0.0168 W, whereas the Mean
Squared Error (MSE) is 7.04× 10−4. Figure 9b shows the estimation error distribution of the NARX
power model for the online test. The errors have a mean value of 1.178× 10−4 W and a standard
deviation of 0.0265, with 99.4% within µ± 3× σ. The Kolmogorov–Smirnov (KS) test confirms that
this distribution fits the profile of a standard normal distribution.

Table 1. Results from the training and validation of the Nonlinear Autoregressive model with
eXogenous input (NARX) model for the Android phone. MAPE: Mean Absolute Percentage Error.
MSE: Mean Squared Error.

Set Training Validation Test Online Test

MSE 2.32× 10−4 2.68× 10−4 3.17× 10−4 7.04× 10−4

MAPE (%) 2.13 2.19 2.40 2.88

We also compared our results with the accuracy of established and recent power models;
Trepn which measured at 94.5% [22], Snapdragon Profiler (measured at 95.2%), PowerBooter which
reported 96% accuracy [17,23], PETrA (96% [29]), the models proposed by Walker et al. (96.2% [33]),
Yoon et al. (94.9% [7]), Kim et al. (96.2% [26]), and GreenOracle (∼10% [31]).

Finally, we compared the power draw overhead caused by our modeling and monitoring program
to the profilers we could test; PowerBooter, Trepn, and Snapdragon Profiler. The first caused an increase
of 9% in power consumption during a 15 min test. While the second caused an increase of 8%, in our
standardized benchmarking test. The Snapdragon Profiler caused an increase of 5%. Compared to the

Processes 2020, 8, 678 15 of 26

three aforementioned profilers, our modeling and monitoring scheme caused an increase of only 3% in
power consumption, during the same test.

While we are pleased that our NARX model delivered results that are on par or even better than
established works, it is worth noting that some of these profilers have higher levels of granularity
than our model. Furthermore, some works, like PowerBooter, have not been updated for several years,
and manufacturer-specific profilers were trained using its brands’ SoCs, and thus would probably
perform with them.

925 930 935 940 945

Time (s)

0

0.5

1

1.5

P
o
w

e
r

(W
)

P
meas

P
estm

(a)

-0.1 -0.05 0 0.05 0.1

Power errors values (W)

0

1000

2000

3000

4000

N
u

m
b

e
r

o
f

in
s
ta

n
c
e

s
 p

re
s
e

n
t

(b)
Figure 9. NARX power model perfomance. (a) NARX model power estimations compared to the
system measurements. (b) Distribution of the NARX power model estimation errors.

7.1.3. ARMAX Temperature Model

In system identification, only two sets of data are needed. The first set is used to train the model,
and the second is used to validate and test it. For this model, 70% of the data are used as a training
set and the rest as a validation set. Finally, as in the case of the NARX power model, the model was
tested online. Table 2 shows the MAPE and MAE (%) from both sets and the online test. The ARMAX
model has an MAE of 0.4741 ◦C (1.48%). The estimation errors from the ARMAX model are normally
distributed (KS test), as they were in the case of the power model, with 99.2% of the values within
µ± 3× σ. Figure 10b displays the distribution of these errors.

790 800 810 820 830 840 850

Time (s)

40

45

50

55

60

65

70

75

T
e
m

p
e
ra

tu
re

 (
°

C
)

T
meas

T
estim

(a)

-2 -1 0 1 2

Temperature errors values (°C)

0

100

200

300

400

N
u
m

b
e
r

o
f
in

s
ta

n
c
e
 p

re
s
e
n
t

(b)
Figure 10. The Autoregressive–Moving-Average with Exogenous Inputs (ARMAX) temperature model
perfomance. (a) ARMAX model temperature estimations compared to system readings. (b) Distribution
of the ARMAX Temperature estimation errors.

Processes 2020, 8, 678 16 of 26

Table 2. Results from the identification and validation of ARMAX model for the development board.

Set Identification Validation (Test) Online Test

MSE 0.35 0.58 0.83
MAPE (%) 0.73 0.75 1.48

Figure 10a displays the evolution of the estimated temperature on the development board,
compared with the measured temperature of the CPU. The estimations delivered by our model are
accurate in both low-frequency changes (heating and cooling), as well as high-frequency ones (weak
temperature changes). The figure also shows that the model takes into account the initial conditions.
Hence, temperature modeling is validated.

7.2. Validation of the Fault Detection and Isolation (FDI) Algorithm

Profiles of the raw residuals r f and normalized residual R f during our tests on the smartphone
are given in Figure 11. This latter shows that raw residuals are sensitive to delays of estimation by
the model at the moments of frequency changes, resulting in the appearance of a number of spikes.
However, the normalized residual R f is equal to zero over the duration of the test. Hence, no false
alarm is recorded. Figure 12, allows us to draw the same conclusion for the voltage raw residuals rv

and the normalized residuals Rv, which also present no false alarms.

0.6 0.8 1 1.2 1.4

Time (s) 104

-1

0

1

F
re

q
u

e
n

c
y
 r

e
s
id

u
a

ls
 r

f

(a)

0.6 0.8 1 1.2 1.4

Time (s) 104

-1

-0.5

0

0.5

1

N
o
rm

a
liz

e
d
 r

e
s
id

u
a
ls

 R
f

(b)
Figure 11. Profile of the residuals r f and R f during normal operation: (a) raw residuals r f ,
(b) normalized residuals R f .

0 100 200 300 400

Time (s)

-1

-0.5

0

0.5

1

V
o
lt
a
g
e
 r

e
s
id

u
a
ls

r V

(a)

0 100 200 300 400

Time (s)

-1

-0.5

0

0.5

1

N
o

rm
a

liz
e

d
 r

e
s
id

u
a

ls
 R

V

(b)
Figure 12. Profile of the residuals rV and RV during normal operation scenario: (a) raw residuals rV ,
(b) normalized residuals RV .

Raw residuals rP, averaged residuals rmP , and normalized residuals RP from the tests on
the smartphone, are given in Figure 13a–c, along with the computed thresholds (in red). In the
raw residuals rP, 99.4% of data is within the normal operating envelope, giving rise to some
false alarms. The number of false alarm is reduced to naught by using the averaged residuals rmP .
Thus, averaged residuals greatly improve the accuracy of the power normalized residuals. Figure 13
also shows all the temperature residuals rT , rmT , and RT along with the thresholds (red colored

Processes 2020, 8, 678 17 of 26

lines) from the tests on the development board, and allows as to draw the same conclusion for the
temperature residuals.

