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Abstract: Advances in Unmanned Aerial Vehicles (UAVs), also known as drones, offer unprecedented
opportunities to boost a wide array of large-scale Internet of Things (IoT) applications. Nevertheless,
UAV platforms still face important limitations mainly related to autonomy and weight that impact
their remote sensing capabilities when capturing and processing the data required for developing
autonomous and robust real-time obstacle detection and avoidance systems. In this regard, Deep
Learning (DL) techniques have arisen as a promising alternative for improving real-time obstacle
detection and collision avoidance for highly autonomous UAVs. This article reviews the most recent
developments on DL Unmanned Aerial Systems (UASs) and provides a detailed explanation on the
main DL techniques. Moreover, the latest DL-UAV communication architectures are studied and
their most common hardware is analyzed. Furthermore, this article enumerates the most relevant
open challenges for current DL-UAV solutions, thus allowing future researchers to define a roadmap
for devising the new generation affordable autonomous DL-UAV IoT solutions.

Keywords: UAV; drone; autonomous UAV; UAS; remote sensing; deep learning; image processing;
large-scale datasets; collision avoidance; obstacle detection

1. Introduction

The Internet of Things (IoT) is expected to connect to the Internet more than 75 billion devices
in 2025 [1]. Such devices are used in a wide variety of fields, like agriculture [2], industry [3–5],
or environmental monitoring [6]. However, IoT still faces some challenges, especially regarding
security [7,8], which result in a slowdown for its widespread adoption.

Unmanned Aerial Vehicles (UAVs) have an enormous potential for enabling novel IoT applications
thanks to their low maintenance cost, high mobility and high maneuverability [9]. Due to such
characteristics, UAVs have been really useful in a number of fields and applications, like remote
sensing, real-time monitoring, disaster management, border and crowd surveillance, military
applications, delivery of goods, or precision agriculture [10,11]. The use of UAVs has been also
suggested for providing services in a number of industrial applications, like critical infrastructure
inspections [12–16], sensor monitoring [17,18], automatic cargo transport [19,20], or logistics
optimization of UAV swarms [21]. In the case of UAVs that operate in industrial environments,
they require certain characteristics that may differ substantially from other applications [22].
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For instance, UAV maneuvering in such environments needs to consider the presence of workers,
mobile vehicles, robots, and heavy-duty tools in order to avoid collisions.

Most of the previously mentioned IoT applications require operating without pilot intervention,
so there is a growing interest in the development of techniques that enable UAV autonomous flights.
Among the different computational techniques that can be used to detect obstacles and to avoid collisions,
Deep Learning (DL) techniques have arisen as a promising alternative that when applied to UAVs, derive
into the concept of Deep Learning-Unmanned Aerial Vehicles (DL-UAVs). The main advantage of the
application of DL to UAVs is the ability to recognize complex patterns from the raw input data captured
by the sensors incorporated in the UAV, learning proper hierarchical representations of the underlying
information at different levels.

This article analyzes the latest developments on DL-UAV systems and includes the following
main contributions.

• The most relevant DL techniques for autonomous collision avoidance are reviewed, as well as
their application to UAV systems.

• The latest DL datasets that can be used for testing collision avoidance techniques on DL-UAV
systems are described.

• The hardware and communications architecture of the most recent DL-UAVs are thoroughly
detailed in order to allow future researchers to design their own systems.

• The main open challenges and current technical limitations are enumerated.

It must be noted that in this article the term UAV system is used, as it has been commonly used
in the literature for years to name unmanned aerial systems. However, most reputable international
organizations (e.g., EUROCONTROL, EASA, FAA, and DoD) have adopted Unmanned Aerial System
(UAS) as the correct official term for a system that consists of a ground control station, communication
transceivers and an aircraft.

The rest of this article is structured as follows. Section 2 introduces the related work. Section 3
analyzes the use of DL techniques and datasets for autonomous collision avoidance, emphasizing their
application to UAVs. Section 4 reviews the hardware of the most relevant DL-UAV developments and
their communications architecture, as well as their main subsystems. Finally, Section 5 enumerates
currently open challenges, and Section 6 is devoted to the conclusions.

2. Related Work

Autonomy in a UAV can be defined as the capability for being self-guided without human
intervention [23]. According to the UAV autonomy levels indicated in the work by the authors of [23],
the most basic level requires the UAV to be guided with a remote control, whereas the maximum
level involves performing a complex mission with human level decision-making without external
intervention. In the case of this review, intermediate autonomy level approaches are analyzed, in
which the UAV should be able to perform path-planning and detect existing obstacles in order to avoid
collisions during navigation.

Depending on the degree of autonomous navigation and on the UAV application, certain problems
may arise. For example, in the case of following a fixed path, if the UAV deviates from it to avoid a
collision, it would be desirable to know its position during all the navigation to return to such a path.
In an outdoor environment, this issue can be solved in a relatively easy way just by making use of a Global
Positioning System (GPS), but in indoor scenarios visual odometry techniques should be added [24].
In addition, if the existing obstacles move throughout the scenario, object detection algorithms should be
incorporated to the system in order to estimate their next position, thus anticipating potential collisions.

Collision avoidance classical approaches make use of techniques like Simultaneous Localization and
Mapping (SLAM) [25,26] and Structure from Motion (SfM) [27] to generate or update a map that represents
the visual geometry of the environment, which allows for inferring obstacles and traversable spaces.
These techniques use data captured by sensors like RGB-D cameras, Light Detection and Ranging (LIDAR)
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sensors, or Sound Navigation and Ranging (SONAR) sensors, either individually [28] or by fusing several
of them [29]. However, it must be considered that the mentioned sensors can be expensive and still present
some limitations (e.g., a LIDAR can suffer from mirror reflections, whereas a GPS does not work properly
indoors). Alternatively, computer vision methods can be used, which involve tasks such as optical flow
or depth estimation from the data captured by monocular and stereo cameras [30,31]. Such computer
vision techniques require using software algorithms and a single camera, which is a considerably cheaper
option than the previously mentioned sensors. Nonetheless, further research is needed regarding this
latter alternative, as it requires more computational resources.

