Correction

Correction: Roato et al. A Novel Method to Optimize Autologous Adipose Tissue Recovery with Extracellular Matrix Preservation. Processes 2020, 8, 88

Ilaria Roato 1, Federico Mussano 1, Simone Reano 2, Filippo Boriani 3, Andrea Margara 4, Riccardo Ferracini 5, Ezio Adriani 6, Omar Sabry 7,* #, Mauro Fiorini 7 and Paolo Fattori 7

The authors wish to remove every commercial reference reported in the discussion of the published paper in Processes [1]. We apologize for any inconvenience caused to readers of Processes by this change.

The original article is “The gentle mechanical force applied by Lipocell preserves ECM and structural integrity, according to our analysis. Lipocell is distinguished from other devices by its simplicity, speed, and operator-independency. Moreover, the dialysis mechanism of Lipocell avoids the risk of fat obstruction that can occur with other systems that exploit cutting filters to cluster fat (i.e., Lipogems). Considering Lipocell vs. Lipogems, the Lipocell final product displays a more preserved structural integrity in compliance with Food and Drug Administration (FDA) requirements, avoiding excessive clustering that can alter the mechanical properties of fat. Moreover, Lipocell mechanical forces are less dependent on the strength of the operator, unlike Lipogems beads shaking.”

A correction has been made to:

“The gentle mechanical force applied by Lipocell preserves extracellular matrix and structural integrity, according to our analysis. Lipocell is distinguished from other devices by its simplicity, speed, and operator-independency. Moreover, the dialysis mechanism of Lipocell avoids the risk of fat obstruction. The Lipocell final product displays a preserved structural integrity in compliance with FDA requirements, avoiding excessive clustering that can alter the mechanical properties of fat. Moreover, Lipocell mechanical forces are less dependent on the strength of the operator.”

The authors apologize for any inconvenience caused and state that the scientific conclusions are unaffected. The original article has been updated.

Funding: This research received no external funding.

Conflicts of Interest: The authors Omar Sabry, Mauro Fiorini, and Paolo Fattori declare affiliation with Tiss’You, the company that produces the device under investigation in this manuscript. Their contribution has followed all the ethical rules that apply. All the other authors declare no conflict of interest.

Reference