800 850 900 950 1000

Time (s)

-0.5

0

0.5

P
o

w
e
r

re
s
id

u
a
ls

 r
P

(a)

800 850 900 950 1000

Time (s)

-0.1

-0.05

0

0.05

0.1

A
v
e

ra
g

e
d

 r
e

s
id

u
a

ls

r
m

P

(b)

800 850 900 950 1000

Time (s)

-1

-0.5

0

0.5

1

N
o

rm
a
liz

e
d
 r

e
s
id

u
a
ls

 R
P

(c)

600 700 800 900 1000 1100

Time (s)

-0.1

-0.05

0

0.05

0.1

T
e

m
p

e
ra

tu
re

 r
e

s
id

u
a

ls
 r

T

(d)

790 800 810 820 830 840 850 860

Time (s)

-0.01

0

0.01

A
v
e

ra
g

e
d

 r
e

s
id

u
a

ls

r
m

T

(e)

790 800 810 820 830 840 850 860

Time (s)

-1

-0.5

0

0.5

1

N
o
rm

a
liz

e
d
 r

e
s
id

u
a
ls

 R
T

(f)
Figure 13. Power and temperature residuals assessment in normal operation. (a) Power raw residuals
rP. (b) Power averaged residuals rmP . (c) Power normalized residuals RP. (d) Temperature raw
residuals rT . (e) Temperature averaged residuals rmT . (f) Temperature normalized residuals RT .

8. Testing the FDI Algorithm

To test the residuals sensibility to faults and degradation, we propose three different faulty
scenarios with faults originating either from the environment, or the software, or the hardware.
During these experimentation process, the device will be put into the same benchmarking and usage
as the previous section but in the middle of that usage, a fault will be presented as described below.
A demonstration video of this process have been published online (Supplementary Material) [96].

8.1. Control Faults

In the first faulty scenario, we reproduce a possible governor bug or a system clock malfunction
where frequency no longer corresponds to the load. In this scenario, a constant frequency is forced
onto the CPU. Figure 14 shows the evolution of both measured and estimated frequencies on the
development board. At t = 46 s, the measured frequency is locked to a constant frequency that does

Processes 2020, 8, 678 18 of 26

not match the input load. This fault is instantly detected by the raw residual r f as shown in Figure 15a.
Consequently, the normalized residual R f rises from 0 to 1, generating an alarm (Figure 15b).

40 45 50 55

Time (s)

0

0.5

1

1.5

2

2.5

F
re

q
u
e
n
c
y
 f

 (
G

H
z
)

f
mesurée

f
estimée

Figure 14. Estimated frequency from loads against measured frequency that is blocked at the maximum
value around t = 46 s.

40 45 50 55 60

Time (s)

-2

-1

0

1

fr
e
q
u
e
n
c
y
 r

e
s
id

u
a
ls

r
f

(a)

40 45 50 55 60

Time (s)

0

0.5

1

N
o

rm
a

liz
e

d
 r

e
s
id

u
a

ls

R
f

(b)
Figure 15. Profile of the frequency residuals during faulty operation. Frequency is blocked at the
maximum value around t = 46 s at which time an alarm is generated. (a) Raw residuals r f . (b) Averaged
residuals R f .

8.2. Hardware or Component Faults

This scenario is intended to simulate faulty component, the presence of foreign bodies on the chip
(like the accumulation of dust), or the change in the chips characteristics due to wear either by time or
by overuse. Such faults and drifts are generally noticed through a decrease in power consumption.

As already described in Section 5.2.1, the neural net model is trained to monitor the power
consumed by the SoC (and the static power consumed by the rest of the peripherals by extension).
Thus, to simulate the change in power profile caused by one of the aforementioned reasons,
In this experiment, we plugged an external peripheral—a USB lamp.

In Figure 16, the values of the measured and estimated power consumption values from the
development board are drawn against each other. It shows a noticeable difference between the two
values compared to Figure 9a. When computing and evaluating the raw residuals (Figure 18a), we find
that most values fall within the thresholds envelope. Nevertheless, further analysis using normalized
residuals (Figure 18b) shows that the average of the residuals fall outside of the threshold envelope
and so an alarm is generated (Figure 18c).

Processes 2020, 8, 678 19 of 26

270 275 280 285 290 295 300

Time (s)

1

1.5

2

P
o
w

e
r

(W
)

 P
meas

 P
estm

Figure 16. Measured power values drawn against estimated ones during the faulty power
scenario experiment.

8.3. Environmental Faults

While the faults discussed in the previous paragraph come from either the software or the
chip itself, the fault we are introducing in this faulty scenario is generally due to the environment
around the chip. In this part of the test, the chip will be heated, allowing us to test the ability of the
fault detection algorithm to detect abnormal heating of the SoC, which can be caused by a failure in
the cooling system, or electrostatic charges, or even radiations.

In order to simulate such faults, we had to heat the devices up to a temperature higher than their
running temperatures, without damaging their components or compromising their structural integrity.
The phone was sealed in a waterproof bag and put into a hot water bath at a temperature of 80 ◦C,
whereas the development board was exposed, at proximity to a 1000 W light projector.

Figure 17 shows the evolution of measured and estimated SoC temperatures, on the smartphone.
The difference between the two curves becomes clear at t = 180 s, about 20 s after the submersion of
the phone into the water. Figure 18 shows the reaction of residuals rT (Figure 18d), rmT (Figure 18e),
and RT (Figure 18f). The latter is detected around t = 190 s where the residual rmT goes beyond normal
operating envelope. Then, an alarm is generated (RT rises from 0 to 1).

150 200 250 300 350

Time (s)

55

60

65

70

75

T
e
m

p
e
ra

tu
re

 (
°

C
)

 T
meas

it T
estm

Figure 17. Measured temperatures and simulated temperatures of the smartphone while put in a
heated environment. Divergence starts around t = 190 s.