In the literature, there are some surveys and reviews of methods for obstacle detection and
collision avoidance in different application domains. For instance, the authors of [32] provide a
systematic review of sensors and vision-based techniques for vehicle detection and tracking for
collision avoidance systems on the specific context of on-road driving. Another interesting review
can be found in [33], where the authors focus on space robotics and identify the major challenges in
collision-free trajectory planning for manipulators mounted on large orbital structures, small satellites,
and space robots that navigate in proximity to large orbital structures. Other authors have reviewed the
main techniques for improving the autonomy of unnamed surface vehicles with regard to navigation,
guidance, control and motion planning with respect to the international regulations for avoiding
collisions at sea [34].

In the specific context of UAV navigation, the authors of [31] reviewed vision-based techniques
for positioning and mapping, obstacle avoidance, and path planning. Regarding the use of DL
techniques for robotic solutions, in the work by the authors of [35], a survey is presented on the use
of DL techniques for robotic perception, robotic control and exploration, and robotic navigation and
autonomous driving.

Regarding the application of UAVs with attached sensors (i.e., UASs) to remote sensing
applications, note that the latest advances have allowed for monitoring environmental processes
and changes produced at spatial and temporal scales that would be difficult or impossible to detect
by means of conventional remote sensing platforms [36]. Moreover, the characteristics of small UAS
and their impact in the context of remote sensing models have been studied in the literature [37],
identifying novel remote sensing capabilities as well as the challenges that this type of platforms entails.
In particular, the affordability and potential for ubiquitous operation of small UASs enable advances
in the type and quality of information that can be collected, and therefore in the applications that
can be addressed by this type of remote sensing systems [37]. The main capabilities that small UASs
can provide to remote sensing are dependent on their operation without direct human supervision,
involving autonomous deployment, data collection, landing and data transfer [37]. In this regard, it is
worth mentioning the work detailed in the work by the authors of [36], which provides a review on the
recent progress made in remote sensing for small UASs in different fields that involve photogrammetry,
multispectral and hyperspectral imaging, and synthetic aperture radars and LIDARs. Additionally,
in [38], the authors present a review on remote sensing tasks that involve data acquired by UAVs.
Such a review focuses on solutions that specifically address issues derived from the specific nature
of the collected data (e.g., ultra-high resolution, geometric, and spectral data, or the fusion of data
from multisensor acquisition). In this regard, it is worth mentioning that remote sensing systems that
use data acquired by UAVs may involve four types of resolutions: spatial, spectral, radiometric, and
temporal [37]. In the case of DL-UAV systems, in this article, only spatial resolution was considered.

There are only a few recent articles on the use of DL methods for UAVs. For instance, in the
work by the authors of [39], the current literature is systematically reviewed according to a taxonomy
that includes different abstraction levels related to perception, guidance, navigation, and control.
Other authors focused only on solving specific problems (e.g., counting cars in UAV images [40])
or on improving specific algorithms [41,42]. Nevertheless, most of the current literature cannot be
considered IoT-enabled, and, to the best of our knowledge, there are no articles that review the whole
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DL-UAV architecture while focusing on the problem of autonomous obstacle detection and collision
avoidance.

3. Deep Learning in the Context of Autonomous Collision Avoidance

During the last decade, DL has demonstrated to be an excellent technique in the area of artificial
intelligence, solving different problems, and even surpassing humans in some cases [43,44]. In addition,
DL yields good results in diverse areas like image recognition [45], medical imaging [46], or speech
recognition [47].

Classic Machine Learning (ML) approaches require designing feature extraction methods in
order to generate a descriptor (i.e., a feature vector that emphasizes the pattern to detect and that is
usually more compact than the raw data). The descriptor feeds a learning algorithm that performs a
specific task, such as a classification or a regression of the input data. In contrast to such an approach,
DL methods are able to perform both tasks (the representation of the data and the classification) at the
same time just by feeding the network with raw data [43]. Moreover, DL techniques excel when learning
data representations from raw sensor data acquired by robotic solutions in real environments [39].
In the specific context of autonomous collision avoidance, DL techniques have shown their effectiveness
when solving a wide variety of robotic tasks in areas like perception, planning, positioning, and
control [35], which involve learning complex behaviors.

Among the DL techniques for collision avoidance there are end-to-end approaches that map
directly the raw sensor data captured by the robotic system into a set of possible actions [48–50].
Such approaches are based on learning the behavior of an expert pilot at a given scenario in a
real-world environment. There are other DL techniques whose execution requires several stages that
involve intermediate representations (e.g., depth maps) that estimate the distance to potential obstacles,
the UAV pose or its odometry in order to recalculate the path to reach a goal position. These DL
approaches usually include a module for situational awareness that generates a set of feature maps
related to the state of the robotic system and its surroundings, and then such computed feature maps
feed up a second module for the decision-making process. Therefore, the combination of the mentioned
two modules make up a complex network that takes raw sensor data as input and generates the motion
control commands for the robotic system [48,51–55].

Regarding the learning paradigm, Reinforcement Learning (RL) algorithms [56] have been widely
used in robotic systems. The essential idea in deep RL methods is that an agent extracts feedback from
the interaction with real or simulated environments. Thus, given a specific state and based on previous
experience, the agent can infer which action maximizes a predefined goal. Several approaches use RL
methods in order to learn effective collision avoidance policies that require experience on successful
trajectories as well as on undesirable events like collisions [51,53,54,57–59]. This use of simulated
environments allows for collecting a large amount of data in an easy way. Specifically, AirSim [60]
enables navigating freely with a car or a drone through different virtual scenarios, providing the raw
information of different sensors (e.g., RGB cameras and depth cameras), which are synchronized with
the six Degrees of Freedom (DoF) of the vehicle and the segmentation maps. Other approaches use
supervised learning algorithms that are based on learning through examples. Such examples consist
of a representation of the environment provided by the raw sensor data and the actions taken by an
expert in the same conditions. The learning process returns the policy that best imitates the action of
the experts according to the given examples [49,50,52,55]. A limiting factor of the previous supervised
approaches is the need for large amounts of data to train models with generalization capabilities in
different real-world environments. This necessity involves human experts during the collection and
annotation of the data. In order to minimize human effort, self-supervised algorithms automate the
collection and annotation processes to generate large scale datasets [48,49].

