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Abstract: Sun-induced chlorophyll fluorescence (SIF) provides a new method for monitoring
vegetation photosynthesis from space and has been widely used to estimate gross primary
productivity (GPP). However, the ability of SIF obtained from the Orbital Carbon Observatory
2 (OCO-2 SIF) and Global Ozone Monitoring Experiment-2 (GOME-2) to estimate GPP in the cold
and arid region of Heihe River Basin remains unclear because previous comparisons were insufficient.
Here, we choose maize and alpine meadow to evaluate the performance of SIF obtained by OCO-2
and GOME-2 in GPP estimations. The results of this study show that daily SIF757 had stronger
correlations with daily tower GPP than daily SIF771, and the correlation between daily SIF757 and
daily tower GPP was stronger than the correlation between 16-d averaged SIF740 and 16-d averaged
tower GPP. The 16-d averaged absorbed photosynthetically active radiation (APAR) and reconstructed
sun-induced fluorescence (RSIF) had the strongest linear correlations with 16-d averaged tower GPP.
GPP_VPM and GPP_RSIF exhibited the best performance in GPP estimation, closely followed by
GPP_SIF757, then GPP_SIF771 and GPP_ SIF740. We also found that the robustness of the correlation
coefficients of OCO-2 SIF with GOME-2 SIF was highly dependent on the size of their spatial footprint
overlaps, indicating that the spatial differences between OCO-2 and GOME-2 footprints contribute to
the differences in GPP estimates between OCO-2 and GOME-2. In addition, the differences of viewing
zenith angle (VZA), cloud contamination, scale effects, and environmental scalars (Tscalar ×Wscalar)
can result in differences between OCO-2 SIF and GOME-2 SIF.

Keywords: vegetation photosynthesis model; sun-induced fluorescence; gross primary productivity;
eddy covariance; carbon cycle

1. Introduction

Plant photosynthesis, termed gross primary productivity (GPP), is the main source of energy for
all life on Earth [1], and it drives ecosystem functions and carbon cycling [2]. Accurate estimations
of GPP play important roles in the global land carbon budget in the context of global warming [3,4].
As the most effective method of estimating regional-scale GPP, remote sensing has been widely used
in carbon cycle studies over the last few decades.

In traditional remote sensing GPP estimation methods, GPP is calculated using light use efficiency
(LUE) models based on vegetation indices (such as the normalized difference vegetation index
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[NDVI] and enhanced vegetation index [EVI]) and auxiliary meteorological data (such as temperature
and solar radiation) as inputs. A variety of LUE models have been developed with different
combinations of vegetation indices and environmental stress expressions, such as the vegetation
photosynthesis model (VPM) [5], the moderate-resolution imaging spectroradiometer photosynthesis
(MODIS-PSN) algorithm [6], the Carnegie Ames Stanford Approach (CASA) model [7], and the eddy
covariance (EC)-based LUE (EC-LUE) model [8]. Vegetation indices based on reflectance can track
the greenness well, however, they are less sensitive to actual variations in photosynthesis [9–11].
Vegetation indices such as NDVI cannot reflect diurnal physiological changes caused by heat and water
stress [12]. LUE models such as the MODIS GPP algorithm require many variables, including auxiliary
meteorological data, the use of these data can result in uncertainty to the estimations of GPP [13]. With
the rapid development of remote sensing techniques, machine learning methods have become a very
useful tool to process GPP-related data. Global flux products were simulated by using the machine
learning methods to scale EC data up remote sensing data [14]. The basal areas of spruce and fir were
mapped by using machine learning techniques in conjunction with remote sensing and measurement
data in Central Siberia [15].

Sun-induced chlorophyll fluorescence (SIF) data have been reported to be a promising new tool
to accurately monitor GPP [16–18]. Light energy absorbed by the leaf chlorophyll molecules has three
different pathways: Photochemistry, nonphotochemical quenching (NPQ, i.e., heat dissipation), and a small
amount of energy emitted as SIF at long wavelengths [19,20]. Complementing reflectance-based vegetation
indices, space-borne SIF observations are excellent indicators of the vegetation photosynthesis process and
these observations provide a new method of monitoring photosynthesis from space [19,21–31].

Recently, several studies evaluated SIF using GPP observed by the EC technique. SIF has been used
to capture the seasonal variations in crops in Nebraska, USA [24]. Satellite SIF data have been shown to
be correlated with the canopy photosynthesis at diurnal and seasonal scales in a mixed temperate forest
in central Massachusetts, USA; thus, SIF can be used as a proxy for GPP [22]. SIF has been reported to
accurately capture seasonal and interannual GPP dynamics across dryland ecosystems in Southwestern
North America [32]. Global Ozone Monitoring Experiment-2 (GOME-2) SIF data have been used to
monitor time-resolved photosynthesis in the US corn belt and European grassland, and reports have
indicated that SIF-based crop GPP estimates are 50–75% higher than the results from state-of-the-art
carbon cycle models [33]. Moreover, researchers have performed initial evaluations of the use of
Orbital Carbon Observatory 2 (OCO-2 SIF) SIF to estimate GPP for crops in the Minneapolis-Saint
Paul metropolitan area [34], grass at an OzFlux grassland site [35], and temperate forests in Northern
Wisconsin, USA [31]. SIF-based GPP models have been rapidly developed [24,31,36], including a
simple regression GPP model [33] and a nonlinear GPP-SIF model [31], and reports have indicated
that temporal correlations with GPP can be improved by spatially downscaling SIF [37]. More recently,
reconstructed sun-induced fluorescence (RSIF) product was created, which utilizes high resolution
MODIS data to predict GOME-2 SIF data, and the results indicated that RSIF had much higher seasonal
and interannual correlation than the original SIF, especially in dry and cold regions [38]. Most of the
above studies were conducted in the USA and Western Europe, and few studies have compared the
GPP estimates from SIF retrievals from GOME-2 and OCO-2 in China. If the difference between the
results of these methods and whether SIF exhibits the same performance in GPP estimates in the cold
and arid region of China remains unclear. Therefore, it is interesting to evaluate the performance of
SIF in the cold and arid region of China. Specifically, the differences in SIF retrievals from GOME-2
and OCO-2 must be evaluated to determine whether they perform consistently in GPP estimations
and identify the extent to which different spatial resolutions contribute to the differences.

