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Abstract: Aseptic beverage cartons are multilayer polymer-coated paperboards with a layer of
aluminum foil. Due to their multilayer structure it is commonly assumed that they cannot be recycled.
This is not the case and this review details the multifarious processes that are used to recycle aseptic
beverage cartons. Hydrapulping to recover the paper fibers that constitute 75% of the carton is the
most widespread process, followed by the manufacture of construction materials such as boards and
tiles which utilize the complete carton. A range of mechanical, chemical and thermal processes are
used to separate the PolyAl (polyethylene and aluminum) residual that remains after the paper fibers
have been recovered. The simplest process involves agglutination followed by extrusion to obtain
pellets that can then be used in industrial and consumer products or combined with other materials
such as lignocellulosic wastes. Chemical approaches involve the solubilization of polyethylene
and the removal of aluminum. Various thermal processes have also been investigated and a novel
microwave-induced pyrolysis process appears the most commercially viable. It is concluded that the
focus in future years is likely to be on recycling cartons into construction materials where there is a
theoretical yield of 100% compared with 75% for hydrapulping.

Keywords: aseptic cartons; hydrapulping; construction board; microwave-induced pyrolysis

1. Aseptic Carton Construction

Aseptic LPB (liquid paperboard) beverage cartons are multilayer polymer-coated
paperboards with a layer of aluminum foil and play an important role in the delivery of
shelf-stable milk and juice products to consumers around the world. The first aseptically
filled sterilized cartons containing sterilized milk were sold in Switzerland in October
1961 [1]. Today four companies supply almost all the aseptic LPB beverage cartons to
the global food industry: Tetra Pak, SIG Combibloc, Elopak, and Greatview Aseptic
Packaging Company.

The typical structure of an aseptic carton is shown in Figure 1. An LDPE (low density
polyethylene) outer layer provides a moisture barrier, protects the printing ink layer applied
to the paperboard and enables the package flaps to be sealed. The type of paperboard used
depends on the product being packed, the regional market where it will be sold and the
manufacturing conditions, but it is commonly a duplex or triplex material with a bleached
or clay-coated outer layer and often contains CTMP (chemithermomechanical pulp); the
paperboard gives the package the required mechanical rigidity and typically represents
75% of the total weight of the package. As there is no contact between the paperboard
and the liquid product inside the package, no wet-strength additives are used in the
paperboard. The inner side of the paperboard is coated with LDPE to tie it to the aluminum
foil (generally 6.35 µm thick and constituting 5% of the total weight of the carton) that
provides an odor, light, and gas barrier. Adhesion of the aluminum foil to the innermost
plastic layer is achieved through the use of a layer of EMAA (poly(ethylene-co-methacrylic
acid) which has rheological properties similar to those of LDPE [2,3]. Finally, an inner layer
of LDPE is applied to enable heat sealing of the carton.
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Figure 1. Typical structure of an aseptic carton. 

Since 2006 Tetra Pak has used mLLDPE (metallocene-based linear low-density poly-
ethylene) that is 30% thinner than the previous LDPE coating [4]. The roll-fed carton ma-
terial supplied by Tetra Pak and Great View Aseptic requires a longitudinal seal strip to 
be applied internally to prevent contact between the aluminum and paperboard edge and 
the product; this is not required for preformed carton blanks. The strip is composed of a 
core layer of PET (polyethylene terephthalate), PA (polyamide) or EVOH (ethylene vinyl 
alcohol copolymer) depending on the oxygen sensitivity of the product, coated with LDPE 
or LLDPE [5]. The carton may also have an opening device or screw cap made from HDPE 
(high density polyethylene). 

2. Recycling Options 
Recycling options can be categorized as primary, secondary, tertiary, and quaternary 

[6,7]. Primary recycling (sometimes referred to as closed loop recycling) is reprocessing 
the material back into its original use or comparable products with equivalent quality but 
is not an option for post-consumer cartons as they cannot be directly converted back into 
their original use. However, secondary recycling where materials are processed and used 
in applications not requiring virgin material properties is the most widespread recycling 
option for aseptic cartons. The paper fibers are separated from the PolyAl (polyethylene 
& aluminum) and incorporated into paper products; this has been a relatively common 
process for at least the past 40 years. Another secondary recycling process involves con-
verting the shredded cartons into construction materials. Tertiary recycling involves 
breaking a product down into its chemical building blocks, and then recycling those chem-
icals into various products. Quaternary recycling of cartons involves incineration with 
energy recovery although this process is not considered recycling in many countries. Me-
chanical, chemical and thermal processes are used to separate the polyethylene and alu-
minum in the PolyAl residual that remains after the paper fibers have been recovered. The 
recycling options for aseptic cartons and the PolyAl residual will be considered in this 
review. 

Reliable figures on the recycling rate of beverage cartons are difficult to obtain but a 
2019 figure of 51% is given for the 28 countries of the European Union, with some coun-
tries such as Belgium and Germany achieving rates of over 70%, according to The Alliance 
for Beverage Cartons and the Environment [8], an industry group for European beverage 
carton manufacturers and their paperboard suppliers. The recycling figure is calculated 
using the method of accounting for the predominant material as specified in 2005/270/EC: 
Commission Decision of 22 March 2005 establishing the formats relating to the database 

Figure 1. Typical structure of an aseptic carton.

Since 2006 Tetra Pak has used mLLDPE (metallocene-based linear low-density polyethy-
lene) that is 30% thinner than the previous LDPE coating [4]. The roll-fed carton material
supplied by Tetra Pak and Great View Aseptic requires a longitudinal seal strip to be
applied internally to prevent contact between the aluminum and paperboard edge and
the product; this is not required for preformed carton blanks. The strip is composed of a
core layer of PET (polyethylene terephthalate), PA (polyamide) or EVOH (ethylene vinyl
alcohol copolymer) depending on the oxygen sensitivity of the product, coated with LDPE
or LLDPE [5]. The carton may also have an opening device or screw cap made from HDPE
(high density polyethylene).

2. Recycling Options

Recycling options can be categorized as primary, secondary, tertiary, and quater-
nary [6,7]. Primary recycling (sometimes referred to as closed loop recycling) is repro-
cessing the material back into its original use or comparable products with equivalent
quality but is not an option for post-consumer cartons as they cannot be directly con-
verted back into their original use. However, secondary recycling where materials are
processed and used in applications not requiring virgin material properties is the most
widespread recycling option for aseptic cartons. The paper fibers are separated from the
PolyAl (polyethylene & aluminum) and incorporated into paper products; this has been
a relatively common process for at least the past 40 years. Another secondary recycling
process involves converting the shredded cartons into construction materials. Tertiary
recycling involves breaking a product down into its chemical building blocks, and then
recycling those chemicals into various products. Quaternary recycling of cartons involves
incineration with energy recovery although this process is not considered recycling in
many countries. Mechanical, chemical and thermal processes are used to separate the
polyethylene and aluminum in the PolyAl residual that remains after the paper fibers have
been recovered. The recycling options for aseptic cartons and the PolyAl residual will be
considered in this review.

Reliable figures on the recycling rate of beverage cartons are difficult to obtain but a
2019 figure of 51% is given for the 28 countries of the European Union, with some countries
such as Belgium and Germany achieving rates of over 70%, according to The Alliance
for Beverage Cartons and the Environment [8], an industry group for European beverage
carton manufacturers and their paperboard suppliers. The recycling figure is calculated
using the method of accounting for the predominant material as specified in 2005/270/EC:
Commission Decision of 22 March 2005 establishing the formats relating to the database
system. From 2020, a new calculation method came into effect which requires deduction of
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non-recycled materials and reporting of the recycling rate for each material separately. In
the USA the Carton Council [9] reported a curbside recycling rate of cartons of about 18%
in 2019.