In addition to the mentioned learning techniques, transfer learning [61] allows for starting from a
model previously trained with related data. Such a model is further trained for a specific application
domain, thus reducing the total amount of data needed for training. For example, the policies
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learned from data collected by cars and bicycles can be applied to a UAV for autonomous flights [62].
Such navigation policies are generic, despite having been trained from the viewpoint of urban vehicles.
Transfer learning from models trained on virtual worlds, but applied to real data, have also been
studied in the literature [59,63–65].

There are different DL architectures. On the one hand, a Convolutional Neural Network
(CNN) is a type of hierarchical architecture for feature extraction that allows for generating a
set of high-dimensional feature maps from the raw sensor data acquired for the robotic system.
Thus, CNN-based models [45] are widely used in the context of collision avoidance, especially in the
stages related to environment perception or to depth estimation [52]. On the other hand, in the context
of continuous autonomous flights, the use of temporary information becomes relevant. Considering
that the information extracted from the sensors at each observation is related to a partial representation
of the environment surrounding the robotic system, the possibility of storing and tracking all the
relevant information obtained in the past allows for getting a more complete representation of the
environment. For such a purpose, the use of Recurrent Neural Network (RNN) architectures [66]
provides the ability to learn temporal dependencies from the information of an arbitrarily long
sequence of observations. Therefore, there are RNN-based approaches that allow for keeping track
of past observations such as the depth maps obtained from RGB images [53], poses, or recently
avoided obstacles. In addition, the incorporation of Temporal Attention [67] allows for evaluating the
information given by each observation of a sequence, and it can be used by weighting each of the recent
observations based on its importance in decision-making. Such a technique increases training speed
and provides a better generalization over the training dataset. A type of RNN is Long Short-Term
Memory (LSTM) [68], which is capable of learning long-term dependencies with the ability of removing
old information or by adding new information at any point, thus allowing the use of all the relevant
past information.

3.1. On the Application of DL to UAVs

Table 1 summarizes the main characteristics of the approaches that enable UAVs for autonomous
flight through the use of DL techniques. All the methods mentioned in the Table feed DL networks
with RGB images whose resolution ranges from 360 p to 720 p.

Depending on their final goal, it can be distinguished among three types of methods.
Some methods learn to navigate from raw images, indicating the next movement of the UAV, thus being
able to navigate avoiding obstacles [49,59,62,69]. Other authors proposed specific solutions for
certain applications that involve following a trail or a gate [55,70]. However, such methods do
not include a collision avoidance module. There are also other methods that generate an obstacle map,
which represents the probability of collision on the scene or the distance to nearby obstacles [53].

It is important to note that none of the compared systems make use of depth maps extracted
directly from stereo or depth cameras. However, some try to estimate depth maps from just one single
RGB camera [53]. The combination of depth maps provided by a hardware sensor with RGB images
that feed a DL architecture is an interesting approach that has not been described so far in the literature.

Regarding the application scenario, the most relevant solutions of Table 1 are focused on
unstructured outdoor environments such as forests, which enable applications like search and rescue,
wilderness monitoring, target tracking, exploration, or environmental mapping. For instance, in [55],
the authors describe a Micro Aerial Vehicle (MAV) for autonomous low-flying that follows a artificial
trail. This approach is based on a Deep Neural Network (DNN) architecture for trail detection that
uses transfer learning to estimate the view orientation and the lateral offset of the MAV with respect
to the center of the trail. Another proposal in forest environments is presented in the work by the
authors of [71], which uses a pretrained AlexNet [45] for tree detection and for the prediction of the
direction for collision avoidance. Other outdoor UAV solutions are trained for urban spaces, such as
CNN-based models that detect all the potential obstacles [72] or that control a UAV through the streets
of a city environment [62].
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Table 1. Comparison of relevant Deep Learning-Unmanned Aerial Vehicles (DL-UAV) collision
avoidance techniques.

Reference Architecture Goal and Details Scenario

[55] CNN Two deep networks: one for detection of the Outdoorsrail center and another for obstacle detection

[70] CNN The network detects the gate center. Then, Indoorsan external guidance algorithm is applied.

The network returns the next flight command.
[69] CNN The commands are learned as a classification. Indoors

The dataset contains several sample flights performed by a pilot.

The network returns the next flight command.
[49] CNN The commands are learned as a classification. Indoors

Self-supervised data for training.

The network returns the next flight command.
[50] CNN The commands are learned as a classification. Indoors

The dataset contains several sample flights annotated manually.

The network returns the next steering angle
[62] CNN and the probability of collision. Outdoors

The steering angle is learned by a regression.

The CNN returns a map that represents the action
[59] CNN + RL space for the RL method. Indoors

The method is trained on a virtual environment.

[53] cGAN The first cGAN estimates a depth map from the RGB image. Indoors+ LSTM + RL Then, these maps feed an RL with LSTM to return the flight command.

[71] CNN The network returns the distance to tree obstacles. OutdoorsThe distance is learned as three classes.

[72] CNN Object detection. Outdoors

[73] CNN The network computes feature extraction Outdoorsfor learning safe trajectories.

The network makes use of two consecutive RGB images
[48] Two stream CNN and returns the distance to obstacles in Indoors

three directions.

