Differential Item Functioning on Raven’s SPM+ Amongst Two Convenience Samples of Yakuts and Russians

Vladimir Shibaev 1, Andrei Grigoriev 2, Ekaterina Valueva 2 and Anatoly Karlin 2,*

1 Vladivostok State University of Economics and Service, Vladivostok 690014, Russia; wladimirdw@gmail.com
2 Institute of Psychology of Russian Academy of Sciences, Moscow 129366, Russia; andrey4002775@yandex.ru (A.G.); ekval@mail.ru (E.V.)
* Correspondence: alfatols@gmail.com

Received: 4 December 2019; Accepted: 3 January 2020; Published: 9 January 2020

Abstract: National IQ estimates are based on psychometric measurements carried out in a variety of cultural contexts and are often obtained from Raven’s Progressive Matrices tests. In a series of studies, J. Philippe Rushton et al. have argued that these tests are not biased with respect to ethnicity or race. Critics claimed their methods were inappropriate and suggested differential item functioning (DIF) analysis as a more suitable alternative. In the present study, we conduct a DIF analysis on Raven’s Standard Progressive Matrices Plus (SPM+) tests administered to convenience samples of Yakuts and ethnic Russians. The Yakuts scored lower than the Russians by 4.8 IQ points, a difference that can be attributed to the selectiveness of the Russian sample. Data from the Yakut (n = 518) and Russian (n = 956) samples were analyzed for DIF using logistic regression. Although items B9, B10, B11, B12, and C11 were identified as having uniform DIF, all of these DIF effects can be regarded as negligible (R2 <0.13). This is consistent with Rushton et al.’s arguments that the Raven’s Progressive Matrices tests are ethnically unbiased.

Keywords: differential item functioning; Raven’s SPM+; Russians; Yakuts

1. Introduction

National IQ estimates are made on the basis of psychometric measurements carried out in diverse cultural contexts [1–4]. These measurements are often obtained from Raven’s Progressive Matrices tests. In Richard Lynn’s book, Race Differences in Intelligence: An Evolutionary Analysis (2006), some 38 out of the 73 measurements of indigenous European IQ (Table 3.1 therein) and 32 out of the 57 measurements of Sub-Saharan African IQ in Africa (Table 4.1 therein) were made using Raven’s Matrices. Seven of the 10 articles on new national IQ measurements published in the journal Mankind Quarterly in 2018 were done using Raven’s Matrices (in one case, in combination with the WAIS-R). It is, therefore, unsurprising that Raven’s Matrices have often figured in studies on measurement invariance (discussions of test bias) between respondents from different ethnic/national groups.

Many of these studies were authored by J. Philippe Rushton [5–8], and typically used two methods to assess test bias. First, they calculated the product-moment and rank-order correlations between the pass rates of the test items in the ethnic samples. These were usually equal to or higher than 0.9. Second, they used the method of correlated vectors, in which one vector was the difference in pass rates between the two groups, while the other vector was the vector of the item–total correlations. These correlations were typically significant. Summarizing the results of these studies—as well as that of Owen (1992) [9]—Rushton and Arthur Jensen concluded that they “found almost identical item structures in Africans, Whites, and East Indians on the Progressive Matrices. Items found difficult by
one group were difficult for the others; items found easy by one group were easy for the other. The item–total score correlations for Africans, Whites, and East Indians were also similar, indicating that the items measured similar psychometric constructs in all three groups” [10].

However, these approaches have been brought into question [11]. The critics noted, in particular, that the method of correlated vectors “does not address the issue of measurement invariance” [12]. It is worth noting that the method of correlated vectors was criticized when applied to testing Spearman’s hypothesis [13,14], and in studies aiming to show the heritability of group differences in intelligence [15]. Measurement invariance is better assessed by testing for differential item functioning (DIF). DIF appears when subjects with the same ability level have different probabilities of answering a particular item correctly. An item can be considered as DIF if either the difficulty level (uniform DIF) or discriminative power (nonuniform DIF) is different in the two groups (for details see Facon et al., 2011 [16]). DIF can be examined using confirmatory factor analysis [17], item response theory (IRT) methods [18], or non-IRT methods such as the Mantel–Haenszel method or logistic regression [19].