In this study, the objectives were to (1) examine the correlations between tower GPP and GOME-2
SIF data at one retrieval band (740 nm), and OCO-2 SIF data at two retrieval bands (757 nm and
771 nm); (2) assess the performance of a SIF-based GPP model and a traditional LUE model (VPM);
and (3) find possible reasons for the differences between OCO-2 SIF and GOME-2 SIF.
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2. Materials and Methods

2.1. Study Sites

The Heihe River Basin (97◦24′–102◦10′ E and 37◦41′–42◦42′ N), located in Northwest China, is
the second largest inland river basin in China. The Daman superstation and A’rou superstation in the
Heihe River Basin were chosen for this study because they collect high-quality EC observations and
are located in typical ecosystems in the upper and middle streams of the Heihe River Basin (Figure 1).
The Daman superstation (100◦22′ E, 38◦51′ N, 1556 m) was established during the Heihe Watershed
Allied Telemetry Experimental Research (HiWATER) experiment in May 2012 in an area of irrigated
farmland with maize as the dominant crop [39]. The A’rou superstation (100◦27′ E, 38◦02′ N, 3033 m)
was established during the HiWATER experiment in 2013 in an area of alpine meadow in the upper
stream region [39]. EC and meteorological data were collected from two sites and were provided by the
Cold and Arid Regions Science Data Center (http://westdc.westgis.ac.cn/). Data on meteorological
variables and measured carbon fluxes from 2013 to 2017 at the Daman and A’rou superstations were
used in this study.
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2.2. Carbon Flux and Meteorological Data Process

Meteorological data were sampled every minute at the Daman and A’rou superstations and
then converted to 30 min average values and daily values. The meteorological data were quality
controlled by filtering values beyond the physical range or instrument range. The raw 10-Hz
EC data were processed to half-hourly flux data via spike detection, lag correction of H2O/CO2

relative to the vertical wind component, sonic virtual temperature conversion, coordinate rotation, the
Webb-Pearman-Leuning (WPL) correction and frequency response correction [40]. Half-hourly carbon
flux data were further partitioned into GPP and ecosystem respiration. The carbon flux value was
excluded if the instrument range was excessive, rainfall occurred or instrument malfunctions occurred.
At night, carbon flux data were filtered if the friction velocity (u*) was lower than a threshold value
(0.15 m/s for Daman and 0.1 m/s for Arou). The gaps in the carbon flux data were filled using the light
response function (Michaelis–Menten equation) and respiration function (Van’t Hoff equation) [41].
The ecosystem respiration function (Van’t Hoff equation) was fitted with nighttime net ecosystem
exchange (NEE) and air temperature data. Then, the fitted function was applied to the daytime data
to estimate ecosystem respiration. The GPP was calculated as the difference between the estimated
ecosystem respiration and NEE. The partitioned GPP data were used as ground truth to evaluate the
SIF and vegetation indices during the GPP estimation.

2.3. SIF Data

OCO-2 belongs to a sun-synchronous orbit satellite that was launched on 21 September 2014 and
has an overpass time at ~1:30 pm. The OCO-2 spectrometer measures spectra in the O2-A band with
far-red SIF retrieved at 757 nm and 771 nm based on the filling in Fraunhofer lines [25,42,43]. OCO-2
data were produced by the OCO-2 project at the Jet Propulsion Laboratory, California Institute of
Technology, USA. The sun-sensor acquires data in the nadir, glint, and target modes, with a revisit
period of approximate 16 days, and its ground-pixel size is 1.3 × 2.25 km2, which directly facilitates
local studies. The latest version of the B8100r OCO-2 dataset was used in this study. A conversion
factor was provided in the dataset, which was used to convert the instantaneous SIF to a daily average
SIF [36]. The OCO-2 SIF retrievals at 757 nm and SIF 771 nm are denoted SIF757 and SIF771 in this study,
respectively. OCO-2 SIF retrievals are noisy as single observations, even though OCO-2 has a small
footprint. The OCO-2 SIF retrievals for cloudy days were removed according to the solar radiation
measured by the flux tower in this study [44,45].

GOME-2 on MetOp-A platform belongs to a sun-synchronous orbit satellite which was first
launched on 19 October 2006 with an overpass time at ~9:30 am. GOME-2 measures spectra for
top-of-atmosphere radiance between 240 and 790 nm with a spectral resolution between 0.2 and 0.5 nm,
and it has a signal-to-noise ratio of ~1000 and a relatively large footprint (approximately 40 km× 80 km
at nadir for MetOp-A before 15 July 2013 and 40 km × 40 km since 15 July 2013) [46]. SIF was
retrieved near the wavelength of 740 nm by using a principal component analysis algorithm [47].
The GOME-2 SIF retrievals were quality filtered and controlled (e.g., heavy cloud contamination and
data with relatively low signal-to-noise ratios were removed) and binned in 0.5◦ latitude-longitude grid
cells [45,48]. Version 27 (V27) level 2 retrievals are the results of new postprocessing based on Version
26 (V26), and these retrievals provide additional fields (daily-averaged SIF and quality flag, i.e., users
can apply quality flags to filter out bad data) and have adjusted bias corrections and calibrations. Only
good quality data (quality flag = 2, details are given in Section 2 in the supplementary material) were
used in this study. As a new proxy for GPP, RSIF was developed using a machine learning approach
based on the inputs-MODIS reflectance to predict GOME-2 SIF data, and detailed parameters on RSIF
can be found in a previous study [38].

To remain spatially consistent with GOME-2 SIF retrievals, a 0.5◦ grid cell based on the coordinates
of the flux towers was used to extract the OCO-2 SIF data for the period from September 2014 to
December 2017 and to match the GOME-2 SIF at the Daman and A’rou sites. The OCO-2 SIF data
were calculated using the averaged values of the available pixels around the towers over a square
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of 0.5◦ by 0.5◦. GOME-2 SIF values were extracted within a 0.5◦ grid cell based on the coordinates
of the flux towers. The daily-averaged GOME-2 SIF data were noisy as single measurements; thus,
they were averaged over a 16-d period to investigate the GPP-SIF relationship. Due to the different
platforms, wavelengths and overpass times between OCO-2 and GOME-2, we fitted the GPP-SIF
relationship separately. The daily OCO-2 SIF and a 16-d averaged GOME-2 SIF data were used to
ensure a reasonable comparison between OCO-2 and GOME-2.