Approaches for indoor scenarios cover applications of surveillance, transportation, goods delivery,
inspection tasks or diverse tasks in manufacturing environments. For instance, Kouris et al. [48]
proposed an approach that maps each input RGB image to a flight command. Such a solution is
composed of a two-stream CNN for UAV perception that takes as inputs two RGB consecutive frames in
order to extract spatio-temporal features for predicting the distance to the potential obstacles. The CNN
is trained with a custom dataset of UAV real-flight indoor trajectories with distance labels indicating the
closest obstacle. The collection and annotation of the dataset is performed in a self-supervised manner
by means of a UAV equipped with three pairs of ultrasonic and infrared distance sensors that enable
data automatic annotation. Then, a local motion planning policy translates the distance predictions to a
single control command that modulates the yaw and forward linear velocity to guide the UAV towards
the direction for which the longest navigable space is predicted within the current FoV. Another
custom dataset is created to train the end-to-end approach proposed by Gandhi et al. [49]. Such a work,
in contrast to other datasets related to collision avoidance, uses a UAV crash dataset in order to collect
the different ways in which a UAV can crash. This negative flying data is used in conjunction with the
equivalent positive data sampled from the same trajectories to learn a robust policy for UAV navigation.
This CNN-based approach uses, in particular, an AlexNet architecture [45] that is initialized with
pretrained weights. Self-supervised learning is used to predict the probability to move in a certain
direction. Then, the decision to turn the UAV to the left or to the right while moving forward is
taken according to the confidence of the CNN predictions. Another custom dataset was created to
train the system proposed in the work by the authors of [50], which focuses on enabling autonomous
navigation in indoor corridors by means of the DenseNet-161 architecture [74] with pretrained weights.
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The dataset is composed by images at several positions from corridors with different lengths captured
by means of a front-facing camera attached to a quadcopter and the corresponding ground-truth values
in terms of in-flight commands. The model is trained over the custom dataset using supervised learning
to predict the probability of different classes that decide whether to move forward, shift left/right,
or stop. Sadeghi et al. [59] explore the possibility of performing collision-free indoor flights in the real
world by only training with data generated in a simulated environment. Such an approach combines
CNN networks to process the raw input data with RL without requiring any human demonstration
data or real images during training. Singla et al. [53] proposed a two-way method for UAV navigation
that avoids stationary and mobile obstacles. The proposed method involves intermediate depth
estimations and a RNN-base method with RL that incorporates Temporal Attention [67] to integrate
the relevant data gathered over time.

Among the most popular e-sports, drone racing has recently gained a lot of popularity, giving rise to
the call for challenges to promote the development of this field, such as the autonomous drone racing
competitions celebrated during IROS conference. These competitions motivated the development of UAV
systems that make use of DL techniques. For example, in [70], the authors consider the nature of the
competitions, which involve moving as fast as possible through a series of gates. Thus, the researchers
devised a real-time gate detection network that is complemented with a guidance algorithm.

3.2. Datasets

The previously mentioned DL techniques provide effective solutions that extract hierarchical
abstractions from large amounts of data through the training stages. There are several publicly
available large-scale datasets that include labeled data acquired from real or simulated environments
in challenging conditions:

• KITTI online benchmark [75] is a widely-used outdoor dataset that contains stereo gray and color
video, 3D LIDAR, inertial, and GPS navigation data for depth estimation, depth completion or
odometry estimation.

• IDSIA forest trail dataset [76] includes footage of hikes recorded by three cameras to predict view
orientation (left/center/right) throughout a large variety of trails.

• Udacity [62] provides over 70,000 images of car driving distributed over six experiments, which
include timestamped images from three cameras (left, central, right) and the data from different
sensors (e.g., an IMU, GPS, gear, brake, throttle, steering angles, and speed).

• UAV crash dataset [49] focuses on representing the different ways in which a UAV can crash.
It contains 11,500 trajectories of collisions in 20 diverse indoor environments collected over
40 flying hours.

• Oxford RobotCar Dataset [77] provides data of six cameras, LIDAR, GPS, and inertial navigation
captured from 100 repetitions of a consistent route over a period of over a year. This dataset
captures many different combinations of weather, traffic, and pedestrians, along with longer term
changes such as construction and roadworks.

• SYNTHIA [78] is a synthetic dataset in the context of driving scenarios that consists of a collection
of photo-realistic frames rendered from a virtual city including diverse scenes, variety of dynamic
objects like cars, pedestrians and cyclists, different lighting conditions and weather. The sensors
involved in the dataset include eight RGB cameras that conform a binocular 360o camera and
eight depth sensors.

• AirSIM [60] is a simulation environment that allows for simulating UAV trajectories in different
scenarios and conditions that produce raw images, depth maps and the data that represent the
UAV trajectories.

In addition to the data specifically gathered to generate a training dataset, techniques of data
augmentation are frequently used to obtain more representative data that cover different conditions
in order to train models with high generalization capabilities. Methods for data augmentation



Remote Sens. 2019, 11, 2144 8 of 29

usually include left–right flips, random horizontal flips, random crops, or variations in scale,
contrast, brightness, saturation, sharpness, rotation, and jitter with random permutations of these
transformations [55,79].

4. DL-UAV Hardware and Communications Architecture

The underlying DL-UAV hardware and its communications architecture are essential for the
success of the system, as they provide the support for implementing DL techniques and advanced
features. Specifically, the use of a DL approach for autonomous obstacle detection and collision
avoidance imposes UAV hardware and communications design restrictions (e.g., a high computational
cost) that should be carefully addressed. This section reviews the latest DL-UAV communication
architectures, detailing the main components of the different subsystems and analyzing the most
common hardware used for developing such subsystems.