2.1. Recovery of the Paper Fibers

As it constitutes 75% of the total weight of the carton, recovery of the paperboard has
been the predominant focus of carton recycling approaches. Recycling is accomplished
at a paper mill by recovering the paper fibers using a conventional hydrapulper (so
named because of the hydraulic forces generated during pulping). Hydrapulpers are large
cylindrical vessels with impellers (rotors) at the bottom which break apart the paper fibers
and produce a relatively dilute slurry of fibers that can be further processed within the
mill. Batch pulpers range in size up to 7.6 m in diameter (up to 68 m3 stock volume) with
capacities up to 14.5 tonnes of dry furnish (cartons) per batch. Typical batch times are 30
to 45 min at ambient temperatures. Continuous pulpers range in size from 3.7 to 8.2 m in
diameter (up to 147 m3 stock volume) with capacities up to 1270 tonnes per day [10].

Contact between the water and the paper layer occurs in the hydrapulper, and the
layers separate due to the hydraulic forces inside the pulper. No chemicals are added.
The pulper has a drilled plate underneath the rotor, with 9.5 mm holes for fiber/water
extraction. There is no automated consistency control, but 12 to 15% is the desired range of
operation. Hydrapulpers are generally equipped with a ragger which removes the PolyAl
residual, caps, straws and long stringy materials such as baling wire from the slurry [11].

A 1993 patent assigned to Tetra Laval [12] detailed the methods and apparatus for
separating paper fiber from mixed waste materials which contain one or more sources
of paper fiber, such as beverage cartons, in order to obtain substantially pure paper fiber
which can readily be recycled to high grade end uses such as for paperboard having, for
example, high brightness and low dirt content, as opposed to low grade end uses such as
for tissue paper.

However, recycling a material that results in 25% of residuals (the PolyAl residual
and any other polymers including caps, lids and straws) is not usual and is considered a
negative by most paper mills. If a batch pulper is used, it must be emptied and cleaned after
every batch; blending small quantities of cartons with regular wastepaper will minimize
the number of times the pulper will require cleaning but blending is not always a viable
option. After removal from the pulper, a perforated rotating cylinder with water showers
helps wash the PolyAl residual and recover any entrained fibers (generally 0.5% of fibers
are lost with the residuals); the white water is reused. The recovered fibers from the pulper
and cylinder are used in the production of paper products such as tissues, towels and
writing paper [11].

Recently the recovered fibers were used as a structural filler together with the biobased
and biodegradable polymer PBS (poly(butylene succinate)) in the preparation of biocom-
posites that could be an alternative for conventional fossil polymer-based wood/plastic
composites [13]. High filler loading from 10 to 50 wt% of fiber was used in the melt blending
process to prepare five composites that were 55 to 75% biobased. The addition of 50 wt%
of fiber to PBS gave a 2-fold improvement in the hardness of the composite compared
to neat PBS. The Young’s modulus increased almost 3-fold, while TS (tensile strength)
and ductility decreased correspondingly. Dynamic mechanical analysis showed that the
storage modulus and the loss modulus were significantly enhanced in the temperature
range of −70 and 70 ◦C. The composting in soil of PBS and PBS/fiber films showed that the
presence of cellulose accelerated the degradation of PBS resulting in decreased degradation
times for the composites. It was suggested that the PBS/fiber composites could be used in
industries like packaging, furniture and construction.

2.2. Construction Materials

There have been several attempts over the years to utilize the production/factory
waste generated in the manufacture of beverage cartons. In 1970 Downs & Schmitt [14] filed
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a patent on behalf of the Thilmany Pulp & Paper Company in Kaukauna, Wisconsin for an
apparatus and method for continuously forming a composite board from a mass of shred-
ded paper containing thermoplastic material such as that produced in the manufacture
of gabletop beverage cartons (paperboard and LDPE). In the mid-1980s Tetra Pak started
a project in Lund, Sweden that led to the first production site being built by Tetra Pak in
Kenya in 1987 to produce composite board from the local aseptic carton post-production
factory waste; a patent for this process was filed by Nilsson in 1989 and assigned to Tetra
Pak Finance & Trading [15].

In 1990 EVD (Entwicklungsgesellschaft für Verbundmaterial Diez mbH) was founded
in Diez, Germany by Tetra Pak to manufacture a composite material named Tectan®

(also the name of fluorocarbon fishing lines sold by Damyl in Germany). In a specially
developed, patented process [16], the raw material (mainly post-production beverage
carton factory waste) is shredded, dried and then converted into granules. Depending on
the designated end use, polyolefins such as LDPE, HDPE or PP (polypropylene) are then
combined (according to a formula that delivers the requisite end-product properties) with
the paper fibers serving as stabilizers and increasing the rigidity of the plastic matrix. The
resulting Tectan® composite material is compression or (since 1997) injection molded to
make core plugs and edge protectors used by paperboard manufacturers. One application
that created considerable interest from an ecodesign viewpoint was Sony loudspeaker
cabinets made from Tectan® that delivered superior acoustic performance [17]. In 1997,
Tetra Pak decided not to continue running EVD in its original form, and the employees
who had been involved in the development of Tectan® took over the company.

Today composite board (also referred to as panel or particle board) is the most widely
produced construction material made from aseptic cartons, and is produced by shredding
aseptic cartons into 1 to 5 mm sized particles and thermally compressing them at 170 ◦C for
a time dependent on the board thickness. The composite board obtained is comparatively
light and water-resistant with varying levels of flexibility. Lower quality polyolefins are
sometimes added since the quantity of plastic in the carton material (20%) is not always
sufficient to guarantee the desired mechanical properties. Although post-consumer cartons
are used to manufacture this board, the most suitable raw material is post-production
factory waste, as contamination from impurities and residual product in post-consumer
cartons, coupled with high ambient humidity in many cases, can limit applications for
the board. There may also be a high microbial load that might be of concern not only
in the final product as a residual odor, but also for the safety of workers when handling
this material in the processing line. The time in the hot press varies with the final board
thickness but a general rule is to press for 1 min per mm final board thickness (10 mm
board = 10 min press time). The board is then transferred to a colder press (>80 ◦C to allow
plastic deformation at a relatively low pressure) to obtain the specified final thickness. It
is also important to have cooling of the press and the board temperature should be about
20 ◦C when leaving the press to avoid creep effects [18].

Many mostly small-scale factories to manufacture composite board from aseptic
cartons have been built around the world over the past 30 years with brands including
T-PLAK® in Argentina, Reciplak® in Brazil, Tetrabuild® in Chile, Chiptec® in China,
Ecoplak® in Colombia, Novapak and PackWall in Czechia, Greenpak in Ecuador, Ecolink
in India, Lamiboard in Kenya, saveBOARD in New Zealand, Green Board in Pakistan and
Thailand, TeRO® in Poland, Tetra K1® in Slovakia, Maplar® in Spain, Yekpan® in Turkey,
and Everboard and Kelly Green Products in the USA. Some process only aseptic cartons
while others also include plastic-coated paper products such as cups. Not all of these
factories are still operating, and current production volumes are in most cases negligible in
comparison to the quantity of aseptic cartons sold in each country [5].

Peña et al. [19] studied the influence of factors such as temperature (140 to 160 ◦C),
pressure (11,000 to 13,800 kPa), heating time (25 to 30 min) and composition on the final
properties of boards made from aseptic cartons. They concluded that the use of higher
temperatures, times and length of carton pieces accompanied by lower pressures may
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improve the TS of the panels. Based on the contribution of this study, the authors concluded
that the optimal values of the variables for the commercial production of the panels remain
to be found. However, commercial operators, often using a trial-and-error approach, have
in most cases already optimized their processes.