2.4. MODIS Data

The MODIS data used in this study were the MOD09GA (Terra, collection 6) Terra daily surface
reflectance (SREF) L2 Global product for the period from 2014–2017, which came from the Land
Processes Distributed Active Archive Center (LP DAAC) with a spatial resolution of 500 m. Reflectances
for the red (620–670 nm), near-infrared (841–875 nm), blue (459–479 nm), and shortwave infrared
bands (1628–1652 nm) were used to calculate the EVI and the land surface water index (LSWI) for
2014–2017. To match the SIF spatial resolution (0.5◦ latitude and longitude resolution), we calculated
vegetation indices (EVI and LSWI) for pixels within a square of 0.5◦ by 0.5◦ around the two flux
sites, and good-quality data were selected by using the quality assurance (QA) flags (https://lpdaac.
usgs.gov/dataset_discovery/modis/modis_products_table/mod09ga_v006). Then, all pixels were
averaged, and the averaged value was later deemed to be the value for each 0.5◦ grid cell. To ensure
the consistency with the SIF data from GOME-2, the EVI and LSWI values were averaged over a 16-d
period to match the 16-d SIF data from GOME-2. The EVI and LSWI values were calculated according
to the following expressions:

EVI =
2.5× (ρnir − ρred)

ρnir + (6× ρred − 7.5× ρblue) + 1
(1)

LSWI =
ρnir − ρswir
ρnir + ρswir

(2)

2.5. Vegetation Index-Based GPP Model

The VPM was developed based on the conceptual partitioning of photosynthetically active
vegetation and non-photosynthetic vegetation canopy [5]. It has been demonstrated that the VPM
can accurately simulate GPP in cold and arid regions [49]. The EVI, LSWI, air temperature, and
photosynthetically active radiation (PAR) data were used as inputs to estimate GPP via the VPM [5].
The equation is as follows:

GPPVPM = εg × fPARchl × PAR = εg × APAR (3)

where εg represents LUE (g C MJ−1 APAR); PAR represents photosynthetically active radiation; APAR
is the absorbed photosynthetically active radiation; and fPARchl is the fraction of PAR absorbed by
chlorophyll. According to a previous study [18], fPARchl can be calculated as follows:

f PARchl = (EVI − 0.1)× 1.25 (4)

The VPM employs downregulating scalars (ranging between 0 and 1) to characterize the effects of
temperature, water, and leaf phenology on the LUE (εg) as follows:

εg = ε0 × Tscalar ×Wscalar (5)

where ε0 is the maximum LUE (g C MJ−1 APAR). The site-specific ε0 was obtained from a survey of
the literature [49–51]. Tscalar and Wscalar are the scalars for the effects of temperature and water stress
limitations on the LUE of vegetation, respectively.

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod09 ga_v006
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod09 ga_v006
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Tscalar is estimated from the equation used in the terrestrial ecosystem model (TEM) [52] as follows:

Tscalar =
(T − Tmin)(T − Tmax)

[(T − Tmin)(T − Tmax)]− (T − Topt)
2 (6)

where T is the air temperature (◦C) and Tmin, Tmax, and Topt are the minimum, maximum, and optimum
temperatures for photosynthesis, respectively. The values of these parameters can be found in the
following Table 1 [49,51].

Table 1. Parameters of the VPM at the Daman and A’rou sites.

Site ID Tmax (◦C) Tmin (◦C) Topt (◦C) ε0 (g C MJ−1 APAR)

Daman 45 0 19 2.66
A’rou 35 0 12 1.6

The LSWI is an indicator of water stress on photosynthesis, which can be calculated as follows:

Wscalar =
1 + LSWI

1 + LSWImax
(7)

where LSWImax is the maximum LSWI within the growing season for individual pixels.

2.6. SIF Based GPP Models

Recent space-borne SIF observations offer new methods for monitoring vegetation photosynthesis
at regional and global scales and contain information about APAR and LUE [22,23,33,36,53]. GPP can
be calculated by the following formula [33,36,54,55]:

GPP = SIF×
εg

ε f × fesc
≈ SIF×

εg

ε f
(8)

where εg represents LUE; εf is the LUE for SIF (i.e., the fraction of APAR photons that are then emitted
from the canopy as SIF photons); and fesc is a term that accounts for the fraction of SIF photons that
escape from the canopy to space. While the leaves of grasses and crops have high leaf area index, they
have relatively simple plant structure and low absorptance on the near-infrared wavelengths. Thus,
fesc has been used as a relative constant for a given vegetation type, and we assume fesc ≈ 1 [33].

Previous studies at the leaf and canopy scale indicated that the εg and εf terms tend to covary,
and their ratios tend to be constant under the conditions of satellite measurements [21,33,48,56,57].
Despite the changes in the fPAR, PAR, or stress, SIF should be a good constraint on the photosynthetic rate
if the ratio of εg/εf is constant [58]. Therefore, a simple regression model based on space-borne SIF is able
to link SIF with GPP for both cropland and grassland and has been developed for GPP estimation [33].
However, several studies have indicated that εf is weakly sensitive to the photosynthetic pathway type,
a large discrepancy in εg between crops and grasses leads to a difference in the slopes, and crop (C4)
and grass (C3) species should be considered separately when SIF is used to estimate GPP by applying
the linear regression model [20,27,57,59]. Hence, a biome-specific (crop and grass) linear model was
used to estimate GPP in our study. The GPPs derived from flux towers via the EC technique were
frequently used as validation data in previous studies. However, these studies focused on generally
simple and small areas (<1 km2). To match the 0.5◦ grid cells of the SIF and vegetation index data,
we developed a scale conversion coefficient for GPP from flux towers by using the EVI ratio in our
study [5,60]. Specifically, 1 km2 and 0.5◦ grid cells based on the coordinates of the flux towers were
used to extract EVI data to match the GPP from flux towers and the SIF from OCO-2 and GOME-2
during the study period, respectively. The EVI ratios for the 0.5◦ and 1 km2 grid cells were calculated;
then, the ratios were averaged during the growing season and used as the conversion coefficients.
The GPP values from the flux towers were scaled up from a 1 km2 grid cell to a 0.5◦ grid cell spatial
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scale by using the conversion coefficients. The model performance was evaluated using the coefficient
of determination (R2) and the root mean square error (RMSE).