To date, there have been few studies in which DIF analysis was applied to interethnic comparisons using Raven’s Matrices. Wicherts et al. in 2010 [12] noted that they were aware of only one such study by Taylor (2008), in which item response theory (IRT) was used in the analysis [20]. We also managed to find another pre-2010 study by Vanderpool and Catano (2008), which involved a DIF analysis of Raven’s Matrices (and other tests) using logistic regression [21].

In Taylor’s study, there were 4 items in the Raven’s Standard Progressive Matrices (SPM) and 5 items in the Raven’s Advanced Progressive Matrices (APM) that showed the presence of DIF when comparing blacks and whites. In the Vanderpool and Catano study, 2 items in Raven’s SPM displayed DIF in a comparison of Native Americans and (mostly) whites. The authors of both studies believe that the Raven’s SPM test was unbiased against their respective focus groups.

These studies cannot be considered definitive for several reasons. First, none of them corrected for multiple comparisons; if that had been done, especially in studies using logistic regression for DIF detection [22], it is entirely possible that DIF would have disappeared for some or all of the items. Second, sample sizes were modest: In the first study, there were 200 blacks and 178 whites taking the SPM, and 67 blacks and 115 whites taking the APM; in the second study, there were 101 Native Americans and 108 whites. This implies a sufficiently high likelihood of a second mistake: Some items that are characterized by DIF may have remained undetected.

Consequently, there is still much work to be done assessing Rushton et al.’s conclusions regarding the unbiasedness of Raven’s Matrices tests applied to interethnic comparisons through DIF analysis. This problem has become all the more germane in light of DIF analyses of Raven’s Matrices tests conducted since 2010 applied to other group differences, such as age, sex, and intellectual disabilities [16,23–25]. Some items with minor DIF were found in these studies. For example, in the Facon et al. (2011) study, children and adolescents with an intellectual disability were compared with typical children with the Raven’s Colored Progressive Matrices test [16]. Using logistic regression, the authors identified 12 items out of 36 as functioning differentially between the two groups, out of which 10 items exhibited negligible DIF, and only 2 items exhibited moderate DIF.

In this paper, we present a DIF analysis of a Raven’s SPM+ taken by a sample of Yakuts (students in the Sakha Republic) and ethnic Russians (pupils at a Tomsk school and children from a Vladivostok summer camp).

2. Materials and Methods

Materials for this study were gathered in the Sakha Republic (Yakutia), Tomsk, and a Vladivostok summer camp.

Data on respondents who identified as Yakuts were gathered in the Sakha Republic (Yakutia) from the following educational institutions: North-Eastern Federal University (NEFU), the Republican
Lyceum, the Sakha Polytechnic Lyceum, School No.31 in Yakutsk, as well as from the Vilyuyusk Gymnasium and School No.3 in Vilyuyusk.

Data on ethnic Russians were gathered from Tomsk and Vladivostok. In Tomsk, the study was carried out at the G.A. Psakhye Academic Lyceum where 957 pupils were tested. Most of the 55 children tested at the Vladivostok summer camp were evacuees from the Amur river floods that year and maintained their permanent residence in villages close to Khabarovsk (most of them came from Bichevaya village).

The overall sample size was composed of 1531 respondents, of whom 519 were Yakuts and 1012 were ethnic Russians, 764 were male and 767 were female. Ages ranged from 6 to 29 years, with an average of 12.16 years and an SD of 2.94 years.

Raven’s SPM+ tests were administered in a paper-and-pencil format. There were no time limits, but the test period usually lasted for the duration of a school lesson (45 min).