Processes 2020, 8, 678 20 of 26

270 275 280 285 290 295 300

Time (s)

-0.5

0

0.5

P
o
w

e
r

re
s
id

u
a
ls

 r
P

(a)

270 275 280 285 290 295 300

Time (s)

-0.2

-0.1

0

0.1

0.2

A
v
e
ra

g
e
d
 r

e
s
id

u
a
ls

 r
m

P

(b)

270 275 280 285 290 295 300

Time (s)

-1

-0.5

0

0.5

1

N
o
rm

a
liz

e
d
 r

e
s
id

u
a
ls

 R
P

(c)

150 200 250 300 350

Time (s)

-2

0

2

4

6

8

T
e
m

p
e
ra

tu
re

 r
e
s
id

u
a
ls

r
T

(d)

150 200 250 300 350

Time (s)

-0.04

-0.02

0

0.02

0.04

0.06

A
v
e
ra

g
e
d
 r

e
s
id

u
a
ls

 r
m

T

(e)

150 200 250 300 350

Time (s)

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 r

e
s
id

u
a
ls

 R
T

(f)
Figure 18. Power residuals assessment during faulty scenario of the introduction of an external
component, and temperature residuals during the heating experiment. (a) Power raw residuals rP.
(b) Power averaged residuals rmP . (c) Power normalized residuals RP. (d) Temperature raw residuals
rT . (e) Temperature averaged residuals rmT . (f) Temperature normalized residuals RT .

9. Conclusions

This work has tackled the problem of monitoring a CPU-GPU SoC in an embedded system
intended for safety-critical use, hence making its monitoring an obligation. We propose a monitoring
scheme that acquires data from the device. Then, using this data, we built and trained a novel
incremental interconnected model for the estimation of characteristic variables of the system.

The unique structure of the model streamlines the otherwise difficult process of modeling an SoC,
making it relatively easier and more focused on the actual use of the model rather than building it.
The latter is composed of subsystems to each built to estimate one variable rendering the process of
fault isolation easier. Moreover, this interconnected structure gives the model builder the freedom and
flexibility to adapt the model to the use case by including new subsystems and hence enlarging the
scope of the model, or omitting some of them to focus on certain variables. The process of building
each of the subsystems was also detailed, from the reverse-engineering of the algorithms to the use of
data-based techniques (neural net and regression).

Experimental results validated all of the subsystems and the incremental model delivers
estimation on the fly. Furthermore, our NARX power model has an accuracy of 97.12%; one of

Processes 2020, 8, 678 21 of 26

the highest in the literature. The choice of a nonlinear neural net to model power consumption proved
its merit since the NARX power model outperforms the regression-based models because it accounts
for the nonlinearity in the changes of power consumption. Finally, the ARMAX model’s temperature
results are accurate and on par with established models.

In the monitoring part, we presented a fault diagnosis module, aimed at the early detection of
drifts from estimated characteristics. The fault diagnosis module uses residuals to generate alarms in
case of faults. These residuals are generated by comparing estimations made by the developed
model with readings from the system. To test the fault diagnosis module, it was first trained
and validated during standard use. Then, three failure scenarios were tested, each to simulate a
different fault. The fault diagnosis module quickly detected, localized, and isolated these faults.
Thus, it is experimentally validated. In addition to fault detection, the information collected on the
trend of the characteristic drift can be used for analysis and modeling of degradation phenomena in
CPU-GPU chips, which will be discussed in future works.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Video S1: Prototypage
d’un système de surveillance des systèmes embarqués pour le projet MMCD.

Author Contributions: Conceptualization, O.D. and M.D.; Formal analysis, O.D. and M.D.; Methodology, O.D.
and M.D.; Formal analysis, O.D.; Investigation, O.D.; Software, O.D.; Supervision, M.D.; Writing—original draft,
O.D.; Writing—review & editing, O.D. and M.D. All authors have read and agreed to the published version of
the manuscript.

Funding: This paper is part of the “FUI 19” project. It is a publicly funded project through a grant by the Banque
Publique d’Investissement (Bpifrance). Bpifrance is a public institution funding projects aiming to promote research,
development, and industry in France.

Conflicts of Interest: The authors declare no conflict of interest. The funder had no role in the design of the study;
in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish
the results.

References

1. AMD. What Is Heterogeneous Computing? Available online: https://developer.amd.com/heterogeneous-
computing-2/what-is-heterogeneous-computing/ (accessed on 23 January 2018).

2. Akdur, D.; Garousi, V.; Demirörs, O. A survey on modeling and model-driven engineering practices in the
embedded software industry. J. Syst. Archit. 2018, 91, 62–82, doi:10.1016/j.sysarc.2018.09.007.

3. Djedidi, O.; Djeziri, M.A.; M’Sirdi, N.K. Data-Driven Approach for Feature Drift Detection in Embedded
Electronic Devices. IFAC PapersOnLine 2018, 51, 1024–1029, doi:10.1016/j.ifacol.2018.09.714.

4. Djedidi, O.; Djeziri, M.A.; M’Sirdi, N.K.; Naamane, A. Modular Modelling of an Embedded Mobile CPU-GPU
Chip for Feature Estimation. In Proceedings of the 14th International Conference on Informatics in Control,
Automation and Robotics, Mardrid, Spain, 26–28 July 2017; SciTePress: Mardrid, Spain, 2017; Volume 1,
pp. 338–345, doi:10.5220/0006470803380345.

5. Kim, D.; Chon, Y.; Jung, W.; Kim, Y.; Cha, H. Accurate Prediction of Available Battery Time for
Mobile Applications. ACM Trans. Embed. Comput. Syst. 2016, 15, 1–17, doi:10.1145/2875423.

6. Guo, Y.; Wang, C.; Chen, X. Understanding application-battery interactions on smartphones: A large-scale
empirical study. IEEE Access 2017, 5, 13387–13400, doi:10.1109/ACCESS.2017.2728620.

7. Yoon, C.; Lee, S.; Choi, Y.; Ha, R.; Cha, H. Accurate power modeling of modern mobile application processors.
J. Syst. Archit. 2017, 81, 17–31, doi:10.1016/j.sysarc.2017.10.001.

8. Dzhagaryan, A.; Milenković, A.; Milosevic, M.; Jovanov, E. An Environment for Automated Measuring
of Energy Consumed by Android Mobile Devices. In Proceedings of the 6th International Joint
Conference on Pervasive and Embedded Computing and Communication Systems, Lisbon, Portugal,
25–27 July 2016; SCITEPRESS—Science and Technology Publications: Lisbon, Portugal, 2016; pp. 28–39,
doi:10.5220/0005950800280039.