Quintero et al. [20] investigated the possibility of using board made from aseptic car-
tons to create structural solutions for temporary housing and small houses. Hollow column
and beam models made from board of thickness about 15 mm helped in understanding
theoretical behavior and determining the areas where stresses and deformations occurred.
Tests focused mainly on compression and bending with results showing that although
the board had low elastic behavior, stresses remained below the ultimate stress. Column
failure tended to be brittle compared to failure for the bending resistant elements. Failure
loads were similar to those reported for commercial plywood in Colombia.

There have been many reports on the properties of composite boards formed from
aseptic cartons, and researchers have attempted to improve board properties using a variety
of approaches and additives; these are reviewed below.

2.2.1. Veneers

In order to add value or enhance the appearance of the panels, various veneers have
been applied. Ayrilmis et al. [21] evaluated aseptic carton panels overlaid with beech
veneer using four types of adhesives: PU (polyurethane), PF (phenol formaldehyde), UF
(urea formaldehyde) and MUF (melamine-urea formaldehyde). The panels overlaid with
veneer using PU adhesive had the best mechanical properties and water resistance. Wood
veneer-faced carton panels had significantly higher mechanical and physical properties
than those of wood veneer-faced particleboards, due to a tighter profile structure and
higher density of the carton panels. The absence of formaldehyde in carton panels was a
positive feature. Based on the findings of this study, it was suggested that carton panels
overlaid with veneers could be considered as an alternative raw material with acceptable
properties to be used in furniture manufacture, counter tops, flooring, roofing, dividing
walls, and kitchen cabinets.

In a later study, Sen et al. [22] reported that wood veneer-faced carton panels had
significantly higher antifungal and insecticidal properties than the wood veneer-faced
particleboards with the carton panels having a toxic effect on larvae. The results revealed
that carton panels with wood veneer could be used in high humidity conditions such as
bathroom furniture and roofing material which are exposed to fungus and insect attack.

Rhamin et al. [23] produced “carton board” with a density of 1 g cm−3 from aseptic
cartons by mixing MUF resin at three levels with two different pressing times (10 and
12 min). Half of the boards were created using walnut veneer layers. Physical and me-
chanical properties of the boards were evaluated. The different press times and resin levels
did not affect the mechanical properties of the board, but the walnut veneer significantly
increased the mechanical properties and reduced the physical properties such as internal
bonding strength and screw withdrawal resistance. Boards created without using any resin
had better physical properties.

2.2.2. Addition of Plastics

Murathan et al. [24] prepared panels of shredded aseptic cartons to which UF or PVA
(polyvinyl acetate)-based glue was added in different ratios; panels containing the former
exhibited better physical properties than the latter. It was suggested that these materials
could be placed behind radiators or electrical heaters to prevent heat loss but they were
not considered suitable for use in high humidity environments.

Parada-Soria et al. [25] investigated the thermal and mechanical properties of compos-
ites made from multicolored recycled HDPE flakes that had been dry mixed with varying
concentrations of aseptic carton flakes and compression molded at 250 ◦C. Previous studies
had shown that the type of pigment utilized in HDPE strongly influenced the mechanical
properties of the composites. Moreover, the degree of crystallinity and mechanical modulus
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varied among different colored HDPEs suggesting the influence of the pigments to nucleate
crystallites. Furthermore, for multicolor HDPE/carton composites, poor adhesion was
found between HDPE samples with different colors, adding to the failure mechanism of
the composites. Mechanical properties such as Young’s modulus, yield stress and ultimate
TS were obtained under uniaxial tensile deformation at room temperature. The results indi-
cated that understanding the role of processing parameters would provide the opportunity
to generate value-added composite materials from recycled thermoplastics.

Carrillo et al. [26] blended aseptic cartons with HDPE from recycled milk and juice
containers. The cartons were first washed and dried before being ground to a sieve size of
3 mm; the HDPE particles were ground to a sieve size of 2 mm. The carton/HDPE (55:45)
agglomerated material was manufactured by compression molding and formed the middle
layer in a laminate. An LDPE film was applied to each side to provide a moisture barrier
and aluminum film was applied over the LDPE films to facilitate removal from the press.
The material was then pressed for 10 min while being heated to 150 ◦C at a pressure of
1.13 MPa, followed by cooling to room temperature at constant pressure for approximately
30 min. The addition of HDPE to the carton material increased the material’s capacity to
resist flexural loads in situations such as its application in construction and the furniture
industry. Screw pull-out strength was also increased in the material, another parameter of
vital importance in the aforementioned applications.

In a follow-up study, Chan-Koyoc et al. [27] subjected carton/HDPE (55:45) laminates
to aging in an AW (accelerated weathering) chamber with UVB (Ultraviolet B) radiation,
temperature and humidity cycles; and NW (natural weathering) in a warm sub-humid
environment. The MOR (modulus of rupture) and MOE (modulus of elasticity) decreased
by 20% in samples subjected to AW for 2000 h, while the samples exposed to NW required
5200 h to obtain a reduction of 16% in the MOR.

Bekhta et al. [28] evaluated some of the properties of experimental composite panels
made from three types of materials: aseptic cartons, food packaging films (recycled stretch
wraps), and CPEW (candy polyethylene wrappers) used at different ratios in the panels at
a target density of 0.9 g cm−3. The highest MOR value of 15.5 MPa was determined in the
samples having 40% cartons and 60% CPEW. MOR values of the panels decreased with
decreasing content of CPEW; the increased content of cartons also resulted in a reduction
in their strength characteristics and dimensional stability.

In 2020 Aranda-García et al. [29] studied the main processing and formulation factors
that affect the performance of panels manufactured with postconsumer aseptic cartons
and HDPE (5 to 20 wt%). Their results showed that mechanical strength depended more
on the pressing time than the formulation. The specimens tested by immersion in water
for 17 days exhibited water absorption of 60 wt% but their structural stability was not
compromised.

Guillén-Mallette et al. [30] used two quantities of milled fiber (20 and 30%) from
aseptic cartons together with HDPE, mineral fillers calcium carbonate and zinc oxide, a
coupling agent and two types of ethylenic copolymer processing aids. The independent
variables that had the greatest influence were the type of HDPE, the type of ethylenic
copolymer processing aids, and the extrusion speed. The extruded material had a density
of 1.11 g cm−3, temperature of fusion of 149 ◦C, impact resistance of 32 J m−1, TS of 11 MPa,
and flexural modulus of 314 MPa.

2.2.3. Blends

Hwang et al. [31] prepared boards of different specific gravities (0.55 to 0.75) by
pressing shredded cartons blended with UF resin (6 to 10%) at 180 ◦C. Mixed particleboard
containing wood particles and cartons all having a resin content of 10% and various specific
gravities were also prepared. At the same specific gravity, the properties of the boards
were affected by their resin content. The MOR, MOE and internal bond strength increased
with increasing specific gravity at the same resin content, but thickness swelling of the
boards showed the reverse trend. The average MOR of the carton boards approximated
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that of the mixed particleboards, and internal bond strength and thickness swelling of the
carton boards were smaller than those of the other particleboards. Based on the above
observations, it was concluded that aseptic cartons can be made into composite boards
with adequate properties either alone or mixed with wood particles.

Moya et al. [32] evaluated the decay resistance, coating and burning properties, and
the change of color caused by AW of particleboards manufactured with a combination of
three woody species used for commercial reforestation in tropical areas, pineapple leaves,
empty fruit bunches of oil palms and aseptic cartons. UF resin (62% solids) was used at 6 to
8% of the total weight of the particleboard. Mixtures containing 50% cartons performed
best, followed by mixtures with oil palm components and pineapple leaves. Particleboards
with aseptic cartons and oil palm showed the highest resistance to combustion. Mixtures
of the three woody species with cartons showed the best performance in AW.

Sun & Zhang [33] studied the optimum hot-pressing process and surface decoration of
waste aseptic carton/sawdust composite board made with UF resin. The optimum process
variables were resin content 14%, hot-pressing temperature 150 ◦C, hot-pressing time 7 min
and carton/sawdust mass ratio of 4:6. The maximum MOR of the board was 23.1 MPa and
the maximum MOE 2917 MPa. The optimum PVC (polyvinyl chloride) surface decoration
process was a hot pressing temperature of 50 to 60 ◦C, hot pressing time of 10 to 20 s, and
hot pressing pressure greater than 100 kPa.