Both samples were conventional and non-representative to regional populations, although the Yakut one, perhaps, to a lesser extent since data were drawn from the Sakha Republic’s capital city (Yakutsk) and from a small town of 11,000 people (Vilyuyusk), as well as from a variety of educational institutions. For instance, in Vilyuyusk, data were collected from both its best and worst school, as assessed by the local education department. The Russian sample, on the other hand, should be considered selective, since the overwhelming bulk of it was drawn from just one Tomsk school, the G.A. Psakhye Academic Lyceum. Tomsk is the capital of an oblast that occupies the 5th place amongst 85 Russian regions according to results from Internet testing of cognitive abilities [26], and lyceum students were, on average, more cognitively able than students at ordinary schools. The subsample from Vladivostok was probably more representative of the regional population, but it constituted only a small portion of the Russian sample.

One must, therefore, be cautious about generalizing from the results of this study.

3. Results

In the Yakut sample, one 19-year-old girl correctly answered only 4 items. This was well below what she was expected to have gotten answering randomly, thus her answers were excluded from the analysis. The Tomsk sample had many instances of probable cheating, as deduced from the presence of identical answer sheets, often in sequential order from the same class groups. There were 28 pairs of such identical answer sheets, which we excluded in their entirety (i.e., 56 answer sheets). Consequently, the final sample consisted of 1474 respondents, of whom 518 were Yakuts and 956 were Russians.

The number of respondents in each age group in the samples of Yakuts and Russians, and their average scores and SDs, are given in Table 1.

The weighted mean d was calculated. The weights were the harmonic means of two sample sizes. It was equal to −0.32, which corresponded to ~ 4.8 IQ points (on the standard IQ scale with a mean of 100 and an SD of 15).

Two other studies provided data from which the difference between the Yakutia and Tomsk region could be estimated. The first of these [26] were based on results from an anonymous Internet test that aimed to assess eligibility for contract military service. According to that study, Tomsk oblast got an average score of 20.897 (SD = 5.892, n = 1442), while Yakutia got 19.793 (SD = 5.762, n = 647). The resulting effect size was 0.187, or ~ 2.8 IQ points (on the standard IQ scale with a mean of 100 and an SD of 15). Another study was the study by Lynn, Cheng, and Grigoriev (2017) that analyzed test results in the Russian regions covered by the Programme for International Student Assessment (PISA) 2015 [27]. In this study, Tomsk got an average score of 480.6 (SD = 72.6, n = 79), while Yakutia got 469.1 (SD = 65.0, n = 96). This translated to a difference of ~2.5 IQ points or d = 0.168. However, because our results were obtained from convenience samples, they could not be compared with these other estimates.
Table 1. The number of respondents, means, and SD’s of test scores, and Cohen’s d across age groups for Russians and Yakuts.

<table>
<thead>
<tr>
<th>Age</th>
<th>Yakuts</th>
<th>Russians</th>
<th>D^1</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
<td>N</td>
</tr>
<tr>
<td><7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>76</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>27.5</td>
<td>2.1</td>
<td>105</td>
</tr>
<tr>
<td>9</td>
<td>34</td>
<td>25.7</td>
<td>6</td>
<td>115</td>
</tr>
<tr>
<td>10</td>
<td>21</td>
<td>29.1</td>
<td>4.5</td>
<td>125</td>
</tr>
<tr>
<td>11</td>
<td>30</td>
<td>32.9</td>
<td>4</td>
<td>121</td>
</tr>
<tr>
<td>12</td>
<td>82</td>
<td>32.4</td>
<td>5.9</td>
<td>89</td>
</tr>
<tr>
<td>13</td>
<td>62</td>
<td>38</td>
<td>4.5</td>
<td>82</td>
</tr>
<tr>
<td>14</td>
<td>59</td>
<td>36.7</td>
<td>4.2</td>
<td>96</td>
</tr>
<tr>
<td>15</td>
<td>79</td>
<td>38.1</td>
<td>5.4</td>
<td>77</td>
</tr>
<tr>
<td>16</td>
<td>61</td>
<td>40.2</td>
<td>5.6</td>
<td>59</td>
</tr>
<tr>
<td>17</td>
<td>56</td>
<td>42.1</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>18+</td>
<td>32</td>
<td>39.5</td>
<td>5.2</td>
<td></td>
</tr>
</tbody>
</table>