9. Romansky, S.; Borle, N.C.; Chowdhury, S.; Hindle, A.; Greiner, R. Deep Green: Modelling Time-Series
of Software Energy Consumption. In Proceedings of the 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME), Shanghai, China, 17–22 September 2017; pp. 273–283,
doi:10.1109/ICSME.2017.79.

www.mdpi.com/xxx/s1
https://developer.amd.com/heterogeneous-computing-2/what-is-heterogeneous-computing/
https://developer.amd.com/heterogeneous-computing-2/what-is-heterogeneous-computing/
https://doi.org/10.1016/j.sysarc.2018.09.007
https://doi.org/10.1016/j.ifacol.2018.09.714
https://doi.org/10.5220/0006470803380345
https://doi.org/10.1145/2875423
https://doi.org/10.1109/ACCESS.2017.2728620
https://doi.org/10.1016/j.sysarc.2017.10.001
https://doi.org/10.5220/0005950800280039
https://doi.org/10.1109/ICSME.2017.79

Processes 2020, 8, 678 22 of 26

10. Almusalli, F.A.; Zaman, N.; Rasool, R. Energy efficient middleware: Design and development
for mobile applications. In Proceedings of the 2017 19th International Conference on Advanced
Communication Technology (ICACT), Bongpyeong, Korea, 19–22 February 2017; pp. 541–549,
doi:10.23919/ICACT.2017.7890149.

11. Niu, L.; Zhu, D. Reliability-aware scheduling for reducing system-wide energy consumption for weakly
hard real-time systems. J. Syst. Archit. 2017, 78, 30–54, doi:10.1016/J.SYSARC.2017.06.004.

12. Li, T.; Yu, G.; Song, J. Minimizing energy by thermal-aware task assignment and speed scaling in
heterogeneous MPSoC systems. J. Syst. Archit. 2018, 89, 118–130, doi:10.1016/j.sysarc.2018.08.003.

13. Caviglione, L.; Gaggero, M.; Lalande, J.F.; Mazurczyk, W.; Urbański, M. Seeing the unseen: Revealing
mobile malware hidden communications via energy consumption and artificial intelligence. IEEE Trans. Inf.
Forensics Secur. 2016, 11, 799–810, doi:10.1109/TIFS.2015.2510825.

14. Suarez-Tangil, G.; Tapiador, J.E.; Peris-Lopez, P.; Pastrana, S. Power-aware anomaly detection in smartphones:
An analysis of on-platform versus externalized operation. Pervasive Mob. Comput. 2015, 18, 137–151,
doi:10.1016/j.pmcj.2014.10.007.

15. Merlo, A.; Migliardi, M.; Fontanelli, P. Measuring and estimating power consumption in Android to support
energy-based intrusion detection. J. Comput. Secur. 2015, 23, 611–637, doi:10.3233/JCS-150530.

16. Peltonen, E.; Lagerspetz, E.; Nurmi, P.; Tarkoma, S. Constella: Crowdsourced system setting
recommendations for mobile devices. Pervasive Mob. Comput. 2016, 26, 71–90, doi:10.1016/j.pmcj.2015.10.011.

17. Hoque, M.A.; Siekkinen, M.; Khan, K.N.; Xiao, Y.; Tarkoma, S. Modeling, Profiling, and Debugging the
Energy Consumption of Mobile Devices. ACM Comput. Surv. 2015, 48, 1–40, doi:10.1145/2840723.

18. Ahmad, R.W.; Gani, A.; Hamid, S.H.A.; Xia, F.; Shiraz, M. A Review on mobile application energy
profiling: Taxonomy, state-of-the-art, and open research issues. J. Netw. Comput. Appl. 2015, 58, 42–59,
doi:10.1016/j.jnca.2015.09.002.

19. Benkhelifa, E.; Welsh, T.; Tawalbeh, L.; Jararweh, Y.; Basalamah, A. Energy Optimisation for Mobile Device
Power Consumption: A Survey and a Unified View of Modelling for a Comprehensive Network Simulation.
Mob. Networks Appl. 2016, 21, 575–588, doi:10.1007/s11036-016-0756-y.

20. Google Inc. Android 5.0 APIs; Google Inc.: Mountain View, CA, USA, 2017.
21. Google Inc. Measuring Power Values|Android Open Source Project? Available online: https://source.

android.com/devices/tech/power/values (accessed on 4 June 2020).
22. Qualcomm Innovation Center. Trepn Profiler; Qualcomm Innovation Center: San Diego, CA, USA, 2019.
23. Zhang, L.; Tiwana, B.; Qian, Z.; Wang, Z.; Dick, R.P.; Mao, Z.M.; Yang, L. Accurate online power

estimation and automatic battery behavior based power model generation for smartphones. In Proceedings
of the Eighth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System
Synthesis—CODES/ISSS ’10, Scottsdale, AZ, USA, 24–28 October 2010; ACM Press: New York, NY, USA,
2010; p. 105, doi:10.1145/1878961.1878982.

24. Dong, M.; Zhong, L. Self-constructive high-rate system energy modeling for battery-powered mobile systems.
In MobiSys; ACM Press: New York, NY, USA, 2011; p. 335, doi:10.1145/1999995.2000027.

25. Jung, W.; Kang, C.; Yoon, C.; Kim, D.D.; Cha, H. DevScope: A Nonintrusive and Online Power Analysis
Tool for Smartphone Hardware Components. In Proceedings of the eighth IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis—CODES+ISSS ’12, Tampere, Finland,
7–12 October 2010; ACM Press: New York, NY, USA, 2010; p. 353, doi:10.1145/2380445.2380502.

26. Kim, M.; Kong, J.; Chung, S.W. Enhancing online power estimation accuracy for smartphones. IEEE Trans.
Consum. Electron. 2012, 58, 333–339, doi:10.1109/TCE.2012.6227431.

27. Kim, Y.G.; Kim, M.; Kim, J.M.; Sung, M.; Chung, S.W. A novel GPU power model for accurate smartphone
power breakdown. ETRI J. 2015, 37, 157–164, doi:10.4218/etrij.15.0113.1411.

28. Djedidi, O.; Djeziri, M.A. Power Profiling and Monitoring in Embedded Systems: A Comparative
Study and a Novel Methodology Based on NARX Neural Networks. J. Syst. Archit. 2020, 101805,
doi:10.1016/j.sysarc.2020.101805.