Ebadi et al. [34] blended LDPE (60%) and poplar timber powder (0 to 40%) with
shredded aseptic cartons (0 to 30%); in some trials 3% MAPE (malic anhydride-grafted
polyethylene) replaced 3% LDPE. Analysis of the injection molded samples showed that
the composites containing 30% cartons and 3% MAPE had the highest strength and tensile
modulus as well as the highest impact resistance. In a 2017 follow-up study, Ebadi et al. [35]
investigated the physical and mechanical properties of the wood-plastic samples with
results showing that adding cartons and MAPE to samples increased the flexural strength
and MOE and reduced 24 h water absorption and thickness swelling.

Hassanin & Candan [36] manufactured composite boards from shredded 100% aseptic
cartons (target thickness of 5 mm and density of 0.83 g cm−3) and five sandwich structures
with a core of 100% cartons and skins of jute woven fabric, glass woven fabric, or PP
nonwoven spunbonded fabric; and a layer of PP between the cartons and the jute or
glass fiber. The MOR of the boards with different skin materials was higher than that for
commercial particleboard (thickness of 10 mm and an average density of 0.66 g cm−3)
which was higher than the carton board without skins. The internal bond strength values
of the carton board were higher than the commercial particleboard but lower than the
boards with skins. Adding a jute skin layer increased the water absorption and thickness
swelling of the board due to the hydrophilic nature of the jute. The thermal insulation
provided by the glass fabric affected the melting of PE and PP during the hot pressing and
resulted in weak internal adhesion which directly led to increased water absorption. It was
concluded that the boards containing aseptic cartons had a very high potential to compete
with standard commercial particleboard due to higher mechanical and physical properties
and lower cost.

Nassef et al. [37] reported in 2018 that composites made from 100% aseptic cartons
(target density of 0.8 g cm−3 and a thickness of 10 mm) and a skin of woven glass fiber
fabric possessed higher dynamic characteristics in terms of damping ratio compared to
commercial particleboard and medium density fiberboard. Bending tests showed competi-
tive MOR values of both composites, with the addition of glass fiber fabric enhancing the
MOR values. The 100% aseptic carton panels showed low stiffness values based on MOE
results, and the natural frequencies of both composites were close to those for fiberboard
and particleboard indicating comparable dynamic stiffness behavior.

Hassanin et al. [38] fabricated thermal insulation composite panels from aseptic cartons
and wool fiber. Introducing the wool waste enhanced the thermal insulation properties
of the final samples as air was trapped within the wool fibers. Panels made with glass
fiber skin showed an 8.5% reduction in thermal conductivity compared to a 6.5% reduction
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when jute fabric was used. The results indicated that aseptic carton waste can be combined
with wool fiber to manufacture insulation for buildings.

Mohareb et al. [39] evaluated commercial particleboard specimens and composite
specimens made of ground 100% aseptic cartons blended with different percentages of
natural short fiber wool. Water absorption and thickness swelling showed a significant
improvement compared to the commercial particleboard. Increasing the percentage of wool
waste in the developed composites lead to a significant improvement in sample durability
against fungal decay. The termite resistance of carton or carton/wool panels was enhanced
compared to the pine and beech wood reference samples.

In a 2019 follow-up study, Hamouda et al. [40] reported the physical behavior, fungal
decay and termite attack under laboratory conditions of composites developed from aseptic
cartons and wool yarn wastes and compared the results to standard wood products. The
shredded cartons were pressed with wool yarn at 190 to 200 ◦C for 2 min at 500 kPa and
then for a further 3 min at 1000 kPa. The hybrid panel densities varied between 0.73 and
0.82 g cm−3. When wool yarn wastes were increased to 15%, the MOR reached a higher
value than that of commercial particleboards. The highest internal bonding strength was
found for hybrid composites with 10% wool yarn content. Moreover, thickness swelling
and water absorption of the fabricated hybrid composites were found to be better than
commercial particleboards and they also met the minimum strength requirements of the
relevant British Standards. It was concluded that aseptic cartons and wool yarn could be
utilized as a promising alternative source of raw materials to manufacture value-added,
eco-friendly, advanced and sustainable structural applications such as wood panels.

2.2.4. Fire Performance

Figen et al. [41] shredded aseptic cartons and then pressed them at 180 ◦C and a pres-
sure of 1200 kPa for 12 min to form panels of 18 mm thickness and density of 1.09 g cm−3.
Samples were heated in a nitrogen atmosphere at different heating rates and the results
showed that thermal degradation consisted of three distinct steps after moisture evapora-
tion. The first step was accepted as the main thermal degradation phase (200 to 400 ◦C)
and corresponded to the degradation of paperboard. The second step occurred between
400 and 461 ◦C and corresponded to the degradation of paperboard and LDPE. The last
step was associated with the decomposition of the remaining paperboard and LDPE layer
and the residue consisted of char and aluminum foil after the thermal degradation.

Yilgor et al. [42] evaluated some chemical, physical and biological properties, weath-
ering and fire performance of panel board made from shredded aseptic cartons with and
without zinc borate (Zn3B2O6). Results showed that fungal degradation (mainly of cellu-
lose) occurred in the natural polymer of the panel board but caused no changes to the LDPE.
However, the LDPE seemed more sensitive to weathering than the cellulose. Incorporation
of 1% (w/w) zinc borate did not improve fire performance of the panels, but a loading of
10% did using test parameters such as mass loss, ignition time and peak heat release rate.

In an effort to expand the potential applications of composite board, Xu et al. [43]
developed flameproof composites using post-consumer aseptic cartons and HDPE with
the addition of APP (ammonium polyphosphate) and MEL (melamine) as intumescent
FRs (flame retardants). The cartons were washed with water, air dried, shredded, ground
into powder (380 to 830 µm) and dried to 2 to 3% moisture. The powder was then mixed
with HDPE (70:30) and up to 30% FR before extrusion and injection molding to produce
test specimens for flammability and mechanical tests. While the FRs positively affected
the fire retardancy of the composites, there was a deterioration in TS when the FR content
exceeded 30 wt%. This process does not appear to have been commercialized.

2.2.5. Roofing Tiles

Araújo et al. [44] evaluated the mechanical and physical-chemistry properties of tiles
made from aseptic cartons and compared them with conventional fibrocement tiles. The
results showed that the TS of the carton tiles was greater (14.4 MPa) than the conventional
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ones (5.2 MPa), as was the flexural strength (1.5 and 0.8 MPa, respectively). The fibrocement
tiles showed greater density and water absorption than the cartons ones. They concluded
that tiles produced from cartons could easily be used as substitutes for conventional tiles.

2.2.6. Wall Cladding

In 2019 Foti et al. [45] examined the compressive strength and microstructure of
gypsum-bonded wastepaper-based composites. Recycled wastepaper of various types
including aseptic cartons were shredded to short length strips of about 4 × 18 mm and used
as filling materials in natural gypsum in a ratio of 1:3 (v/v), and water was added to the
mix. Seven different types of composites were produced depending on the material used.
The densities ranged between 1.26 and 1.34 g cm−3, and compressive strength was the
lowest (4480 kPa) in the gypsum–magazine paper composites and the highest (6460 kPa)
in the gypsum–carton composites. Since the samples exhibited adequate compressive
strength, the products could be suitable for such applications as interior walls in building
constructions. SEM (Scanning Electron Microscopy) indicated good adhesion between the
hydrophobic matrix and the lignocellulosic fibers.