3. Results

3.1. Relationships of SIF and APAR with Tower GPP

The seasonal dynamics of daily OCO-2 SIF, averaged APAR (16-d), GOME-2 SIF (16-d), RSIF
(16-d), and daily tower GPP for the Daman and A’rou sites from 2014–2017 are shown in Figure 2.
APAR was calculated by Equation (4). The variations in SIF757, SIF771, SIF740, RSIF, and APAR exhibited
seasonal patterns that were similar to those of the tower GPP at both sites. SIF757, SIF771, SIF740, RSIF,
and APAR showed large discrepancies from the tower GPP measurements during the spring onset,
the peak of the growing season and senescence stages, and the tower GPP reflected slightly better
consistency with SIF757, RSIF and APAR than with SIF771 and SIF740.
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As shown in Figure 3, OCO-2 SIF757 and SIF771 showed much stronger linear correlations with
the tower GPP at a daily timescale than shown by GOME-2 SIF740 and tower GPP at a 16-d averaged
timescale. The goodness-of-fit between SIF757 and tower GPP was better than that between SIF771

and tower GPP at both sites (Daman and A’rou), and the goodness-of-fit between SIF740 and tower
GPP was relatively weak at a 16-d averaged timescale at both sites. The correlation between SIF771

and tower GPP is weaker than the correlation between SIF757 and tower GPP, but stronger than the
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correlation between SIF740 and tower GPP. The 16-d averaged APAR and RSIF had the strongest linear
correlations with 16-d averaged tower GPP. The correlations between SIF757 and tower GPP, SIF771

and tower GPP at a daily timescale were greater at the A’rou site than at the Daman site. So were
correlations between SIF740 and tower GPP, RSIF and tower GPP, APAR and tower GPP at a 16-d
averaged timescale. In general, OCO2 SIF (SIF757 and SIF771), GOME-2 SIF, RSIF, and APAR showed
strong relationships with tower GPP.
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3.2. Evaluating the Performance of the GPP Estimates Based on Different Methods

The biome-specific (crop and grass) GPP-SIF relationships were obtained by fitting a linear function
to the SIF and tower GPP at the Daman and A’rou sites (at Daman: GPP_SIF757 = 37.63× SIF757 + 0.39,
GPP_SIF771 = 56.66× SIF771 + 0.77, GPP_SIF740 = 19.50× SIF740 + 0.81, GPP_RSIF = 1.85× RSIF− 0.59; at
A’rou: GPP_SIF757 = 15.86× SIF757 + 0.69, GPP_SIF771 = 23.75× SIF771 + 1.46, GPP_SIF740 = 7.54× SIF740

+ 0.70, GPP_RSIF = 0.97 × RSIF + 0.12). The predicted GPP values based on SIF757, SIF771, SIF740, RSIF,
and VPM and the tower GPP are shown in Figures 4 and 5. The GPP estimates from SIF757, SIF771, SIF740,
RSIF, and VPM effectively tracked the magnitude and seasonal dynamics of the tower GPP at the Daman
and A’rou sites, especially RSIF, VPM, and SIF757, which captured the beginning period, thriving period
and end period of the growing season. In contrast, the SIF771 and SIF740-based model exhibited similarly
weaker performances than other three models in predicting GPP. GPP_VPM and GPP_RSIF exhibited the
best performance in GPP estimation, closely followed by GPP_SIF757, then GPP_SIF771 and GPP_SIF740,
while GPP_SIF757 had the lowest RMSE among the models (Figure 5, Table 2). The correlation coefficients
between GPP predicted by the SIF (SIF757, SIF771, SIF740, and RSIF) and tower GPP, and GPP predicted by
VPM model and tower GPP were greater at the A’rou site than at the Daman site.
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Table 2. Comparison between the tower GPP and model-predicted GPP.

OCO-2
GPP_VPM (16-d)

GOME-2 (16-d)

GPP_SIF757 GPP_SIF771 GPP_SIF740 GPP_RSIF

Daman

R2 0.86 0.72 0.95 0.68 0.92
a 0.86 0.73 0.63 0.68 0.92
b 0.23 0.45 −0.06 0.86 0.29
p <0.001 <0.001 <0.001 <0.001 <0.001

RMSE 1.29 1.79 1.81 2.13 1.46

A’rou

R2 0.91 0.76 0.94 0.69 0.95
a 0.92 0.77 1.05 0.7 0.95
b 0.11 0.3 −0.19 0.43 0.11
p <0.001 <0.001 <0.001 <0.001 <0.001

RMSE 0.52 0.88 0.54 0.98 0.67
1 R2 indicates the determination coefficient, and a and b represent the slope and intercept of the linear regression.

3.3. Possible Reasons for the Differences Among the OCO-2, GOME-2 and Flux Tower GPPs

3.3.1. Effects of Spatial Mismatches on the Differences Among the OCO-2 SIF, GOME-2 SIF, and Flux
Tower GPPs

In this study, we demonstrated the correlation between OCO-2 SIF and tower GPP was stronger
than the correlation between GOME-2 SIF with tower GPP. One of the reasons for this discrepancy is
the spatial mismatch between the GOME-2 and OCO-2 footprints (Figure 6). A 0.5◦ grid cell around
the flux site was used to extract GOME-2 and OCO-2 data. Within the grid cell, OCO-2 data covered
only a narrow strip, while GOME-2 pixels covered the majority of the grid cell and were more or
less outside the grid cell. For OCO-2 or GOME-2, the pixels located within the 0.5◦ grid cell changed
over time. Due to different revisit periods, the overlap area changed greatly with time and location.
A spatial overlap was observed between the GOME-2 and OCO-2 footprints and a given 0.5◦ grid cell
based on the coordinates of each flux tower for samples on the corresponding date. For certain days,
the GOME-2 SIF had high spatial overlaps with the OCO-2 SIF, such as on 17 May 2015, 13 February
2016, 26 October 2016, and 5 March 2017 at the Daman site as well as 21 October 2014, 24 December
2014, 6 December 2014, 18 July 2017, and 16 November 2017 at the A’rou site. However, the size of the
spatial overlap was very small on other dates, such as on 6 September 2015 and 26 September 2016
at Daman and 31 July 2016 and 5 March 2017 at A’rou (Figure 6, Figures S4 and S5). The correlation
between GOME-2 SIF and OCO-2 SIF was dependent on the size of the overlap, which may result in
differences between OCO-2 SIF and GOME-2 SIF.
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Figure 6. Availability of OCO-2 overpasses and nearest GOME-2 SIF pixels within the 0.5◦ grid cell on
the corresponding date at the (a) Daman and (b) A’rou sites.