D^1 was calculated using the formula: \((m_y - m_r) / \sqrt{(n_y - 1) \times s_y^2 + (n_r - 1) \times s_r^2} / (n_y + n_r - 2)\) where \(m_y\) and \(m_r\) are the means for the Yakut and Russian samples, \(s_y\) and \(s_r\) are the standard deviations for the Yakut and Russian samples, \(n_y\) and \(n_r\) are the numbers of respondents in the Yakut and Russian samples, thus, negative d represents a Russian advantage.

4. DIF Analysis

Ten items (A1–A6, A9, B1–B3) were excluded from the analysis because they showed a kurtosis value of more than 30, and more than 97% of responses to each of them were correct.

Data processing was done in R using the package difR [19]. Both uniform and nonuniform DIF were evaluated using logistic regression. Procedures included item purification and Holm corrections for multiple comparisons. The purpose of item purification was to avoid bias when identifying DIF by the inclusion of DIF items in the anchor items set (in the case of logistic regression, this was the total test score used as a proxy for ability level). It was an iterative process, in which all items that exhibited DIF on the first step were excluded from the anchor items and were sequentially tested for DIF. This process was repeated until two consecutive steps gave identical results, or a set number of iterations was exceeded. In Table 2, we list test items for which DIF was identified, as well as the Holm adjusted p-value of the likelihood ratio test, the type of DIF effect, and the value of Nagelkerke’s \(\Delta R^2\) as the effect size. According to Zumbo and Thomas (1997), \(\Delta R^2\) of less than 0.13 was considered as negligible, of more than 0.26 as large, and between those two values as moderate [28]. Jodoin and Gierl (2001) suggested using 0.035 and 0.070 as cut-off values [29].

Table 2. Items flagged as having differential item functioning (DIF).

<table>
<thead>
<tr>
<th>Item</th>
<th>Adjusted P-Value</th>
<th>DIF Type</th>
<th>Effect Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>B9</td>
<td>0.0068</td>
<td>uniform</td>
<td>0.02</td>
</tr>
<tr>
<td>B10</td>
<td>0.029</td>
<td>uniform</td>
<td>0.01</td>
</tr>
<tr>
<td>B11</td>
<td>0</td>
<td>uniform</td>
<td>0.03</td>
</tr>
<tr>
<td>B12</td>
<td>0</td>
<td>uniform</td>
<td>0.01</td>
</tr>
<tr>
<td>C11</td>
<td>0</td>
<td>uniform</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Five items demonstrated uniform DIF, and no items demonstrated nonuniform DIF. Even according to Jodoin and Gierl’s more liberal criteria, all DIF effects in our study—despite their significance—can be regarded as negligible (\(\Delta R^2 < 0.035\)). On all of these items, the Russian sample gave a higher number of correct answers.

Figure 1 presents the logistic curves for DIF items.
Figure 1 presents the logistic curves for DIF items.

Figure 1. Logistic curves for DIF items.

The test data for Yakuts and Russians is repeated below in Table 3, but this time without items that displayed DIF (B9–B12, C11).

Table 3. The number of respondents, means, and SD’s of test scores, and Cohen’s d across age groups for Russians and Yakuts.