2.2.7. Layering of Cartons

While the preceding processes used shredded or ground aseptic cartons, Gallego et al. [46]
prepared post-consumer aseptic cartons in three ways: stacked in 5 layers without cutting;
cutting into 10 mm × 15 mm slices; and cutting into 5 mm × 5 mm slices. Several cycles
of pressure and temperature were applied in a manual hydraulic press with hot plates to
obtain the composites which the authors concluded could be applied for non-structural
purposes in the building industry.

In a similar approach, Antón et al. [47] described a manufacturing process for binding
6 to 10 sheets of aseptic carton material (85 mm × 115 mm) at temperatures of 170 to 190 ◦C
for 30 to 45 min at pressures of 3 MPa and 5 MPa. Density ranged from 0.74 to 0.81 g cm−3

which was lower than the theoretical value (0.981 g cm−3) mainly due to the entrapment of
bubbles during the fabrication process. The flexural strength values obtained for samples
of 10 sheets ranged from 28 to 32 MPa and for the flexural modulus 5116 to 5790 MPa.
Corresponding values for six sheets were 27 to 36 MPa and 7318 to 9215 MPa. The most
influential factors in the process (for the range of chosen conditions) were the pressure
and the time, with the temperature being a secondary factor. The results obtained for this
type of material were very similar to those for wood-based materials and presented good
reliability from a strength point of view.

Olfos et al. [48] developed insulating, self-supporting and multilayer panels composed
entirely of aseptic cartons thermofused by mechanical means. Cartons were washed and
opened using guillotines or paper cutters and three layers arranged in an overlapping
manner; the two exterior faces had a reflective appearance, achieved by exposing the
aluminum side of the cartons. The core of the panel consisted of unopened cartons arranged
edge to edge, thus minimizing the preparation steps by omitting any cutting. A second
design consisted of a series of prisms formed by cartons transversely cut and arranged
next to each other, perpendicular to the base attached to two ‘flat boards’ followed by a
central core. Finally, another ‘flat board’ that closed and formed the final insulation panel
was added. This arrangement sought to limit the air movement within the cylinders and
generate reflection on both aluminum faces. A third design consisted of a ‘flat board’ as the
first layer, followed by a core based on a wavy ‘flat board’ created via thermoforming, and
another ‘flat board’ layer. It was concluded that the three proposed panels could compete
on equal terms with mineral and glass wools, two of the traditional insulators of moderate
price and high performance available in the market.

Pons & Abt [49] analyzed the mechanical and fire properties of four household waste
packages (HPDE, PET, PS (polystyrene) and aseptic cartons) as part of a broader research
project developing new low-cost solar control devices for school façades reusing house-
hold waste. The aseptic cartons exhibited anisotropic mechanical behavior due to their
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production process; parallel to the short edges of the carton it was stiffer and stronger but
also more brittle compared to the other direction. Aseptic cartons also had a high specific
strength and a TS per surface weight similar to steel and aluminum panels. Regarding the
fire properties, the four waste containers had similar behavior to synthetic polymers and
therefore should not be put close to flames. The aseptic cartons should have the polyethy-
lene/aluminum layer on the outside (i.e., external) surface. It was concluded that because
post-consumer waste packages were not designed for façade purposes, they should be
introduced cautiously in the construction sector. In a subsequent paper, Habibi et al. [50]
reported the degradation behavior and mechanical properties of aged samples of house-
hold waste containers including aseptic cartons under real environmental conditions. The
TS of the cartons decreased due to UV aging but could be used in exterior conditions if
their aluminum faces were exposed or painted with TiO2 (titanium dioxide).

2.2.8. Irradiation

Gamma radiation has been used in order to improve the performance of various
building products incorporating aseptic cartons. Martinez-Barrera et al. [51] studied the
effects of paperboard from aseptic cartons and gamma radiation on the mechanical prop-
erties of cement concrete. Concrete specimens were prepared with paperboard (0.5 mm)
at concentrations of 3, 5, and 7 wt% and irradiated at 200, 250, and 300 kGy. The highest
improvement in mechanical properties was for concrete with 3 wt% of paperboard and
irradiated at 300 kGy. Martinez-Barrera et al. [52] evaluated the effects of lamellae (1.5 to
3.0 mm) from aseptic cartons (up to 30 wt%), as well as of gamma rays (200 and 300 kGy),
on the mechanical properties of cement concrete. Improvements of up to 39% for compres-
sive strength and 30% for the elasticity modulus were obtained for concrete produced with
10% of cartons and irradiated at 300 kGy.

Martínez-López et al. [53] partially substituted silica sand in polyester resin composites
used as polymer mortar with cut aseptic cartons (rectangular shapes with average sizes
of 2 to 4 mm) at 1, 2, 4 and 6 wt% and then irradiated the modified composites with
gamma rays at doses from 100 to 500 kGy. There was an improvement of 15% in the
compressive strength and 16% in the flexural strength when 1% of carton particles and
a 100 kGy irradiation dose were used. Mechanical properties decreased considerably at
2% and 200 kGy. Martinez-Barrera et al. [54] prepared polyester-based composites (80%
polyester resin and 20% silica sand) and partially replaced the silica sand with paperboard
from aseptic cartons at concentrations of 1, 2, 4 and 6 wt% and then irradiated them.
Improvements were found in the mechanical properties (compressive and flexural strength
as well as MOE) of the composites when they were irradiated at 100 and 200 kGy.

2.2.9. Novel Application

Xu et al. [55] developed a novel EMI (electromagnetic interference) shielding board
using waste aseptic cartons with added iron fibers. The fiber loading level, fiber length
and number of iron fiber layers significantly affected the EMI shielding properties. The
shielding effectiveness increased with increasing fiber loading, fiber length and number
of fiber layers, while the volume resistivity showed the opposite tendency. The boards
had excellent total EMI shielding performance in the range of 9000 Hz to 200 MHz and
600 to 1500 MHz, and it was suggested that this value-added product could be used in
packaging, construction and other application fields as it exhibited both environmental
and economic advantages.

3. Pyrolysis

Pyrolysis is one of the alternative routes for treatment of aseptic cartons and involves
thermochemical breakdown at elevated temperatures of 300–900 ◦C in an oxygen-free
environment, resulting in a mixture of gas, oil, tar and char as the solid residue [56]. The
gas can be used as fuel, frequently for heating the pyrolysis reactor, and the oil can either
be used as fuel or as raw material for the production of chemicals.
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Korkmaz et al. [57] investigated the pyrolysis of aseptic cartons in a nitrogen atmo-
sphere at different temperatures (400 to 600 ◦C) using one- and two-stage pyrolysis modes.
The char obtained was suitable to use as a solid fuel because of its high calorific value and
low ash content. The gas produced was mostly formed from degradation of the paperboard
and consisted largely of CO (40 mol%) and CO2 (55 mol%). The first stage (below 400 ◦C)
was characterized by primary degradation of paperboard, while the degradation of PE
was significant in the second stage with the wax obtained having fewer impurities such as
tarry compounds from cellulose degradation. The yield of Al from the second stage was
6.8 wt%. They concluded that aseptic cartons are a useful recycling resource and pyrolysis
may be recognized as an attractive approach. However, because of the high quality of the
paperboard in aseptic cartons, recovery of the paper fibers by hydrapulping is considered
a more economically viable process than pyrolysis.

In 2021 Zúñiga-Muro et al. [58] provided a detailed analysis of the recycling of aseptic
cartons via pyrolysis to recover the most valuable solid products (char and Al), and the
subsequent application of the char in the adsorption of mercury in aqueous solutions. The
chars showed outstanding mercury adsorption properties. Pyrolysis allowed an effective
recovery of Al at pyrolysis temperatures of 600 and 800 ◦C; the Al recovered represented
~25% of the total solid product and exhibited an Al content >79.9 wt%. Higher temperatures,
up to 1000 ◦C, promoted its oxidation to aluminum oxide and hydroxide. These findings
may contribute to the development of new adsorbents with promising performance for
water treatment and the associated recovery of Al for further industrial applications.