The GOME-2 SIF was compared with the OCO-2 SIF based on all soundings and the soundings
with numbers greater than 70 at a daily timescale; then, how the sizes of the spatial overlaps influenced
the OCO-2 SIF and GOME-2 SIF relationship was examined (Figure 7, Figures S4 and S5). We found
that the correlation coefficients between GOME-2 SIF and OCO-2 SIF based on samples with more
than 70 soundings were stronger than the correlation coefficients between GOME-2 SIF and OCO-2 SIF
based on all soundings at both the Daman and A’rou sites. Correspondingly, the slope also significantly
varied with the sounding samples (i.e., the slopes increased obviously when the sample overlaps
were based on more than 70 soundings). This analysis indicated that the robustness of the correlation
coefficients between GOME-2 SIF and OCO-2 SIF was highly dependent on their spatial overlaps.

3.3.2. Effects of the Viewing Zenith Angle (VZA) on the Relationship Between SIF and Tower GPP

We compared the OCO-2 instantaneous SIF averages based on all soundings of the VZA intervals
to investigate whether the VZA had an impact on the GPP-SIF relationship (Figure 8). Due to the sparse
coverage of OCO-2, the number of OCO-2 SIF samples was limited, with 71 samples obtained for the
Daman and A’rou sites combined. The VZA values were divided into two intervals: 0◦ < VZA ≤ 20◦

(the number of OCO-2 SIF samples was 56; most of them were in the nadir mode); VZA > 20◦ (the
number of OCO-2 SIF samples was 15; all were in the glint mode). The results showed that SIF757 and
SIF771 in the interval of 0◦ < VZA ≤ 20◦ showed a stronger correlation with the tower GPP than SIF757

and SIF771 in the interval of VZA > 20◦ at an instantaneous timescale. The averaged SIF and the slope
with 0◦< VZA ≤20◦ exhibited slightly higher values than those with VZA > 20◦, and the statistical
significance was more evident in the interval of 0◦< VZA ≤ 20◦ than in the interval of VZA > 20◦

(Figure 8). OCO-2 SIF obtained by the sensor in the nadir mode performed better than that obtained in
the glint mode. OCO-2 SIF was highly sensitive to the VZA, and the VZA might play an important
role in the GPP-SIF relationship.
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Figure 7. Relationships of the OCO-2 SIF with GOME-2 SIF within the overlaps of OCO-2 and GOME-2
SIF for 0.5◦ grid cells (i.e., the coordinates for each flux tower were taken as the center of the grid cell)
at the Daman and A’rou sites. (a) And (b) relationships of OCO-2 SIF (i.e., all samples were averaged
by using all soundings) with GOME-2 SIF. (c) And (d) relationships of OCO-2 SIF (i.e., the overlaps of
certain samples with more than 70 soundings were selected) with GOME-2 SIF.Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 21 
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Figure 8. Effects of the VZA on the relationships between the OCO-2 SIF and tower GPP at an
instantaneous timescale: (a) the relationship between the tower GPP and OCO-2 SIF in the interval of
0◦ < VZA ≤ 20◦ at the Daman and A’rou sites; (b) the relationship between the tower GPP and OCO-2
SIF in the interval of VZA > 20◦ at the Daman and A’rou sites.
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3.3.3. Relationships of the OCO-2 and GOME-2 SIF with APAR and APAR × Tscalar ×Wscalar

At the Daman site, APAR and APAR × Tscalar ×Wscalar explained 65% and 68% of the variance
in SIF757 as well as 48% and 50% of the variance in SIF771, respectively (Figure 9a,b). At the A’rou
site, APAR and APAR × Tscalar ×Wscalar explained 79% and 87% of the variance in SIF757 as well as
71% and 74% of the variance in SIF771, respectively (Figure 10c,d). The correlations were much higher
at A’rou than at Daman. These results indicated that both SIF757 and SIF771 were mainly dependent
on APAR. APAR and the two environmental scaling factors (APAR × Tscalar ×Wscalar) accounted for
more variance in SIF757 and SIF771 than APAR accounted for alone at both sites, which indicates that
both SIF757 and SIF771 were also related to environmental stresses.
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Figure 9. Relationships of the OCO-2 SIF with APAR and the product of APAR with two environmental
scalars (APAR × Tscalar ×Wscalar) at a daily timescale: (a) OCO-2 SIF versus APAR at the Daman site;
(b) OCO-2 SIF versus APAR with two environmental scalars at the Daman site; (c) OCO-2 SIF versus
APAR at the A’rou site; (d) OCO-2 SIF versus APAR with two environmental scalars at the A’rou site.

At the Daman site, APAR and APAR × Tscalar ×Wscalar explained 64% and 66% of the variance
in SIF740 as well as 65% and 68% of the variance in SIF740 at the A’rou site, respectively (Figure 10).
The correlations of SIF740 with APAR and APAR × Tscalar ×Wscalar were higher at the A’rou site than
that at the Daman site, which was similar to the results of OCO-2 SIF. In contrast, the correlation of
SIF740 with APAR × Tscalar ×Wscalar was higher than the correlation with APAR alone. These results
indicated that SIF740 was also affected by APAR and relevant to the two environmental scaling factors
(Tscalar ×Wscalar).
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Figure 10. Relationships of GOME-2 SIF with APAR and the product of APAR with two environmental
scalars (APAR × Tscalar × Wscalar) at a 16-d averaged timescale: (a) GOME-2 SIF versus APAR at
the Daman site; (b) GOME-2 SIF versus APAR with two environmental scalars at the Daman site;
(c) GOME-2 SIF versus APAR at the A’rou site; (d) GOME-2 SIF versus APAR with two environmental
scalars at the A’rou site.

4. Discussion

Recent studies have shown that satellite-based SIF retrieval is a powerful method for monitoring
vegetation dynamics and estimating GPP at regional and global scales, and the findings of these studies
indicated that SIF-based GPP models perform better than the traditional state-of-the-art carbon cycle
models in cropland, grassland, and forests [24,31,33,35,55,61]. However, comparative studies using
SIF obtained from OCO-2 SIF and GOME-2 to estimate GPP for multiple cropping and grass areas
were insufficient in previous studies, especially for cold and arid areas of China. In this study, we
evaluated the performance of SIF obtained by OCO-2 and GOME-2 for GPP estimation in the Heihe
River Basin, China.

