Supplementary Materials

Photochemical reflectance index (PRI) for detecting responses of diurnal and seasonal photosynthetic activity to experimental drought and warming in a Mediterranean shrubland

Chao Zhang 1,2,*, Iolanda Filella 1,2, Daijun Liu 1,2, Romà Ogaya 1,2, Joan Llusià 1,2, Dolores Asensio 1,2, Josep Peñuelas 1,2

1 CREAF, Cerdanyola del Vallès 08193, Catalonia, Spain; iola@creaf.uab.cat (I.F.); d.liu@creaf.uab.cat (D.L.); r.ogaya@creaf.uab.cat (R.O.); j.llusia@creaf.uab.cat (J.L.); loles@creaf.uab.cat (D.A.); josep.penuelas@uab.cat (J.P.)

2 CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra 08193, Catalonia, Spain

* Correspondence: c.zhang@creaf.uab.cat; Tel.: +34-935813355

Figure legends

Figure S1. Seasonal variation of the normalized difference chlorophyll index (NDCI) (a) and the structure-independent pigment index (SIPI) (b) for Erica multiflora in 2014.

Figure S2. Relationships of CO₂ assimilation rate (A) with water content (WC) (a) and the water index (WI) (b) for Erica multiflora in 2014.

Figure S3. Relationships of CO₂ assimilation rate (A) with maximum (Fv/FM) (a) and actual (Yield) (b) photochemical efficiency of PSII for Erica multiflora in 2014.

Figure S4. Relationships of CO₂ assimilation rate (A) with the normalized difference chlorophyll index (NDCI) (a) and the structure-independent pigment index (SIPI) (b) for Erica multiflora in 2014.

Figure S5. Relationships of the normalized difference chlorophyll index (NDCI) (a) and the structure-independent pigment index (SIPI) (b) with the photochemical reflectance index (PRI) for Erica multiflora in 2014.
Figure S1. Seasonal variation of the normalized difference chlorophyll index (NDCI) (a) and the structure-independent pigment index (SIPI) (b) for Erica multiflora in 2014. Error bars are standard errors of the mean (n=9 for the drought and warming treatments, and n=18 for the control treatment). The significances of overall repeated-measures ANOVAs are depicted. *p<0.05 and **p<0.01 between treatments for each seasonal measurement.
Figure S2. Relationships of CO₂ assimilation rate (A) with water content (WC) (a) and the water index (WI) (b) for Erica multiflora in 2014. The black lines represent the linear relationships over all three treatments. n.s. \(p>0.1 \), \(*p<0.1 \), \(*p<0.05 \), \(**p<0.01 \) and \(***p<0.001 \) between variables. C, D and W indicate the control, drought and warming treatments, respectively.
Figure S3. Relationships of CO₂ assimilation rate (A) with maximum (Fv/FM) (a) and actual (Yield) (b) photochemical efficiency of PSII for Erica multiflora in 2014. The black lines represent the linear relationships over all three treatments. n.s. \(p>0.1 \), \(p<0.1 \), \(*p<0.05 \), \(**p<0.01 \) and \(***p<0.001 \) between variables. C, D and W indicate the control, drought and warming treatments, respectively.
Figure S4. Relationships of CO₂ assimilation rate (A) with the normalized difference chlorophyll index (NDCI) (a) and the structure-independent pigment index (SIPI) (b) for *Erica multiflora* in 2014. The black lines represent the linear relationships over all three treatments. n.s. *p*>0.1, *p*<0.05, **p**<0.01 and ***p***<0.001 between variables. C, D and W indicate the control, drought and warming treatments, respectively.
Figure S5. Relationships of the normalized difference chlorophyll index (NDCI) (a) and the structure-independent pigment index (SIPI) (b) with the photochemical reflectance index (PRI) for *Erica multiflora* in 2014. The black lines represent the linear relationships over all three treatments. n.s. *p* > 0.1, *p* < 0.1, *p* < 0.05, **p** < 0.01 and ***p*** < 0.001 between variables. C, D and W indicate the control, drought and warming treatments, respectively.