In pyrolysis, catalysts are usually used for two reasons: to decrease the pyrolysis
temperature or for secondary tar decomposition when the aim is maximization of the gas
produced. Haydary et al. [59] used a laboratory scale pyrolysis unit to study the pyrolysis
of aseptic cartons at temperatures ranging from 650 to 850 ◦C using two catalysts (dolomite
and red clay) and obtained a char with a carbon content of 52.0 to 68.0%. The aim was
to maximize the amount of gas produced and reduce its tar content. Al foil was easily
separated from the solid residue, and at temperatures below 750 ◦C, the Al foil obtained
had no visible structural or chemical changes.

Tekin et al. [60] subjected waste aseptic cartons and waste diesel motor oil to co-
pyrolysis at 500 ◦C in a fixed bed reactor. The fuel properties of the oils obtained from
co-pyrolysis were found to be similar to those of commercial diesel. Co-pyrolysis oils can
be used as liquid fuels after the upgrading process, and the higher heating values of solid
residues from coprocessing were close to those of sub-bituminous coal.

Among the available thermal processes, HTL (hydrothermal liquefaction) provides
an alternative way for the conversion of aseptic cartons into high-value energy fuel.
Lokahita et al. [61] investigated the possibility of HTL (temperatures up to 240 ◦C and
holding times up to 60 min) for processing post-consumer aseptic cartons. The HTL pro-
cess degrades the paperboard into hydrochar, a coal-like material with a high calorific
value (25.22 MJ kg−1) that can be used as a co-combustion material with other solid fuels,
especially coal. In addition, the PolyAl residual has potential to be used as rigid board
material or in Al refining. A hard, robust, Al-rich material (20% to 25%) was formed during
the hydrothermal treatment. In addition to its simplicity, hydrothermal treatment requires
less capital cost but its industrial application as an aseptic carton recycling process still
needs further investigation.

Wang et al. [62] evaluated HTL of aseptic cartons using SCW (sub/supercritical water:
Tc = 374 ◦C and Pc = 22.1 MPa) in micro-batch reactors. The influence of temperature
(300 to 420 ◦C), pressure (16 to 24 MPa), residence time (5 to 60 min) and feed concentration
(5 to 40 wt%) on bio-oil yield, HHV (high heating value), and functional groups in bio-oil
were investigated. The results showed that bio-oil yield firstly increased with increasing
temperature and then decreased when the temperature exceeded 360 ◦C. Reaction times
longer than 30 min gave a negative effect on bio-oil yield while the influence of pressure on
bio-oil yield increased markedly from 16 MPa to 22 MPa, and then stabilized. Maximum
bio-oil yield of 35.55% was found at 360 ◦C, 22 MPa, 30 min and a feed concentration of
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20 wt%. HHV and energy recovery efficiency increased significantly with temperature,
and a maximum HHV of 48.747 MJ kg−1 and energy recovery efficiency of 46.49% were
found at 420 ◦C, 20 MPa, 30 min and feed concentration of 20 wt%. The main compounds
in bio-oil were ketones, phenolics, esters, and alcohols, formed by the liquefaction of
carbohydrates and lignin. Possible liquefaction pathways of aseptic cartons were proposed
but the economic viability of this process has yet to be established.

4. Recycling the Polyethylene and Aluminum (PolyAl) Residual

After the paper fibers have been removed by hydrapulping, a residual of polyethylene
and aluminum (PolyAl) remains. Lopes & Felisberti [3] characterized the PolyAl residual
and compared its properties with those of pure LDPE and EMAA, the polymers that
constitute the residual. PolyAl is around 15% aluminum particles of different shapes and
sizes. The residual had higher thermooxidative stability, higher crystallinity, lower impact
resistance, and higher tensile strength than the pure olefin polymers.

A variety of recycling approaches have been reported and several techniques on a
laboratory or pilot plant scale have been developed for processing the PolyAl residual;
they can be grouped into mechanical, chemical and thermal processes.

4.1. Mechanical

A process to recycle the PolyAl residue was described by von Zuben and Neves [63,64].
It consisted of washing to remove remaining paper fibers, agglutinating the material
followed by extrusion to obtain pellets, and injection molding to produce products such
as hangers, pens, brooms, notepads, clip holders, flowerpots, etc. For some products
virgin LDPE was added to the PolyAl pellets. Since 2016 Recon Polymers BV, located
in Roosendaal, Netherlands has processed PolyAl into granulate, which is then injection
molded to make products such as gravel grids, plug boxes and bird feed containers.
Investal in Tambov, Russia recycles PolyAl into pellets that can then be used in industrial
and consumer products such as composite panels, benches, crates and pens.

The PolyAl residual has also been used to make laminated boards for the building
industry [65]. However, during extrusion the fiber residues can burn generating carbon and
water vapor which compromises quality. Hidalgo [66] investigated the feasibility of manu-
facturing composite rigid board from the PolyAl residual using a hot press. The composite
board had low water absorption and acceptable TS and could be used to manufacture cable
reels. Hidalgo-Salazar et al. [67] illustrated a number of products from PolyAl residual
using techniques including compression molding, extrusion, injection molding, rotational
molding, fabrication of fiber-reinforced composites, and blends with other polymers.

Later Hidalgo-Salazar et al. [68] reported the dynamic mechanical response and
performance to short-term creep of composites made from mats of fique (a strong durable
fiber obtained from the leaves of a succulent tropical American plant of the genus Furcraea
and traditionally used for the manufacture of packaging and cordages) and PolyAl residual
from aseptic cartons. Chemical treatments such as alkalinization with NaOH, silanization
and impregnation treatments with LDPE, were applied to improve the compatibility of the
fiber matrix; their effects on the creep response and mechanical properties of PolyAl/Fique
were investigated. A later report by Hidalgo-Salazar et al. [69] included details on the
maximum strength, Young’s modulus and flexural properties which increased as a direct
function of the amount of reinforcement contained in the material. A reduction in density
from the generation of voids at the interface between the PolyAl and fique fibers was
identified, and there was also greater water absorption due to the weak interphase fiber-
matrix and the hydrophilic nature of the fibers. Muñoz-Vélez et al. [70] manufactured
panels with 10%, 20%, and 30% v/v of surface-treated fique fiber by hot compression
molding; pre-impregnation with LDPE promoted a significant increase in the tensile
and flexural properties, and panels with 30% fibers showed a 53.15% decrease in water
absorption capacity compared to panels made with 30% untreated fique fibers. Increases
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in the fiber content caused mainly better mechanical performances, which increased as a
direct function of the amount of fique incorporated.

Ayrilmis et al. [71] investigated the feasibility of lignocellulosic wastes (rice husk
particles and beech sawdust) as a filler in the PolyAl residual. The injection-molded
composites were prepared from PolyAl with and without 3 wt% MAPE at 40, 50, and
60 wt% of sawdust or rice husk flour. The sawdust flour composites had better flexural
and tensile properties than those made with rice husk flour. The strength and modulus
values of the filled composites were significantly higher than the unfilled composites. The
TS values of the filled PolyAl composites increased with increasing filler content up to
50 wt%. The tensile elongation at break values declined sharply with the addition of
the filler. It was suggested that the reinforced thermoplastic composites with their low
cost and high performance could be efficiently used in automotive interiors and outdoor
decking applications.

In 2020 Ovchinnikov et al. [72] defined the chemical composition, thermal, mechanical
and technological properties of a composite consisting of PolyAl (61 wt%), PE/paper
(23 wt%) and plastic caps (16 wt%) after the paper had been removed from aseptic cartons.
The TS and MOE were higher compared to pure LDPE and the composite had sufficient
mechanical strength and technological characteristics to be used for different unspecified
applications. The properties of the composite could be improved by using additives to
increase the elasticity and melt flow index.