29. Di Nucci, D.; Palomba, F.; Prota, A.; Panichella, A.; Zaidman, A.; De Lucia, A. PETrA: A Software-Based
Tool for Estimating the Energy Profile of Android Applications. In Proceedings of the 2017 IEEE/ACM
39th International Conference on Software Engineering Companion (ICSE-C), Buenos Aires, Argentina,
20–28 May 2017; pp. 3–6, doi:10.1109/ICSE-C.2017.18.

https://doi.org/10.23919/ICACT.2017.7890149
https://doi.org/10.1016/J.SYSARC.2017.06.004
https://doi.org/10.1016/j.sysarc.2018.08.003
https://doi.org/10.1109/TIFS.2015.2510825
https://doi.org/10.1016/j.pmcj.2014.10.007
https://doi.org/10.3233/JCS-150530
https://doi.org/10.1016/j.pmcj.2015.10.011
https://doi.org/10.1145/2840723
https://doi.org/10.1016/j.jnca.2015.09.002
https://doi.org/10.1007/s11036-016-0756-y
https://source.android.com/devices/tech/power/values
https://source.android.com/devices/tech/power/values
https://doi.org/10.1145/1878961.1878982
https://doi.org/10.1145/1999995.2000027
https://doi.org/10.1145/2380445.2380502
https://doi.org/10.1109/TCE.2012.6227431
https://doi.org/10.4218/etrij.15.0113.1411
https://doi.org/https://doi.org/10.1016/j.sysarc.2020.101805
https://doi.org/10.1109/ICSE-C.2017.18

Processes 2020, 8, 678 23 of 26

30. Shukla, N.K.; Pila, R.; Rawat, S. Utilization-based power consumption profiling in smartphones.
In Proceedings of the 2016 2nd International Conference on Contemporary Computing and Informatics,
IC3I 2016, Noida, India, 14–17 December 2016; pp. 881–886, doi:10.1109/IC3I.2016.7919046.

31. Chowdhury, S.A.; Hindle, A. GreenOracle: Estimating Software Energy Consumption with Energy
Measurement Corpora. In Proceedings of the 13th International Workshop on Mining Software
Repositories—MSR ’16, Austin, TX, USA, 14–22 May 2016; ACM Press: New York, NY, USA, 2016; pp. 49–60,
doi:10.1145/2901739.2901763.

32. Kim, K.; Shin, D.; Xie, Q.; Wang, Y.; Pedram, M.; Chang, N. FEPMA: Fine-Grained Event-Driven Power Meter
for Android Smartphones Based on Device Driver Layer Event Monitoring. In Proceedings of the Design,
Automation I& Test in Europe Conference and Exhibition (DATE), Dresden, Germany, 24–28 March 2014;
pp. 1–6, doi:10.7873/DATE.2014.380.

33. Walker, M.J.; Diestelhorst, S.; Hansson, A.; Das, A.K.; Yang, S.; Al-Hashimi, B.M.; Merrett, G.V. Accurate and
Stable Run-Time Power Modeling for Mobile and Embedded CPUs. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 2017, 36, 106–119, doi:10.1109/TCAD.2016.2562920.

34. Pathak, A.; Hu, Y.C.; Zhang, M. Where is the Energy Spent Inside My App?: Fine Grained Energy
Accounting on Smartphones with Eprof. In Proceedings of the 7th ACM European Conference on
Computer Systems, Bern, Switzerland, 10–13 April 2012; ACM: New York, NY, USA, 2012; pp. 29–42,
doi:10.1145/2168836.2168841.

35. Xu, F.; Liu, Y.; Li, Q.; Zhang, Y. V-edge: Fast self-constructive power modeling of smartphones based on
battery voltage dynamics. In Proceedings of the 10th USENIX Conference on Networked Systems Design
and Implementation, Lombard, IL, USA, 2–5 April 2013; USENIX: Lombard, IL, USA, 2013; pp. 43–55.

36. Carvalho, S.A.; Cunha, D.C.; Silva-Filho, A.G. On the use of nonlinear methods for low-power CPU
frequency prediction based on Android context variables. In Proceedings of the 2016 IEEE 15th International
Symposium on Network Computing and Applications, Cambridge, MA, USA, 31 October–2 November
2016; pp. 250–253, doi:10.1109/NCA.2016.7778627.

37. Alawnah, S.; Sagahyroon, A. Modeling of smartphones’ power using neural networks. Eurasip J. Embed. Syst.
2017, 2017, 22, doi:10.1186/s13639-017-0070-1.

38. Djedidi, O.; Djeziri, M.A.; M’Sirdi, N.K.; Naamane, A. Constructing an Accurate and a High-Performance
Power Profiler for Embedded Systems and Smartphones. In Proceedings of the 21st ACM International
Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems (MSWIM ’18),
Montréal, QC, Canada, 28 October–2 November 2018; ACM Press: New York, NY, USA, 2018; pp. 79–82,
doi:10.1145/3242102.3242139.

39. Zhang, Y.; Parikh, D. Hotleakage: A Temperature-Aware Model of Subthreshold and Gate Leakage for Architects;
University of Virginia: Charlottesville, VA, USA, 2003.

40. Kim, J.M.; Kim, Y.G.; Chung, S.W. Stabilizing CPU frequency and voltage for temperature-aware DVFS in
mobile devices. IEEE Trans. Comput. 2015, 64, 286–292, doi:10.1109/TC.2013.188.

41. Ferroni, M.; Nacci, A.A.; Turri, M.; Santambrogio, M.D.; Sciuto, D. Experimental Evaluation and Modeling
of Thermal Phenomena on Mobile Devices. In Proceedings of the IEEE Euromicro Conference on Digital
System Design (DSD), Funchal, Portugal, 26–28 August 2015; pp. 306–313, doi:10.1109/DSD.2015.20.

42. Chen, C.C.; Milor, L. Microprocessor Aging Analysis and Reliability Modeling Due to Back-End
Wearout Mechanisms. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2015, 23, 2065–2076,
doi:10.1109/TVLSI.2014.2357756.

43. Altieri, M.; Lesecq, S.; Puschini, D.; Heron, O.; Beigne, E.; Rodas, J. Evaluation and mitigation of aging effects
on a digital on-chip voltage and temperature sensor. In Proceedings of the 2015 IEEE 25th International
Workshop on Power and Timing Modeling, Optimization and Simulation, PATMOS 2015, Salvador, Brazil,
1–4 September 2015; pp. 111–117, doi:10.1109/PATMOS.2015.7347595.