4.1. Typical Deep Learning UAV System Architecture

Figure 1 shows the typical cloud-based communications architecture for DL-UAV systems.
Such an architecture is divided into three main layers:

• The layer at the bottom is the UAV layer, which includes the aerial vehicles and their subsystems:

– Propeller subsystem: it controls the UAV propellers through the motors that actuate on them.
– Main control subsystem and flight control subsystem: it is responsible for coordinating the

actions of the other subsystems and for collecting the data sent by them. In some cases,
it delegates the maneuvering tasks on a flight controller that receives data from different
sensors and then acts on the propeller subsystem.

– Sensing and Actuation subsystem: it makes use of sensors to estimate diverse physical
parameters of the environment and then actuates according to the instructions given by the
on-board controllers.

– Positioning subsystem: it is able to position the UAV outdoors (e.g., through GPS) or indoors
(e.g., by using reference markers).

– Communications subsystem: it allows for exchanging information wirelessly with
remote stations.

– Power subsystem: it provides energy and voltage regulation to the diverse electronic
components of the UAV.

– Storage subsystem: it stores the data collected by the different subsystems. For instance, it is
often used for storing the video stream recorded by an on-board camera.

– Identification subsystem: it is able to identify remotely other UAVs, objects, and obstacles.
The most common identification subsystems are based on image/video processing,
but wireless communications systems can also be used.

– Deep Learning subsystem: it implements deep learning techniques to process the collected
data and then determine the appropriate response from the UAV in terms of maneuvering.

• The data sent by every UAV are sent to either a remote control ground station or to a UAV
pilot that makes use of a manual controller. The former case is related to autonomous guiding
and collision-avoidance systems, and often involves the use of high-performance computers
able to collect, process, and respond in real-time to the information gathered from the UAV.
Thus, such high-performance computers run different data collection and processing services,
algorithms that make use of deep learning techniques, and a subsystem that is responsible for
sending control commands to the UAVs.

• At the top of the architecture is the remote service layer, which is essentially a cloud composed by
multiple remote servers that store data and carry out the most computationally-intensive data
processing tasks that do not require real-time responses (e.g., certain data analysis). It is also
usual to provide through the cloud some kind of front-end so that remote users can manage the
DL-UAV system in a user-friendly way.
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High-Performance Computer

Ground Station

Cloud

Reception and Processing
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Main Control
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Subsystem

Deep-Learning
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Remote Control
Subsystem
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Deep-Learning
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Internet or 
Intranet

External Control & Deep-Learning Layer

UAV Layer

Remote Service Layer

Figure 1. Typical cloud-based deep learning UAV-based communications architecture.

4.2. Advanced UAV Architectures

In the last years, UAV IoT architectures evolved towards more sophisticated architectures that
essentially attempt to avoid the reliance on a remote cloud. This is due to the fact that a cloud may
not scale properly, and thus it may constitute a bottleneck when a significant number of UAVs or
IoT devices exchange communications with it [80]. In addition, cyberattacks may compromise the
availability of the cloud servers, therefore preventing the UAV system from working properly.

Due to the previously mentioned reason, UAV architectures evolved toward IoT edge computing
architectures, which allow unburdening the cloud from part of its tasks through the use of devices
on the edge of a network (i.e., in the limit between the last network routing devices and the
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sensing/actuation devices that act on the physical world). There are basically two variants of edge
computing that are commonly applied to UAV applications, depicted in Figure 2:

Remote Users

Edge Computing Layer

UAV Layer

Main Gateway

Cloudlet

… …

Local Gateway

Fog Services

Sensor Fusion 
Services

Fog Computing Sublayer

Cloudlet Sublayer

UAV 1 UAV 2 UAV N UAV 1 UAV 2 UAV N

Local Gateway

Fog Services

Sensor Fusion 
Services

Cloud

Remote Services

Management
Subsystem Database

BlockchainSmart Contracts

Internet or 
Intranet

Remote Service Layer

Figure 2. Advanced DL-UAV communications architecture.

• Fog Computing: It is based on the deployment of medium-performance gateways (known as
fog gateways) that are placed locally (close to a UAV ground station). It is usual to make use of
Single-Board Computers (SBCs), like Raspberry Pi [81], Beagle Bone [82], or Orange Pi PC [83],
to implement such fog gateways. Despite its hardware, fog gateways are able to provide fast
responses to the UAV, thus avoiding the communications with the cloud. It is also worth noting
that fog gateways can collaborate among themselves and collect data from sensors deployed on
the field, which can help to decide on the maneuver commands to be sent to the UAVs in order to
detect obstacles and prevent collisions.

• Cloudlets. They are based on high-performance computers (i.e., powerful CPUs and GPUs) that
carry out computationally intensive tasks that require real-time or quasi real-time responses [84].
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Like fog gateways, cloudlets are deployed close to the ground station (they may even be part of
the ground station hardware), so that the response lag is clearly lower than the one that would be
provided by a remote Internet cloud.

Figure 2 also includes in the Remote Service Layer the use of Distributed Ledger Technologies
(DLTs) like blockchain, which have been previously applied to multiple IoT applications [85–87],
including UAV systems [88]. In the field of UAV, the main advantage of blockchain and similar DLTs
is that they are able to provide information redundancy, data security, and trustworthiness to the
potential applications [89]. In addition, a blockchain can execute smart contracts, which translate
legal terms into code that can be run autonomously [90], and therefore can automate certain tasks
depending on the detection of certain events.

4.3. Hardware for Collision Avoidance and Obstacle Detection Deep Learning UAV Systems

In the literature, diverse researchers have addressed the problem of what hardware may be used
by a UAV to prevent collisions and detect obstacles when harnessing the outputs of deep learning
systems. Table 2 summarizes the features of the most relevant previous DL-UAV systems that deal
with such a topic, including the hardware used for building their communications architecture and the
provided DL-based collision-avoidance and obstacle-detection functionality.

As seen in Table 2, most UAVs are commercial platforms. In fact, the majority are manufactured
by Parrot due to their easy-to-use developer APIs [91], which allow for monitoring and controlling
remotely the UAVs. There are also in the list a couple of self-assembled drones, which need an
additional effort from the researchers during the assembly and validation of the UAV, but that enable
customizing it with specific sensors, powerful controllers and extended batteries that increase the type
and number of tests that can be carried out.