Valim et al. [73] studied the properties and behavior of low weight PolyAl roofing tiles
using optical microscopy, SEM and X-ray dispersive energy spectroscopy; the thermal and
mechanical behavior of the tiles after they had been subjected to hygrothermal air condi-
tioning and UV radiation was also reported. It was concluded that although the weathering
involving humidity and UV radiation influenced the thermal and mechanical performance
of the PolyAl tiles, it was not enough to make their use unfeasible in civil construction.

Sánchez-Alvareza et al. [74] reported the results of an optical non-destructive com-
parative study of the surface deformation of PolyAl and clay roof tiles exposed to heat
radiation. The PolyAl tile showed a greater deformation profile compared with the clas-
sic clay tile, but its thermal insulation properties were better (thermal conductivity was
0.22 W m−1 K−1 compared to 1 W m−1 K−1 for the clay roof tile). In addition to being
good thermal insulators and waterproof, the PolyAl tiles do not generate fungi or bacteria,
are good acoustic insulators, highly unbreakable, and have high durability, making them
an excellent alternative as long term and low-cost construction elements.

By eliminating the impurities and foreign polymers from the PolyAl residual, Italian
company Ecoplasteam S.p.a. based in Alessandria, Italy produces an added-value product
(trade name EcoAllene® AA00 BASE) that can be injected, extruded, blended and com-
pounded like a normal polymer, and further recycled. Ecoplasteam licenses the production
process technology from Swiss company REPLAN (Recycling Planet) Global that holds a
2008 patent [75]. It involves a pulping process followed by settling and then centrifuging
to obtain a solid PolyAl fraction, shredding, drying to <2% moisture content, compacting,
extruding and subdividing into granules. The final material is 85% LDPE and about 15%
aluminum with <2% cellulose.

In 2020 Cravero & Frache [76] evaluated and improved the flammability and com-
bustion behavior of the EcoAllene® PolyAl residue to widen its use to applications where
these properties are required. Thermogravimetric analysis showed an enhancement in
the main degradation step temperature (from 385 ◦C to 421 ◦C) due to the presence of
the aluminum flakes. Two FR approaches were tested: an intumescent system made of
APP and pentaerythritol, and magnesium hydroxide. For all the materials tested, the
temperature of the main weight loss step increased, the flammability rating improved
and the fire hazard decreased. Full compatibility was found in the PolyAl–magnesium
hydroxide compound, while the PolyAl-intumescent appeared as a heterogeneous system.
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4.2. Chemical

Chemical approaches involve the solubilization of LDPE, removal of the aluminum
and evaporation of the solvent or the addition of an anti-solvent to recover the LDPE.

A 1992 patent assigned to Tetra Laval [77] for separating PolyAl involved treatment
with an organic acid or a mixture of organic acids selected from among formic, acetic,
propanoic, butyric and similar volatile organic acids with acetic acid alone being preferred.
Very good separation efficiency was achieved using an aqueous solution containing ap-
proximately 80 wt% acetic acid at 80 ◦C (close to the flash point). However, the high
concentration of acetic acid is very aggressive and will attack the aluminum, leading to the
formation of H2, as well as loss in the quantity of aluminum recovered in the process [78].

Aluminum-plastic laminates have also been separated using a hydrothermal process
where only superheated water was used in the separation [79]. However, the results
suggest that separation of Al and plastic was incomplete which, in addition to the consid-
erable energy demand for keeping water at high temperatures, makes this hydrothermal
process inefficient.

Mu’min et al. [80] employed a wet torrefaction (hydrothermal) process at 170 ◦C
and an acetic acid concentration of 3% to treat PolyAl residual. The highest Al yields
were 14.68% for a 30-min holding time and 15.78% for a 60-min holding time, close to the
theoretical maximum Al yield of 15.85%. The recovered plastic had a calorific value of
more than 30 MJ kg−1, sufficient to be used as a fuel although it is likely to be too expensive
compared to alternative fuels.

Zhang et al. [81] separated PolyAl using aqueous solutions of organic acids with
formic acid performing best at 60 ◦C with a separating time of 25 min and 4.73% Al loss.
Delamination using an organic solvent blend of benzene, ethanol and water was investigated
by Zhang et al. [82]. Delamination occurred due to the swelling of PE and although some
material loss was observed, it was lower than that obtained with separation using organic
acids. A blend of benzene-ethanol-water (30:20:50 volume ratio) for 5 min at 60 ◦C was used
to separate PolyAl layers; the bright spots of irregular particles with scattered distribution
detected by SEM on the surfaces of the PE and Al were Al, O and C [83].

Yan et al. [84] studied a wet process technique on PolyAl and compared the separation
efficiency achieved using different separation reagents (hydrochloric, methanoic and acetic
acids). The impacts of a range of parameters such as the reagent concentration, temperature,
and liquid–solid ratio, on the separation time and aluminum loss ratio were determined.
Methanoic acid was found to be the optimal separation reagent at a concentration of 2 to
4 mol L−1, a temperature of 60 to 80 ◦C, and a liquid–solid ratio of 30 L kg−1. These
conditions allowed Al and PE to be separated in less than 30 min, with less than 3%
aluminum loss. A demonstration facility with a capacity of 50 t d−1 was built in China and
achieved recovery rates of more than 98% for PE and 72% for Al.

Rodríguez-Gómez et al. [85] proposed a separation process for the PolyAl residual
using a washing process with waste cooking oil and various solvents (ethanol, chloroform
and isopropyl alcohol). The bench scale results showed that up to 85% and 80%, respectively
of Al and PE could be recovered.

However, the use of vegetable oil, while more environmentally friendly than organic
solvents such as toluene and xylene, required chloroform or alcohols to remove oily
contaminants from both the PE and Al. The quality and purity of the Al and PE strongly
affect their commercial value, and the harsh conditions of some chemical processes can
hamper the extrudability of the recovered PE or the melting of Al flakes [86].

Solvent-based PE extraction methods have been studied for the separation of PolyAl
residual, where PE is dissolved in an organic solvent and separated from the undissolved
Al [78]. Pappa et al. [87] evaluated the SDP (Selective Dissolution-Precipitation) process for
the separation/recycling of LDPE/PP mixtures. The SDP process relies on controlling and
adjusting the polymer’s solubility by changing solvent and/or dissolution conditions. The
basic steps of SDP for recovering a certain polymer with high purity involve dissolution of
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the polymer, removal of the non-dissolved material through filtration and addition of a
non-solvent or anti-solvent so that the polymer precipitates again [88].

In 2021 Georgiopoulou et al. [89] developed a SDP process to recover PE and Al.
Xylene at 85 ◦C for 2 h was utilized as the solvent for PE dissolution, and isopropanol as
the antisolvent to precipitate it. PE coming from the inner layers was recovered as a white
powder of high purity with thermal properties similar to those of pure LDPE. PE from the
outer plastic layer still contained impurities such as printing inks, suggesting that further
purification may be needed depending on the application for which it is destined.

A 2017 Italian patent filed by Tagliavini et al. [90] described a new technology of
SHS (switchable hydrophilic solvents) for the separation and recovery of PE and Al from
shredded polylaminate food packaging such as aseptic cartons. It allows the recovery of
both materials in high quantities (>99% for Al and > 80% for PE) and good quality (≥86%
of non-oxidized Al). In a follow-up publication, Samori et al., [86] reported that treatment
with DMCHA (N,N-dimethylcyclohexylamine), a lipophilic tertiary amine, allowed very
high material recovery (>99% for Al and >80% for PE), without compromising the quality in
terms of oxidation or polymer degradation. The polarity of DMCHA can be tuned through
CO2 addition and removal, switching from a neutral solvent (suitable for PE solubilization)
to an ionic liquid (in which PE is no longer soluble and thus can be recovered). Results
from a simplified and preliminary life cycle analysis confirmed the potential environmental
benefits of the SHS approach compared with other treatment and disposal scenarios.
Mumladze et al. [91] reported the use of DMCHA for the recycling of six different multilayer
flexible packaging materials all of which contained Al foil and various plastic polymers. Al
was recovered in the form of flakes with an average size of 100 µm and could be used in
powder metallurgy applications.