44. Rahmani, A.M.; Haghbayan, M.H.; Miele, A.; Liljeberg, P.; Jantsch, A.; Tenhunen, H. Reliability-Aware
Runtime Power Management for Many-Core Systems in the Dark Silicon Era. IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. 2017, 25, 427–440, doi:10.1109/TVLSI.2016.2591798.

45. Mercati, P.; Paterna, F.; Bartolini, A.; Benini, L.; Rosing, T.Š. WARM: Workload-Aware Reliability
Management in Linux/Android. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2017, 36, 1557–1570,
doi:10.1109/TCAD.2016.2611501.

https://doi.org/10.1109/IC3I.2016.7919046
https://doi.org/10.1145/2901739.2901763
https://doi.org/10.7873/DATE.2014.380
https://doi.org/10.1109/TCAD.2016.2562920
https://doi.org/10.1145/2168836.2168841
https://doi.org/10.1109/NCA.2016.7778627
https://doi.org/10.1186/s13639-017-0070-1
https://doi.org/10.1145/3242102.3242139
https://doi.org/10.1109/TC.2013.188
https://doi.org/10.1109/DSD.2015.20
https://doi.org/10.1109/TVLSI.2014.2357756
https://doi.org/10.1109/PATMOS.2015.7347595
https://doi.org/10.1109/TVLSI.2016.2591798
https://doi.org/10.1109/TCAD.2016.2611501

Processes 2020, 8, 678 24 of 26

46. Zhou, J.; Yan, J.; Cao, K.; Tan, Y.; Wei, T.; Chen, M.; Zhang, G.; Chen, X.; Hu, S. Thermal-aware
correlated two-level scheduling of real-time tasks with reduced processor energy on heterogeneous MPSoCs.
J. Syst. Archit. 2018, 82, 1–11, doi:10.1016/J.SYSARC.2017.09.007.

47. Xie, Q.; Dousti, M.J.; Pedram, M. Therminator: A Thermal Simulator for Smartphones Producing
Accurate Chip and Skin Temperature Maps. In Proceedings of the ACM/IEEE International Symposium
on Low Power Electronics and Design (ISLPED), La Jolla, CA, USA, 11–13 August 2014; pp. 117–122,
doi:10.1145/2627369.2627641.

48. Dousti, M.J.; Ghasemi-Gol, M.; Nazemi, M.; Pedram, M. ThermTap: An online power analyzer and thermal
simulator for Android devices. In Proceedings of the IEEE International Symposium on Low Power
Electronics and Design, Rome, Italy, 22–24 July 2015; pp. 341–346, doi:10.1109/ISLPED.2015.7273537.

49. Gao, Z.; Cecati, C.; Ding, S.X. A Survey of Fault Diagnosis and Fault-Tolerant Techniques Part I:
Fault Diagnosis. IEEE Trans. Ind. Electron. 2015, 62, 3768–3774, doi:10.1109/TIE.2015.2417501.

50. Gao, Z.; Cecati, C.; Ding, S.X. A survey of fault diagnosis and fault-tolerant techniques-part II: Fault diagnosis
with knowledge-based and hybrid/active approaches. IEEE Trans. Ind. Electron. 2015, 62, 3768–3774,
doi:10.1109/TIE.2015.2419013.

51. Steininger, A. Testing and built-in self-test—A survey. J. Syst. Archit. 2000, 46, 721–747.
doi:10.1016/S1383-7621(99)00041-7.

52. Deb, S.; Pattipati, K.R.; Raghavan, V.; Shakeri, M.; Shrestha, R. Multi-Signal Flow Graphs: A Novel Approach
for System Testability Analysis and Fault Diagnosis. IEEE Aerosp. Electron. Syst. Mag. 1995, 10, 14–25,
doi:10.1109/62.373993.

53. Sheppard, J. Maintaining diagnostic truth with information flow models. In Proceedings of the IEEE
Conference Record. AUTOTESTCON ’96, Dayton, OH, USA, 16–19 September 1996; pp. 447–454,
doi:10.1109/AUTEST.1996.547773.

54. Zhang, G. Optimum Sensor Localization/Selection in A Diagnostic/Prognostic Architecture. Ph.D. Thesis,
University System of Georgia, Atlanta, GA, USA, 2005.

55. Wang, F.W.; Shi, J.Y.; Wang, L. Method of diagnostic tree design for system-level faults based on dependency
matrix and fault tree. In Proceedings of the 2011 IEEE 18th International Conference on Industrial
Engineering and Engineering Management, IE and EM 2011, Changchun, China, 3–5 September 2011;
pp. 1113–1117, doi:10.1109/IEEM.2011.6035351.

56. Cui, Y.; Shi, J.; Wang, Z. An analytical model of electronic fault diagnosis on extension of the
dependency theory. Reliab. Eng. I Syst. Saf. 2015, 133, 192–202, doi:10.1016/j.ress.2014.09.015.

57. Gizopoulos, D.; Psarakis, M.; Adve, S.V.; Ramachandran, P.; Hari, S.K.S.; Sorin, D.; Meixner, A.; Biswas, A.;
Vera, X. Architectures for online error detection and recovery in multicore processors. In Proceedings
of the 2011 Design, Automation I& Test in Europe, Grenoble, France, 14–18 March 2011; pp. 1–6,
doi:10.1109/DATE.2011.5763096.

58. Aggarwal, N.; Ranganathan, P. Configurable isolation: Building high availability systems with commodity
multi-core processors. In ACM Sigarch; ACM Press: New York, NY, USA, 2007; Volume 35, pp. 470–481,
doi:10.1145/1250662.1250720.

59. LaFrieda, C.; Ipek, E.; Martínez, J.F.; Manohar, R. Utilizing dynamically coupled cores to form a resilient chip
multiprocessor. In Proceedings of the IEEE International Conference on Dependable Systems and Networks,
Edinburgh, UK, 25–28 June 2007; pp. 317–326, doi:10.1109/DSN.2007.100.

60. Shyam, S.; Constantinides, K.; Phadke, S.; Bertacco, V.; Austin, T. Ultra low-cost defect protection for
microprocessor pipelines. In Proceedings of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems—ASPLOS-XII, San Jose, CA, USA, 21–25 October 2006;
ACM Press: New York, NY, USA, 2006; Volume 41, p. 73, doi:10.1145/1168857.1168868.