We demonstrated that OCO-2 SIF757, SIF771, GOME-2 SIF740, RSIF, and APAR captured seasonal
dynamics well in maize and alpine meadow, especially RSIF, APAR, and SIF757. Similarly, GPP_VPM
and GPP_RSIF had strong relationships with GPP_EC and they performed best in predicting GPP,
followed by GPP_SIF757 model, then GPP_SIF771 and GPP_SIF740. The GOME-2 observations used in
our study were noisy, they were collected at various viewing angles, under various cloud conditions,
and at different locations. RSIF was developed based on MODIS reflectance inputs, and it has a
large improvement than the original GOME-2 SIF. As the MODIS data are less noisy than the original
GOME-2 product, the far-red GOME-2 SIF largely reflect changes in APAR absorbed by chlorophyll.
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Additionally, if only the single OCO-2 observation closest to the tower was used for comparison, it
would probably be similarly noisy; if the OCO-2 SIF observations were spatially averaged, the average
values would result in the degradation of the original resolution and the reduction of noise. Therefore,
there is always a tradeoff with satellite data, e.g., spatial vs. spectral resolution or spatial vs. temporal
resolution. GPP_VPM performed very well, because VPM was calculated from APAR, which is the
product of fPAR and PAR, and fPAR accounted for a nonzero background and provided a mean value
of scaling the otherwise unquantified EVI [11,62]. Moreover, most parameters of VPM covered the total
area of the 0.5◦ grid cell; OCO-2 SIF757 and SIF771 covered narrow strips, which only partially captured
the signal of the grid cell, and the GOME-2 pixels covered the majority of the 0.5◦grid cell. In previous
studies, GOME-2 SIF retrievals were averaged to 8-d, 16-d, or monthly under the condition that at least
five SIF retrievals were available [24,33,42,63]. GOME-2 SIF performed well in GPP estimation; this
strong performance was further confirmed in our study. Compared to OCO-2 average, GOME-2 SIF
average (16-d) exhibited a general performance in GPP estimation, due to the coarse spatial resolution
of the data. The spatial resolution and quality of the OCO-2 SIF data are greater than GOME-2 SIF
data [44,64]. The correlation coefficients between GPP predicted by the SIF (SIF757, SIF771, SIF740, and
RSIF) and tower GPP, and GPP predicted by VPM model and tower GPP were greater at the A’rou
site than at the Daman site. Because Daman is more heterogeneous than A’rou, and the ecosystem in
Daman is highly heterogeneous at spatial scales larger than 10 km [37,65,66]. Several recent studies
reported that OCO-2 SIF had strong correlation coefficients with tower GPP in crop, grassland, and
temperate forest areas [31,34,35], our results were consistent with these conclusions.

We performed an intercomparison using OCO-2 SIF to verify the GOME-2 SIF results and found
that the spatial differences in the footprints among GOME-2, OCO-2 and the flux towers represented
one of the main reasons for the large discrepancies in the GPP estimates. We found that the robustness
of the correlation coefficients between GOME-2 SIF and OCO-2 SIF were highly dependent on their
spatial footprint overlaps, which might be one of the reasons why GOME-2 SIF exhibited universal
correlation with the tower GPP. GOME-2 SIF showed stronger correlation coefficients with OCO-2
SIF based on samples with more than 70 soundings than with OCO-2 SIF based on all soundings
(Figure 7, Figures S4 and S5), because SIF retrieval with less than 70 soundings within the spatial
footprint overlaps could increase the effects of potential noise in the retrievals. The OCO-2 scale effect
could demonstrate this phenomenon to some extent (Figure S1, Table S1), and when averaging in
different bins, additional soundings were sorted into larger bins, which could reduce the effects of
retrieval noise. Thus, OCO-2 SIF manifested a stronger correlation with the tower GPP. For GOME-2
SIF, the scale effect was weaker than the results of OCO-2 SIF (Figure S2, Table S1). We examined the
daily GOME-2 observations and found them to be noisy; thus, we averaged them over time to reduce
noise in a similar way as OCO-2 data were averaged in space.

Our results demonstrated that OCO-2 SIF obtained by the sensor observing the surface in the
nadir mode performed better than that obtained by the sensor in the direct sunlight reflected in the
glint mode, because in the nadir mode, the satellite points the instrument to the local nadir with zero
VZAs. In the glint mode, noticeable angular variations of SIF exist due to the varying VZA over time,
and major directional effects on SIF added variations of the GPP-SIF relationship and OCO-2 SIF
values [29,67,68].

Our results also showed that the OCO-2 SIF and GOME-2 SIF were correlated with APAR as
well as with two environmental scaling factors (Tscalar × Wscalar). These findings were consistent
with previous studies [22,31]. Different variables, such as EVI, PAR, air temperature, and LSWI, as
well as a set of biome-specific parameters (e.g., maximum LUE, maximum, minimum, and optimum
temperature) are included in the VPM model; SIF-based models such as linear models use a simple
computational process for GPP estimations. However, it is unclear whether SIF-based models have
lower uncertainties than VPM model in GPP estimation; this is a direction for future research. Besides,
clouds could be a factor that influenced the SIF signals (Figure S3).
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However, both OCO-2 SIF and GOME-2 SIF have certain limitations in GPP estimations.
OCO-2 SIF has sparse coverage and low temporal resolution, and GOME-2 SIF has coarse spatial
resolution [46,69], which severely hinders the investigations of the GPP-SIF relationship. Machine
learning methods such as a feedforward neural networks architecture will provide an effective way to
reproduce improved data [38], we expect a series of original issues such as sparse coverage and coarse
spatial resolution will be improved to some extent. Importantly, we focus on space-borne SIF data
with high spatiotemporal resolution. The tropospheric monitoring instrument (TROPOMI), on the
Sentinel-5 Precursor platform, was launched on 16 August 2017, has a footprint size of 7 km × 7 km at
nadir [70,71]. TanSat (CarbonSat) was launched on 21 December 2016 [72], which has a footprint size of
approximately 2 km × 2 km and a swath of 20 km wide at nadir with a revisit period of 16 days. These
space-borne datasets will be available to the public, when it can be further used for GPP estimation
and the carbon cycle research.

5. Conclusions

In this study, we evaluated the performance of SIF obtained by OCO-2 and GOME-2 in the
estimation of GPP for maize and alpine meadow areas at the Daman and A’rou sites. The main
conclusions of this study are as follows.

The results showed that daily SIF757 had stronger correlations with daily tower GPP than daily
SIF771, and the correlation between daily SIF757 and daily tower GPP was stronger than the correlation
between 16-d averaged SIF740 and 16-d averaged tower GPP. The 16-d averaged APAR and RSIF had
the strongest linear correlations with 16-d averaged tower GPP. GPP_VPM and GPP_RSIF exhibited the
best performance in GPP estimation, closely followed by GPP_SIF757, then GPP_SIF771 and GPP_ SIF740.