Nieminen et al. [92] reported in 2020 the separation of Al and polymeric layers of
waste pharmaceutical blisters by exploitation of a DES (deep eutectic solvent) consisting of
lactic acid and choline chloride (in a molar ratio of 1:9), and pure lactic acid, both of which
are considered green and environmentally friendly solvents due to their nonflammability,
nontoxicity and low vapor pressure. After the separation by pure DES, the recovered Al
fraction was corroded, containing 65 wt% of Al and 23 wt% of oxygen resulting from the
formation of aluminium lactate, whereas after lactic acid treatment, Al surfaces contained
about 95% of Al (Al foil contains 96% of Al). The results showed that the DES used and
lactic acid can offer viable green separation methodologies for Al and plastic from blister
packages and is a possible approach for recycling the PolyAl residual. However, methods
for purifying the used solvent and recovering the dissolved Al need to be developed prior
to implementing the technology in industry.

4.3. Thermal

Siddiqui et al. [93] reported thermal and catalytic pyrolysis of aluminum/plastic
laminates (coffee capsules) over zeolite catalysts to produce high quality oil. Yin et al. [94]
reported the efficient recovery of high purity Al from aluminum/plastic laminates (face
masks) using thermo-delamination. Both approaches could possibly be adopted to recover
Al from PolyAl residuals, but a systematic approach for the interactions between the
components during pyrolysis would be necessary prior to commercialization, not only for
Al recovery but also for efficient energy production.

Plasma pyrolysis integrates conventional pyrolysis with the thermochemical prop-
erties of plasma to transform plastic waste into syngas (synthesis gas). The process tem-
peratures are very high, ranging between 1730 and 9730 ◦C, and the waste plastics are
decomposed into monomers. The process is extremely fast, lasting between 0.01 and
0.5 sec, depending on process temperature and type of waste [95]. The resulting syngas is
composed mainly of CO, H2 and small amounts of higher hydrocarbons.

Hepworth et al. [96] developed a new type of plasma device, SSP (Sustained Shock-
wave Plasma), for treatment of electric arc furnace dust on a laboratory scale to produce
a non-hazardous slag and metallic zinc and lead to recycle. It was then adapted to pro-
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cess aseptic cartons. A plasma sustained by discreet pulses applied to weakly ionized
gas, known as a SSP, was developed by Refranco Corporation in collaboration with Tetra
Laval. A pilot scale 500-kW arc torch was constructed in Singapore in 1996 for treatment of
aseptic cartons and municipal solid waste in general. The feed particles entered a “free-fall”
chamber and enhanced and stabilized the plasma. The particles themselves served as the
constricting nozzle, in contrast to the electrodes in a DC (direct current) torch and the
magnetic field in an ICP (inductively coupled plasma) torch. The main benefits were high
electrical efficiency and operational flexibility. The frequency, amplitude, and width of the
pulses were variable and could be adjusted to suit a particular condition. Despite several
years of trials, the plant never operated as envisaged.

In 2001 Corenso, jointly owned by Stora Enso and UPM-Kymmene, opened a 85,000 tonnes/
year carton recycling plant adjacent to their paper mill at Varkaus, Finland at a total cost of
€45 million. To process the PolyAl residue the plant used atmospheric-pressure bubbling
fluidised-bed gasification (BFB) technology developed by VTT (Technical Research Centre
of Finland) at a temperature of 800 ◦C. The gas produced from the plastic was combusted
in a steam boiler, replacing fuel oil consumption in the power plant in Varkaus. The
aluminum was removed from the gas as a fine powder but contained coal-like particles
and required further refining before it could be used. The plant closed in 2010. The quality
of the aluminum can be hampered by a high level of oxidation and/or char residue.

Alcoa Aluminio, in a joint venture with Tetra Pak, Klabin and TSL Ambiental called
EET (Edging Environment Technology) established a recycling plant in Brazil in 2005 at
a cost of $40 million. It used electrical energy to produce a jet of plasma at 1500 ◦C that
ionized the PolyAl residual; the plastic was transformed into oil and the aluminum melted
but was contaminated with residual paper fibers. The plant ceased operation in 2010.

Stora Enso opened a carton recycling plant in Barcelona, Spain in 2010 that included a
pyrolysis component costing €6.5 million developed in partnership with Alucha Recycling
Technologies. The PolyAl residue from hydrapulping was dried and broken down into
small pieces prior to being heated to 450 ◦C in an oxygen-free rotary kiln where the
plastic pyrolyzed with the products used to heat the kiln and produce steam for the
paper mill, while the aluminum remained as small flakes that were cooled, compressed
into briquettes and remelted to make new aluminum products. Stora Enso and Alucha
Recycling Technologies were granted the ‘Best of the Best’ LIFE Environment Project award
for 2010 by the European Commission [97]. In 2016 the paper mill was sold and the
pyrolysis plant closed.

Microwave-assisted pyrolysis of waste plastics involves mixing plastics with a highly
microwave-absorbent dielectric material with the heat absorbed from the microwaves being
transferred to the plastics by conduction. The sources of microwave radiation allow very
high temperatures and heating rates and reach high conversion efficiencies of electrical
energy into heat [56]. Ludlow-Palafox & Chase [98] evaluated a novel microwave-induced
pyrolysis process and recovered clean aluminum from Al/plastic toothpaste tubing (used
as an example of a laminated material) together with hydrocarbons.

In 2005 Enval, a UK-based company spun off from the University of Cambridge, was
established in England and built a pilot plant to demonstrate the viability of microwave-
induced pyrolysis of Al/plastic including the PolyAl residue from carton recycling. Using
patented technology [99] a bed of carbon is heated using microwave energy in a reactor
chamber, and the reactor is purged with nitrogen. At a temperature of typically 500 to
600 ◦C, laminate material is dropped into and mixed with the carbon bed. With continued
microwave irradiation of the carbon bed, the organic content of the laminate is heated by
conduction and pyrolyzes to a gaseous fraction that can be recovered by condensation
to form an oily or waxy hydrocarbon product, together with a non-condensable gaseous
fraction. The aluminum can be separated from the carbon bed by coarse sieving and
recovered as a solid. About 75% of the plastic condenses into an oil and the company
is now collaborating with various plastics producers to use this oil to manufacture new
plastics; the other 25% of what was plastic remains as a gas and is fed into an electricity
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generator that then feeds the microwaves to produce the energy needed for the process.
In 2015 a commercial unit that can recycle up to 2000 tonnes a year began operation at
Alconbury, near Huntingdon and a second plant is being planned for the north of England.

5. Conclusions

As is clear from this review, there are a number of recycling options for aseptic
beverage cartons, ranging from construction materials that utilize the whole carton, to
hydra- pulping to recover the paper fibers, and various processes to process the PolyAl
residual that remains after hydrapulping. While there are many paper mills in the world
that have hydrapulpers that could recycle aseptic cartons, the fact that the maximum
theoretical yield is just 75% compared to 85% or more for other paper packaging is a
disincentive, as is the challenge of economically processing the PolyAl residual. Therefore,
it is suggested that the focus in future years is likely to be on recycling cartons into
construction materials where there is a theoretical yield of 100%. For this to be successful,
considerable investment in new factories will be required as well as the development
of economically viable markets for the materials. However, the major barrier to the
expansion of aseptic carton recycling is not recycling capacity but the collection and sorting
infrastructure which is still less than adequate in many countries. Overriding all of the
above is economics: unless the collection, sorting and recycling is profitable or subsidized
then aseptic carton recycling will not expand.
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