<table>
<thead>
<tr>
<th>Age</th>
<th>Yakuts</th>
<th></th>
<th></th>
<th>Rangers</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td><7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>76</td>
<td>24.2</td>
<td>5.4</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>24.5</td>
<td>2.1</td>
<td>105</td>
<td>25.2</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>34</td>
<td>23.6</td>
<td>4.7</td>
<td>115</td>
<td>26.6</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>21</td>
<td>26.6</td>
<td>3.5</td>
<td>125</td>
<td>28.7</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>30</td>
<td>29.7</td>
<td>3.7</td>
<td>121</td>
<td>28.9</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>82</td>
<td>29.4</td>
<td>4.9</td>
<td>89</td>
<td>30.8</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>62</td>
<td>34.2</td>
<td>4.1</td>
<td>82</td>
<td>32.7</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>59</td>
<td>33.1</td>
<td>4</td>
<td>96</td>
<td>35.7</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>79</td>
<td>34.5</td>
<td>4.9</td>
<td>77</td>
<td>35.8</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>61</td>
<td>36.3</td>
<td>5.1</td>
<td>59</td>
<td>37.7</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>56</td>
<td>38.1</td>
<td>6.5</td>
<td>11</td>
<td>38.1</td>
</tr>
<tr>
<td></td>
<td>18+</td>
<td>32</td>
<td>36.1</td>
<td>5.1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 d was calculated using the formula: \((m_y - m_r) / \sqrt{((n_y - 1) \times s_y^2 + (n_r - 1) \times s_r^2) / (n_y + n_r - 2)} \) where \(m_y \) and \(m_r \) are the means for the Yakut and Russian samples, \(s_y \) and \(s_r \) are the standard deviations for the Yakut and Russian samples, \(n_y \) and \(n_r \) are the numbers of respondents in the Yakut and Russian samples, thus, negative d represents a Russian advantage.
The weighted mean d was calculated. The weights were the harmonic means of two sample sizes. It was equal to -0.24, which corresponded to ~ 3.6 IQ points.

Data and code are available in the Supplementary Materials.

5. Discussion

Our DIF analysis on a Raven’s SPM+ test administered to convenience samples of Russians and Yakuts identified 5 items out of 50 (10\%) with significant, though small, DIF. Four of these items (B9–B12) represent similar tasks. Van der Ven and Ellis (2000) characterize the items B8–B12 in SPM, which closely resemble the corresponding items in SPM+, as demanding analogical reasoning, unlike items B1–B6 of items of set A, which must be solved according to some Gestalt continuation rule [30]. Do they load on any specific ability that might be more strongly expressed in one of the studied ethnic groups? Perhaps subsequent studies can answer this question.

However, our results sooner support the idea that comparisons between diverse groups show minimal bias when Raven’s SPM+ is used. Although this study used convenience samples, this should not be an issue, since DIF is more likely, ceteris paribus, to appear in comparisons between more heterogeneous groups. Refraining from an assessment of the methods used in Rushton and Jensen [10], we can say that our results are generally consistent with their conclusions that the Raven’s Matrices preserve their construct validity when applied to diverse ethnic groups.

Given the insufficient representativeness of our samples, we cannot claim that the Russian advantage in IQ scores relative to Yakuts that we observed is representative of the differences between the two populations at large, especially considering that a comparison of more similar samples showed no significant differences between Russians and Yakuts [31]. More likely, the difference obtained in the present study, or at least a large part of it, is due to the selectiveness of the Russian sample. It might also be that the revealed minimal bias is due, to some extent, to educational selectivity. Further investigations are needed.

Supplementary Materials: The following are available online at http://www.mdpi.com/2624-8611/2/1/5/s1, Title: Data and code.

Author Contributions: Data curation, E.V.; Funding acquisition, V.S.; Investigation, V.S.; Methodology, A.G.; Resources, V.S.; Supervision, A.G.; Visualization, E.V.; Writing—original draft, A.G. and A.K.; Writing—review & editing, A.K. All authors have read and agreed to the published version of the manuscript.

Funding: The fieldwork component of this research received support from the Ulster Institute for Social Research. The study was conducted according to the state assignment of the Ministry of Science and Higher Education of the Russian Federation No 0159-2019-0010.

Conflicts of Interest: The authors declare no conflict of interest.

References

5. Rushton, J.P.; Skuy, M. Performance on Raven’s Matrices by African and White University Students in South Africa. *Intelligence* 2000, 28, 251–265. [CrossRef]

11. Wicherts, J.M. Psychometric problems with the method of correlated vectors applied to item scores (including some nonsensical results). Intelligence 2017, 60, 26–38. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).