The robustness of the correlation coefficients of GOME-2 SIF with OCO-2 SIF was highly
dependent on the size of the spatial footprint overlaps, indicating that the spatial differences between
the GOME-2 and OCO-2 footprints and flux tower footprints played a role in explaining the differences
in GPP estimates from towers and satellites. The scale effect of GOME-2 SIF was weaker than that of
OCO-2 SIF on the SIF values and GPP-SIF relationships. Moreover, the VZA had a significant effect on
the SIF values and the GPP-SIF relationships because directional effects on SIF added variations to the
OCO-2 SIF observations. Our results showed that SIF was significantly correlated with APAR as well
as environmental scalars (Tscalar ×Wscalar).

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/12/2039/
s1, Figure S1: Effect of OCO-2 pixel extraction on the GPP-SIF relationship: (a) 0.2◦; (b) 0.3◦; (c) 0.4◦; and (d) 0.5◦.
The relationships shown above are for 757 nm and 771 nm at instantaneous timescales, Figure S2: Effect of GOME-2
pixel extraction on the GPP-SIF relationship: (a) 0.2◦; (b) 0.3◦; (c) 0.4◦; and (d) 0.5◦. The relationships shown above
are for 740 nm at the instantaneous timescale, Figure S3: Effects of clouds on the relationships between GOME-2
SIF740 and tower GPP at instantaneous timescales, Figure S4: Spatial overlap of OCO-2 overpasses and the nearest
GOME-2 SIF pixels within the 0.5◦ grid cell at the Daman and A’rou sites, Figure S5: Number of soundings of
OCO-2 overpasses within the overlaps of OCO-2 and GOME-2 SIF for the 0.5◦ grid cell on the corresponding date
at the Daman and A’rou sites, Table S1: Number of OCO-2 and GOME-2 retrievals for each bin.

Author Contributions: X.W. (Xiaoxu Wei) and X.W. (Xufeng Wang) designed research; X.W. (Xiaoxu Wei) and X.W.
(Xufeng Wang) performed research; X.W.(Xiaoxu Wei) and X.W.(Xufeng Wang) analyzed data; X.W. (Xiaoxu Wei)
and X.W. (Xufeng Wang) wrote the paper; W.W. (Wei Wei) and W.W. (Wei Wan) provided comments and
suggestions on the manuscript.

Funding: This research was funded by the Strategic Priority Research Program of the Chinese Academy of Sciences
(Grant No. XDA19040504), the National Natural Science Foundation of China (Grant No. 41771466, 41730752 and
41861040), the National Key Research and Development Program of China (Grant No. 2016YFC0500201) and the
Special Fund for Key Program of Science and Technology of Qinghai Province (Grant No. 2017-SF-A6).

Acknowledgments: The authors would like to thank all anonymous reviewers and editors for their constructive
comments on this paper. The authors wish to thank the Cold and Arid Regions Science Data Center (http:
//westdc.westgis.ac.cn/) for contributing the carbon flux and meteorological data. The authors also thank
American Journal Experts (https://www.aje.com/) for editing the revised version of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

http://www.mdpi.com/2072-4292/10/12/2039/s1
http://www.mdpi.com/2072-4292/10/12/2039/s1
http://westdc.westgis.ac.cn/
http://westdc.westgis.ac.cn/
https://www.aje.com/


Remote Sens. 2018, 10, 2039 17 of 21

References

1. Demmig-Adams, B.; Adams, W.W. Photosynthesis—Harvesting sunlight safely. Nature 2000, 403, 371–374.
[CrossRef] [PubMed]

2. Ballantyne, A.P.; Alden, C.B.; Miller, J.B.; Tans, P.P.; White, J.W. Increase in observed net carbon dioxide
uptake by land and oceans during the past 50 years. Nature 2012, 488, 70–72. [CrossRef]

3. Peters, W.; Jacobson, A.R.; Sweeney, C.; Andrews, A.E.; Conway, T.J.; Masarie, K.; Miller, J.; Bruhwiler, L.P.;
Petron, G.; Hirsch, A.; et al. An atmospheric perspective on North American carbon dioxide exchange:
Carbon tracker. Proc. Natl. Acad. Sci. USA 2007, 104, 18925–18930. [CrossRef] [PubMed]

4. Garbulsky, M.F.; Filella, I.; Verger, A.; Penuelas, J.; Filella, M.F. Photosynthetic light use efficiency from
satellite sensors: From global to Mediterranean vegetation. Environ. Exp. Bot. 2014, 103, 3–11. [CrossRef]

5. Xiao, X.; Zhang, Q.; Braswell, B.; Urbanski, S.; Boles, S.; Wofsy, S.; Iii, B.M.; Ojima, D. Modeling gross primary
production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens. Environ.
2004, 91, 256–270. [CrossRef]

6. Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.S.; Reeves, M.; Hashimoto, H. A continuous
satellite-derived measure of global terrestrial primary production. Bioscience 2004, 54, 547–560. [CrossRef]

7. Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial
ecosystem production—A process model-based on global satellite and surface data. Glob. Biogeochem. Cycles
1993, 7, 811–841. [CrossRef]

8. Yuan, W.P.; Liu, S.; Zhou, G.S.; Zhou, G.Y.; Tieszen, L.L.; Baldocchi, D.; Bernhofer, C.; Gholz, H.;
Goldstein, A.H.; Goulden, M.L.; et al. Deriving a light use efficiency model from eddy covariance flux
data for predicting daily gross primary production across biomes. Agric. For. Meteorol. 2007, 143, 189–207.
[CrossRef]

9. Grace, J.; Nichol, C.; Disney, M.; Lewis, P.; Quaife, T.; Bowyer, P. Can we measure terrestrial photosynthesis
from space directly, using spectral reflectance and fluorescence? Glob. Chang. Biol. 2007, 13, 1484–1497.
[CrossRef]

10. Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I. Hyperspectral vegetation indices and
novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of
precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [CrossRef]

11. Li, X.; Xiao, J.; He, B.; Altaf, A.M.; Beringer, J.; Desai, A.R.; Emmel, C.; Hollinger, D.Y.; Krasnova, A.;
Mammarella, I.; et al. Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis
for a wide variety of biomes: First global analysis based on OCO-2 and flux tower observations. Glob. Chang. Biol.
2018, 24, 3990–4008. [CrossRef] [PubMed]