The following subsections analyze the characteristics of the subsystems of the UAVs listed in
Table 2 and detail some of the most popular alternatives for implementing each subsystem.
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Table 2. Hardware for collision avoidance and obstacle detection deep learning UAV systems.

Reference UAV
Platform Weight Max.

Payload
Flight
Time Control Subsystem Sensors Comm.

Interfaces
Positioning
Subsystem

Power
Subsystem

Storage
Subsystem

Propeller
Subsystem

Identification
Subsystem

DL
Subsystem
Technique

Onboard/
External DL
Processing

Training
Hardware

[92]
Crazyflie
(assumed

version: 2.1)
27 g 15 g 7 min

STM32F405 (Cortex-M4,
168MHz, 192 KB SRAM,

1 MB flash)

3-axis
accelerometer/gyroscope
(BMI088), high-precision

pressure sensor (BMP388),
external optical
tracking system

BLE
Ultra-Wide

Band distance
sensor

LiPo Batteries
8 KB

EEPROM,
1 MB flash

Quadrotor
Micro-Aerial

Vehicle (MAV)
UWB

Recurrent
Neural

Network,
Deep

Q-Learning
Network

N/A -

[93]
Parrot

AR.Drone 2.0

420 g
(with
hull)

≈500g

12 min
(up to
36 min
with

Power
Edition)

Internal: ARM Cortex
A8@1 GHz (with a Linux
2.6.32 OS), 1 GB of RAM,

video DSP@800 MHz
(TMS320DMC64x)

720p@30 fps video camera,
3-axis gyroscope, 3-axis

accelerometer, 3-axis
magnetometer, pressure

sensor, vertical QVGA camera
@ 60 fps for measuring

flight speed

Wi-Fi (IEEE
802.11 b/g/n)

Ultrasonic
altimeter LiPo Batteries Up to 4 GB of

flash Quadrotor Visual
identification

Deep
Reinforcement

Learning

External
(Workstation/cloud
with i7 cores

and a
GTX1080

GPU)

-

[70] Self-assembled - - -

NVIDIA Jetson TX2, 8 GB of
RAM, operating system is

based on Ubuntu 16.04 and
works in a ROS-Kinetic

environment, Flight Control
Computer: in-house

board ([94])

a PX4Flow for ground speed
measurement, PointGrey

Firefly VGA camera@30 fps

Wi-Fi
(assumed)

ZED stereo
camera for
odometry

measurement,
Terabee

TeraRanger-One
one-dimensional

LIDAR for
altitude

measurement

-

32 GB of
eMMC

(embedded
Multi Media

Card)

Quadrotor Visual
identification

Deep
Convolutional

Neural
Network

Onboard (in
real-time)

Intel i7-6700
CPU

3.40 GHz, 16 G
RAM,

NVIDIA GTX
1080 Ti

[95]
Parrot

AR.Drone 2.0
Elite Edition

420 g
(with
hull)

≈500 g 12 min

Internal: ARM Cortex
A8@1 GHz (with a Linux
2.6.32 OS), 1 GB of RAM,

video DSP@800 MHz
(TMS320DMC64x)

720p@30 fps video camera,
3-axis gyroscope, 3-axis

accelerometer, 3-axis
magnetometer, pressure

sensor, vertical QVGA camera
@ 60 fps for measuring

flight speed

Wi-Fi (IEEE
802.11 b/g/n)

Ultrasonic
altimeter LiPo Batteries - Quadrotor Visual

identification

Deep
Convolutional

Neural
Network

The UAV
camera was

only used for
generating a

dataset

Not specified
CPU

[62]
Parrot Bebop

2.0 500 g - 25 min Dual-core processor with
quad-core GPU

1080p video camera, pressure
sensor, 3-axis gyroscope,

3-axis accelerometer, 3-axis
magnetometer

Wi-Fi (IEEE
802.11 b/g/n/ac)

GPS/GLONASS,
height

ultrasonic
sensor,

Li-ion
Batteries 8 GB Flash Quadrotor Visual

identification

Deep
Convolutional

Neural
Network

External (the
training

hardware
receives

images at
30 Hz from
the drone
through
Wi-Fi)

Intel Core i7
2.6 GHz CPU

[93]
Parrot

AR.Drone

420 g
(with
hull)

- 12 min ARM9@468 MHz, 128 MB of
RAM, Linux OS

VGA camera, vertical video
camera @ 60 fps, 3-axis

acceleration sensor, 2-axis
gyroscope, 1-axis Yaw
precision gyroscope

Wi-Fi (IEEE
802.11 b/g)

Ultrasonic
altimeter LiPo Batteries Quadrotor Visual

identification

Deep
Convolutional

Neural
Network

External
(Jetson TX

development
board)

Desktop
computer
with an

NVIDIA GTX
1080Ti
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Table 2. Cont.

Reference UAV
Platform Weight Max.

Payload
Flight
Time Control Subsystem Sensors Comm.