61. Austin, T.M. DIVA: A reliable substrate for deep submicron microarchitecture design. In Proceedings of
theMICRO-32. Proceedings of the 32nd Annual ACM/IEEE International Symposium on Microarchitecture,
Haifa, Israel, 16–18 November 1999; pp. 196–207, doi:10.1109/MICRO.1999.809458.

62. Meixner, A.; Bauer, M.E.; Sorin, D. Argus: Low-Cost, Comprehensive Error Detection in Simple Cores.
In Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
2007), Chicago, IL, USA, 1–5 December 2007; pp. 210–222, doi:10.1109/MICRO.2007.18.

63. Wang, N.J.; Patel, S.J. ReStore: Symptom-based soft error detection in microprocessors. IEEE Trans.
Dependable Secur. Comput. 2006, 3, 188–201, doi:10.1109/TDSC.2006.40.

https://doi.org/10.1016/J.SYSARC.2017.09.007
https://doi.org/10.1145/2627369.2627641
https://doi.org/10.1109/ISLPED.2015.7273537
https://doi.org/10.1109/TIE.2015.2417501
https://doi.org/10.1109/TIE.2015.2419013
https://doi.org/10.1016/S1383-7621(99)00041-7
https://doi.org/10.1109/62.373993
https://doi.org/10.1109/AUTEST.1996.547773
https://doi.org/10.1109/IEEM.2011.6035351
https://doi.org/10.1016/j.ress.2014.09.015
https://doi.org/10.1109/DATE.2011.5763096
https://doi.org/10.1145/1250662.1250720
https://doi.org/10.1109/DSN.2007.100
https://doi.org/10.1145/1168857.1168868
https://doi.org/10.1109/MICRO.1999.809458
https://doi.org/10.1109/MICRO.2007.18
https://doi.org/10.1109/TDSC.2006.40

Processes 2020, 8, 678 25 of 26

64. Li, M.L.; Ramachandran, P.; Sahoo, S.K.; Adve, S.V.; Adve, V.S.; Zhou, Y. Understanding the Propagation
of Hard Errors to Software and Implications for Resilient System Design. SIGOPS Oper. Syst. Rev. 2008,
42, 265–276, doi:10.1145/1353535.1346315.

65. Sinha, S.; Kumar Goyal, N.; Mall, R. Early prediction of reliability and availability of combined
hardware-software systems based on functional failures. J. Syst. Archit. 2019, 92, 23–38,
doi:10.1016/j.sysarc.2018.10.007.

66. Zadegan, F.G.; Nikolov, D.; Larsson, E. On-Chip Fault Monitoring Using Self-Reconfiguring IEEE 1687
Networks. IEEE Trans. Comput. 2018, 67, 237–251, doi:10.1109/TC.2017.2731338.

67. Löfwenmark, A.; Nadjm-Tehrani, S. Fault and timing analysis in critical multi-core systems: A survey with
an avionics perspective. J. Syst. Archit. 2018, 87, 1–11, doi:10.1016/j.sysarc.2018.04.001.

68. Gregg, B. CPU Utilization Is Wrong. Available online: http://www.brendangregg.com/blog/2017-05-09/
cpu-utilization-is-wrong.html (accessed on 4 June 2020).

69. Saravanan, D.R. Understanding Processor Utilization on POWER Systems—AIX. Available online:
https://www.ibm.com/developerworks/community/wikis/home?lang=en%5C#!/wiki/PowerSystems/
page/UnderstandingCPUutilizationonAIX (accessed on 14 March 2020).

70. Qualcomm Inc. Trepn Power Profiler-FAQs-Qualcomm Developer Network. Available online: https://
developer.qualcomm.com/forum/qdn-forums/increase-app-performance/trepn-profiler/27700 (accessed
on 4 June 2020).

71. Leng, J.; Hetherington, T.; ElTantawy, A.; Gilani, S.; Kim, N.S.; Aamodt, T.M.; Reddi, V.J. GPUWattch:
Enabling Energy Optimizations in GPGPUs. ACM SIGARCH Comput. Archit. News 2013, 41, 487–498,
doi:10.1145/2485922.2485964.

72. Hong, S.; Kim, H. An integrated GPU power and performance model. In Proceedings of the 37th Annual
International Symposium on Computer Architecture—ISCA ’10, Saint-Malo, France, 19–23 June 2010; ACM:
New York, NY, USA, 2010; Volume 38, p. 280, doi:10.1145/1816038.1815998.

73. Samsung. Samsung Opensource Release Center. Available online: https://opensource.samsung.com/
(accessed on 4 June 2020).

74. Samsung Inc. Samsung Galaxy S5; Samsung Inc: Seoul, Korea, 2014.
75. Arm Holdings. Technologies|big.LITTLE—Arm Developer; Arm Holdings: Cambridge, UK, 2018.
76. ARM Holdings ARM Cortex-A9; ARM Holdings: Cambridge, UK, 2007.
77. Brodowski, D.; Golde N. CPU Frequency and Voltage Scaling Code in the Linux(TM) Kernel; Google Inc:

Mountain View, CA, USA, 2015.
78. Altamimi, M.L.; Naik, K. A Computing Profiling Procedure for Mobile Developers to Estimate Energy Cost.

In Proceedings of the 18th ACM International Conference on Modeling, Analysis and Simulation of Wireless
and Mobile Systems—MSWiM ’15, Cancun, Mexico, 2–6 November 2015; ACM Press: New York, NY, USA,
2015; pp. 301–305, doi:10.1145/2811587.2811627.

79. Korjani, M.M.; Bazzaz, O.; Menhaj, M.B. Real time identification and control of dynamic systems.
Artif. Intell. Rev. 2009, 30, 1–17, doi:10.1007/s10462-009-9111-z.

80. Lin, Y.D.; Rattagan, E.; Lai, Y.C.; Chang, L.P.; Yo, Y.C.; Ho, C.Y.; Chang, S.L. Calibrating parameters and
formulas for process-level energy consumption profiling in smartphones. J. Netw. Comput. Appl. 2014,
44, 106–119, doi:10.1016/j.jnca.2014.04.014.

81. Fung, E.H.; Wong, Y.; Ho, H.; Mignolet, M.P. Modelling and prediction of machining errors using ARMAX
and NARMAX structures. Appl. Math. Model. 2003, 27, 611–627, doi:10.1016/S0307-904X(03)00071-4.