12. Dobrowski, S.Z.; Pusknik, J.C.; Zarco-Tejada, P.J.; Ustin, S.L. Simple reflectance indices track heat and water
stress induced changes in steady state chlorophyll fluorescence. Remote Sens. Environ. 2005, 97, 403–414.
[CrossRef]

13. Zhao, M.; Running, S.W.; Nemani, R.R. Sensitivity of moderate resolution imaging spectroradiometer (MODIS)
terrestrial primary production to the accuracy of meteorological reanalyses. J. Geophys. Res. Biogeosci. 2006,
111, G01002. [CrossRef]

14. Tramontana, G.; Jung, M.; Schwalm, C.R.; Ichii, K.; Campsvalls, G.; Ráduly, B.; Reichstein, M.; Arain, M.A.;
Cescatti, A.; Kiely, G.; et al. Predicting carbon dioxide and energy fluxes across global fluxnet sites with
regression algorithms. Biogeoscience 2016, 13, 4291–4313. [CrossRef]

15. Jung, M.; Tautenhahn, S.; Wirth, C.; Kattge, J. Estimating basal area of spruce and fir in post-fire residual
stands in central siberia using quickbird, feature selection, and random forests. Procedia Comput. Sci. 2013,
18, 2386–2395. [CrossRef]

16. Guan, K.Y.; Berry, J.A.; Zhang, Y.G.; Joiner, J.; Guanter, L.; Badgley, G.; Lobell, D.B. Improving the monitoring
of crop productivity using spaceborne solar-induced fluorescence. Glob. Chang. Biol. 2016, 22, 716–726.
[CrossRef]

17. Liu, X.J.; Guanter, L.; Liu, L.Y.; Damm, A.; Malenovský, Z.; Rascher, U.; Peng, D.L.; Du, S.S.;
Gastellu-Etchegorry, J.P. Downscaling of solar-induced chlorophyll fluorescence from canopy level to
photosystem level using a random forest model. Remote Sens. Environ. 2018, 5. [CrossRef]

http://dx.doi.org/10.1038/35000315
http://www.ncbi.nlm.nih.gov/pubmed/10667772
http://dx.doi.org/10.1038/nature11299
http://dx.doi.org/10.1073/pnas.0708986104
http://www.ncbi.nlm.nih.gov/pubmed/18045791
http://dx.doi.org/10.1016/j.envexpbot.2013.10.009
http://dx.doi.org/10.1016/j.rse.2004.03.010
http://dx.doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2
http://dx.doi.org/10.1029/93GB02725
http://dx.doi.org/10.1016/j.agrformet.2006.12.001
http://dx.doi.org/10.1111/j.1365-2486.2007.01352.x
http://dx.doi.org/10.1016/j.rse.2003.12.013
http://dx.doi.org/10.1111/gcb.14297
http://www.ncbi.nlm.nih.gov/pubmed/29733483
http://dx.doi.org/10.1016/j.rse.2005.05.006
http://dx.doi.org/10.1029/2004JG000004
http://dx.doi.org/10.5194/bg-13-4291-2016
http://dx.doi.org/10.1016/j.procs.2013.05.410
http://dx.doi.org/10.1111/gcb.13136
http://dx.doi.org/10.1016/j.rse.2018.05.035


Remote Sens. 2018, 10, 2039 18 of 21

18. Zhang, Y.G.; Guanter, L.; Joiner, Jo.; Song, L.; Guan, K.Y. Spatially-explicit monitoring of crop photosynthetic
capacity through the use of space-based chlorophyll fluorescence data. Remote Sens. Environ. 2018, 210,
362–374. [CrossRef]

19. Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Ann. Rev. Plant Biol. 2008, 59,
89–113. [CrossRef]

20. Porcar-Castell, A.; Tyystjarvi, E.; Atherton, J.; Van der Tol, C.; Flexas, J.; Pfundel, E.E.; Moreno, J.; Frankenberg, C.;
Berry, J.A. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms
and challenges. J. Exp. Bot. 2014, 65, 4065–4095. [CrossRef]

21. Lee, J.E.; Berry, J.A.; Van der Tol, C.; Yang, X.; Guanter, L.; Damm, A.; Baker, I.; Frankenberg, C. Simulations
of chlorophyll fluorescence incorporated into the Community Land Model version 4. Glob. Chang. Biol. 2015,
21, 3469–3477. [CrossRef] [PubMed]

22. Yang, X.; Tang, J.W.; Mustard, J.F.; Lee, J.E.; Rossini, M.; Joiner, J.; Munger, J.W.; Kornfeld, A.; Richardson, A.D.
Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal
scales in a temperate deciduous forest. Geophys. Res. Lett. 2015, 42, 2977–2987. [CrossRef]

23. Rossini, M.; Nedbal, L.; Guanter, L.; Ac, A.; Alonso, L.; Burkart, A.; Cogliati, S.; Colombo, R.; Damm, A.;
Drusch, M.; et al. Red and far red sun-induced chlorophyll fluorescence as a measure of plant photosynthesis.
Geophys. Res. Lett. 2015, 42, 1632–1639. [CrossRef]

24. Wagle, P.; Zhang, Y.; Jin, C.; Xiao, X. Comparison of solar-induced chlorophyll fluorescence, light-use
efficiency, and process-based GPP models in maize. Ecol. Appl. 2016, 26, 1211–1222. [CrossRef] [PubMed]

25. Frankenberg, C.; O’Dell, C.; Berry, J.; Guanter, L.; Joiner, J.; Kohler, P.; Pollock, R.; Taylor, T.E. Prospects for
chlorophyll fluorescence remote sensing from the orbiting carbon observatory-2. Remote Sens. Environ. 2014,
147, 1–12. [CrossRef]

26. Zhang, Y.G.; Guanter, L.; Berry, J.A.; Joiner, J.; van der Tol, C.; Huete, A.; Gitelson, A.; Voigt, M.;
Kohler, P. Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll
fluorescence for terrestrial biosphere models. Glob. Chang. Biol. 2014, 20, 3727–3742. [CrossRef]

27. Zhang, Y.; Xiao, X.M.; Jin, C.; Dong, J.W.; Zhou, S.; Wagle, P.; Joiner, J.; Guanter, L.; Zhang, Y.G.; Zhang, G.L.;
et al. Consistency between sun-induced chlorophyll fluorescence and gross primary production of vegetation
in North America. Remote Sens. Environ. 2016, 183, 154–169. [CrossRef]
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