Interfaces
Positioning
Subsystem

Power
Subsystem

Storage
Subsystem

Propeller
Subsystem

Identification
Subsystem

DL
Subsystem
Technique

Onboard/External
DL

Processing

Training
Hardware

[96]
DJI Matrice

100 ≈2400 g ≈1200 g 19–40
min Not indicated - - - LiPo Batteries - Quadrotor Visual

identification

Deep
Convolutional

Neural
Network

External
(Jetson TX

development
board)

Desktop
computer
with an

NVIDIA GTX
1080Ti

[71]
Parrot Bebop

2.0 500 g - 25 min Dual-core processor with
quad-core GPU

1080p video camera, pressure
sensor, 3-axis gyroscope,

3-axis accelerometer, 3-axis
magnetometer

Wi-Fi (IEEE
802.11 b/g/n/ac)

GPS/GLONASS,
height

ultrasonic
sensor,

Li-ion
Batteries 8 GB Flash Quadrotor Visual

identification

Deep
Convolutional

Neural
Network
(AlexNet)

External

Computer
with a

NVIDIA
GeForce GTX

970M GPU

[72] Self-assembled - - -
Pixhawk as flight controller,
NVIDIA TX2 for the neural

network
- - - - - - -

Depthwise
Convolutional

Neural
Network

Onboard
(tested also in

external
hardware)

Nvidia GTX
1080 and

Nvidia TX2

[73]
Modified 3DR
ArduCopter - - - Quad-core ARM

Microstrain 3DM-GX3-25
IMU, PlayStation Eye camera

facing downward for
real-time pose estimation and

one high-dynamic range
PointGrey Chameleon camera

for monocular navigation

- - - - Quadrotor Visual
identification

Deep
Convolutional

Neural
Network

External -

[69] Parrot Bebop
390 g
(with

battery)
- ≈10

min Parrot P7 Dual-Core

1080p video camera,
accelerometer, barometer,

vertical camera, gyroscope,
magnetometer

Wi-Fi (IEEE
802.11 b/g/n/ac)

GPS,
ultrasonic
altimeter

Li-ion
Batteries 8 GB Flash Quadrotor Visual

identification

Deep
Convolutional

Neural
Network

External (in
the training
hardware)

NVIDIA
GeForce GTX
970M, Intel

Core i5, 16 GB
memory

[59] Parrot Bebop
390 g
(with

battery)
- ≈10

min Parrot P7 Dual-Core

1080p video camera,
accelerometer, barometer,

vertical camera, gyroscope,
magnetometer

Wi-Fi (IEEE
802.11 b/g/n/ac)

GPS,
ultrasonic
altimeter

Li-ion
Batteries 8 GB Flash Quadrotor Visual

identification

Deep
Convolutional

Neural
Network

-

[59]
Parrot Bebop

2.0 500 g - 25 min Dual-core processor with
quad-core GPU

1080p video camera, pressure
sensor, 3-axis gyroscope,

3-axis accelerometer, 3-axis
magnetometer

Wi-Fi (IEEE
802.11 b/g/n/ac)

GPS/GLONASS,
height

ultrasound
sensor,

Li-ion
Batteries 8 GB Flash Quadrotor Visual

identification

Deep
Convolutional

Neural
Network
(AlexNet)

-
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4.3.1. Platform Frame, Weight and Flight Time

The UAV platforms listed in Table 2 can be considered light, with an average weight of roughly
400 g. Nonetheless, extremely light platforms like Crazyflie have also been used for developing
Micro-Aerial Vehicle (MAV) applications. In contrast, relatively heavy platforms like DJI Matrice
100, which weights ~2.4 Kg, are able to move heavier payloads (more than 1 Kg). In fact, most of the
commercial drones on the list have not been designed to transport additional payloads, but some of
them, like Parrot’s AR.Drone 2.0, thanks to their powerful propellers, are able to carry up to 500 g.

Regarding flight time, it is related to their weight and maximum payload: the higher the weight,
the larger the carried batteries, so the longer the flight time. Moreover, it is worth pointing out that
some UAVs have optional batteries and modules that are able to double (e.g., in the case of DJI Matrice
100) or triple (e.g., with the AR.Drone 2.0 Power Edition) the original battery life.

4.3.2. Propeller Subsystem

UAVs are usually conceived for flying indoors and/or outdoors, what influences significantly
their flight capabilities. In any case, the selected hardware must provide a good trade-off among
cost, payload capacity and reliability. All the UAVs listed in Table 2 are multirotor UAVs (specifically,
quadrotors), which offer good reliability and may minimize vibration during operation (this is useful
for collecting stabilized images and videos from a DL-UAV), but it is also more expensive and heavier
than alternatives like single-rotor UAVs. In contrast, single-rotor UAVs benefit from slower spinning
speeds and less power consumption, which is key for some applications where an extended flight time
or heavy payload transport are necessary.

4.3.3. Control Subsystem

The controller hardware has greater power in comparison to the traditional IoT node hardware.
The majority of the hardware can be considered powerful and low-power; it is the typical hardware
used for mobile device platforms. Most controllers run on ARM devices (e.g., ARM Cortex-M4,
ARM Cortex A8, ARM9, or ARM A57 Complex in the case of the NVIDIA Jetson TX2), which
currently provide the best trade-off for mobile computing devices in terms of power consumption
and performance by including 32/64-bit architectures, fast multicore processors, dedicated GPUs and
support for managing several gigabytes of RAM. In fact, some of the listed UAVs are so powerful that
they actually run certain versions of the Linux operating system.

It is important to note that some UAVs distinguish between the hardware used for controlling the
flight and the one that interacts with the other subsystems. For instance, it is usual in self-assembled
drones to make use of a PixHawk controller [97] as flight controller, which embeds a programmable
processor, an Inertial Measurement Unit (IMU), a GPS, and provides connectors for radio telemetry
and control interfaces.

Both the main control subsystem and the flight controller can make use of different electronic
devices. The most common are microcontrollers, Application-Specific Integrated Circuits (ASIC), and
System-on-Chips (SOCs), but it is also possible to embed Field-Programmable Gate Arrays (FPGAs) or
Central Processing Units (CPUs) optimized for mobile computing devices (i.e., that provide a good
trade-off between performance and power consumption).

High-performance microcontrollers are probably the most commonly used devices, owing to their
low power consumption, their ability to be reprogrammed easily, and the fact that they have enough
processing power for carrying out the required control tasks. SoCs usually integrate a medium-to-high
performance microcontroller and multiple peripherals (e.g., wireless transceivers), which makes them
more appropriate for lightweight systems, but causes them to have greater energy consumption that
traditional microcontrollers.