82. Benmoussa, S.; Djeziri, M.A. Remaining useful life estimation without needing for prior knowledge of the
degradation features. IET Sci. Meas. I Technol. 2017, 11, 1071–1078, doi:10.1049/iet-smt.2017.0005.

83. Djeziri, M.A.; Ould Bouamama, B.; Merzouki, R. Modelling and robust FDI of steam generator using
uncertain bond graph model. J. Process. Control 2009, 19, 149–162, doi:10.1016/j.jprocont.2007.12.009.

84. Adrot, O.; Maquin, D.; Ragot, J. Fault detection with model parameter structured uncertainties.
In Proceedings of the 5th European Control Conference, ECC’99, Karlsruhe, Germany,
30 August–3 September 1999.

85. Armengol, J.; Travé-Massuyès, L.; Vehí, J.; Lluís de la Rosa, J. A Survey on interval model simulators and their
properties related to fault detection. Annu. Rev. Control 2000, 24, 31–39, doi:10.1016/S1367-5788(00)00002-X.

86. Li, L.; Zhou, D. Fast and Robust Fault Diagnosis for a Class of Nonlinear Systems: Detectability Analysis; 2004;
doi:10.1016/j.compchemeng.2004.07.023.

https://doi.org/10.1145/1353535.1346315
https://doi.org/10.1016/j.sysarc.2018.10.007
https://doi.org/10.1109/TC.2017.2731338
https://doi.org/10.1016/j.sysarc.2018.04.001
http://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
http://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
https://www.ibm.com/developerworks/community/wikis/home?lang=en%5C#!/wiki/Power Systems/page/Understanding CPU utilization on AIX
https://www.ibm.com/developerworks/community/wikis/home?lang=en%5C#!/wiki/Power Systems/page/Understanding CPU utilization on AIX
https://developer.qualcomm.com/forum/qdn-forums/increase-app-performance/trepn-profiler/27700
https://developer.qualcomm.com/forum/qdn-forums/increase-app-performance/trepn-profiler/27700
https://doi.org/10.1145/1816038.1815998
https://opensource.samsung.com/
https://doi.org/10.1145/2811587.2811627
https://doi.org/10.1007/s10462-009-9111-z
https://doi.org/10.1016/j.jnca.2014.04.014
https://doi.org/10.1016/S0307-904X(03)00071-4
https://doi.org/10.1049/iet-smt.2017.0005
https://doi.org/10.1016/j.jprocont.2007.12.009
https://doi.org/10.1016/S1367-5788(00)00002-X
https://doi.org/10.1016/j.compchemeng.2004.07.023

Processes 2020, 8, 678 26 of 26

87. Djeziri, M.A.; Merzouki, R.; Ould Bouamama, B.; Dauphin-Tanguy, G. Fault detection of backlash
phenomenon in mechatronic system with parameter uncertainties using bond graph approach.
In Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, ICMA 2006,
Luoyang, China, 25–28 June 2006; Volume 2006; pp. 600–605, doi:10.1109/ICMA.2006.257639.

88. Basseville, M. On-board Component Fault Detection and Isolation Using the Statistical Local Approach.
Automatica 1998, 34, 1391–1415, doi:10.1016/S0005-1098(98)00086-7.

89. Ge, C.; Yang, H.; Ye, H.; Wang, G. A Fast Leak Locating Method Based on Wavelet Transform.
Tsinghua Sci. Technol. 2009, 14, 551–555, doi:10.1016/S1007-0214(09)70116-6.

90. Benmoussa, S.; Djeziri, M.A.; Ould Bouamama, B.; Merzouki, R. Empirical mode decomposition applied
to fluid leak detection and isolation in process engineering. In Proceedings of the 18th Mediterranean
Conference on Control and Automation, MED’10, Marrakech, Morocco, 23–25 June 2010; pp. 1537–1542,
doi:10.1109/MED.2010.5547829.

91. Chen, J.; Du, C.; Xie, F.; Lin, B. Scheduling non-preemptive tasks with strict periods in multi-core
real-time systems. J. Syst. Archit. 2018, 90, 72–84, doi:10.1016/j.sysarc.2018.09.002.

92. Futuremark. PCMark for Android Benchmark; UL: Espoo, Finland, 2019.
93. Futuremark. 3DMark; UL: Espoo, Finland, 2018.
94. Cheetah Mobile. AnTuTu Benchmark; Cheetah Mobile: Beijing, China, 2019.
95. Primate Labs Inc. Geekbench 4; Primate Labs Inc.: Toronto, ON, Canada, 2019.
96. Djedidi, O.; Djeziri, M.; M’Sirdi, N. Prototyping of a Data-Driven Monitoring of Systems on Chip for

Multifunction Modular Cockpit Display (MMCD) Project. Available online: https://hal-amu.archives-
ouvertes.fr/hal-02293986v1 (accessed on 4 June 2020).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1109/ICMA.2006.257639
https://doi.org/10.1016/S0005-1098(98)00086-7
https://doi.org/10.1016/S1007-0214(09)70116-6
https://doi.org/10.1109/MED.2010.5547829
https://doi.org/10.1016/j.sysarc.2018.09.002
https://hal-amu.archives-ouvertes.fr/hal-02293986v1
https://hal-amu.archives-ouvertes.fr/hal-02293986v1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Overview
	Power Consumption Modeling in Embedded SoCs
	Temperature Modeling in Embeded SoCs
	SoC Monitoring and Diagnosis
	Contributions

	Modeling and Monitoring Approach
	The Selection of Variables
	Interconnected and Incremental Modeling
	Monitoring Approach

	Experimental Setup
	The Android Smartphone
	The ARM-Based Development Board
	The Monitoring Equipment

	System Modeling
	Reverse Engineering the Algorithms
	Frequency Governor
	The Thermal Regulator
	Voltage Scaling

	Black-Box Modeling
	Power Model
	Thermal Model

	Monitoring: Residuals Generation and Evaluation
	Residual Generation
	Residual Evaluation
	Frequency and Voltage Residuals Evaluation
	Power and Temperature Residuals Evaluation

	Fault Isolation

	Validation of the Model and Monitoring Algorithm
	Model Validation
	Frequency and Voltage Models
	NARX Power Model
	ARMAX Temperature Model

	Validation of the Fault Detection and Isolation (FDI) Algorithm

	Testing the FDI Algorithm
	Control Faults
	Hardware or Component Faults
	Environmental Faults

	Conclusions
	References