In the case of FPGAs, they are able to provide excellent performance for executing certain
deterministic demanding tasks and that can be reconfigured easily with a different design;
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but, unfortunately, FPGA design is usually clearly slower (and consequently more expensive) and
often consumes more energy due to the requirement to power the used logic continuously.

ASICs provide even higher performance and significantly lower power consumption that FPGAs
and other embedded devices thanks to being designed explicitly for very specific applications.
Nonetheless, in ASIC, the development cost is very high (in the order of several millions of U.S.
dollars), so their application in DL-UAV systems is limited to already programmed Commercial
Off-The-Shelf (COTS) products.

4.3.4. Sensing Subsystem

Sensors are essential for UAV maneuvering. The most common are Inertial Measurement Units
(IMUs), which include accelerometers, gyroscopes, and magnetometers. Photo and video cameras are
also necessary for providing feedback to drone pilots and inputs to neural networks.

Perform control tasks and, at the same time, processing the large amount of data that comes from
sensors and cameras is difficult. For instance, there are video cameras that can stream up to 60 frames
per second (fps), but such an amount of video data may not be processed in real-time by the on-board
UAV hardware, so two alternatives are often implemented: UAVs either sample frames to reduce the
input frame rate or they make use of external remote hardware that carries out the video processing
tasks. In practice, only a few UAVs perform the mentioned processing on-board in real-time: most
UAVs delegate such a task to external systems, which are usually powerful servers that integrate
high-performance graphic cards (the characteristics of some of such servers are indicated in the last
two columns of Table 2). In addition, such a powerful hardware is often used during the training
phase of the deep learning networks in order to save time.

In summary, it can be stated that the most commonly used sensors in DL-UAV systems are
as follows.

• IMUs that embed 3-axis accelerometers, gyroscopes and magnetometers.
• High-precision pressure sensors (barometers).
• Photo and video cameras.
• 3D-camera systems (e.g., Kinect).
• Video Graphics Array (VGA)/Quarter Video Graphics Array (QVGA) cameras.
• Laser scanners (e.g., RP-LIDAR).
• Ultrasonic sensors.

The reliability and safety of the previously mentioned sensors and actuators should be ensured
to guarantee the security of the DL-UAV system. There are just a few examples in the literature on
this specific research area. For instance, the authors of [98] designed a fault detection and diagnosis
system for a quadrotor under total failures (e.g., loss of a propeller or a motor) or with partial faults
(e.g., degradation or displacement of a component). The obtained numerical results illustrate the
effectiveness of the proposed method under partial and total rotor faults. Another example is presented
in [99], where the authors propose a hybrid feature model and CNN-based fault diagnosis system
validated through flight experiments.

4.3.5. Positioning Subsystem

Besides the sensing subsystem, the positioning subsystem is probably the most important
for autonomous UAV navigation. Outdoors, most UAV systems make use of GPS/ Global’naya
Navigatsionnaya Sputnikovaya Sistema (GLONASS) in combination with an altimeter based on
ultrasound measurements. The most sophisticated UAVs make use of LIDARs and special cameras
that measure both odometry and speed. Ultra-Wide Band (UWB) transceivers are only used in one of
the UAV systems listed in Table 2 [92], although they have been previously analyzed in the literature
when performing accurate (centimeter-precision) distance measurements [100].

Among the different available indoor location techniques, those based on Received Signal Strength
Indicator (RSSI) or Received Signal Strength (RSS) have proved their accuracy when positioning in
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limited areas [101,102], but their heavily depend on characteristics of the scenario (e.g., presence of
metallic objects) and on the used UAV hardware (e.g., antennas) [103]. There are also positioning
techniques based on computing the Angle of Arrival (AoA) of the received signals [104], or their time
of arrival (through Time of Arrival (ToA) and Time Difference of Arrival (TDoA) techniques) [105].

4.3.6. Communications Subsystem

The data to/from the different subsystems is transmitted to remote computers by using different
wireless communications technologies. The most common is Wi-Fi (IEEE 802.11 standard), which
operates in unlicensed bands and provides a good trade-off among hardware cost, outdoor range
and speed rate. Bluetooth Low-Energy (BLE) is also often used, but it is usually aimed at providing
short-range communications.

There are also many other communications technologies that can be used by DL-UAVs, like
3G/4G/5G [106,107], ZigBee (IEEE 802.15.4) [103], Long-Range Wide Area Network (LoRaWAN) [108],
Ultra Wide Band (UWB) [109], IEEE 802.11ah [110], or Wi-Fi Direct [111]. Table 3 shows a comparison
on the main characteristics of the latest communications technologies for DL-UAVs [4], indicating their
frequency band, coverage, data rate, power consumption, and potential applications.

Table 3. Main characteristics of the most relevant communications technologies for DL-UAVs.

Technology Frequency Band Maximum Range Data Rate Power
Consumption

Potential
UAV-Based

Applications

Bluetooth 5 [112] 2.4 GHz <250 m up to 2 Mbit/s
Low power and

rechargeable
(days to weeks)

Beacons, medical
monitoring in

battlefield [113]

IQRF [114] 868 MHz hundreds of
meters 100 kbit/s Low power and

long range

Internet of Things
and M2M

applications

Narrowband IoT
(NB-IoT) [115]

LTE in-band,
guard-band <35 km <250 kbit/s Low power and

wide area IoT applications

LoRa, LoRaWAN
[116] 2.4 GHz < 15 km 0.25–50 kbit/s Long battery life

and range

Smart cities, M2M
applications,

forest fire
detection [108]

SigFox [117] 868–902 MHz 50 km 100 kbit/s Global cellular
network

IoT and M2M
applications

Ultrasounds >20 kHz
(2–10 MHz) <10 m 250 kbit/s Based on sound

wave propagation
Asset positioning
and location [118]

UWB/IEEE
802.15.3a 3.1 to 10.6 GHz < 10 m >110 Mbit/s

Low power,
rechargeable

(hours to days)

Fine location,
short-distance

streaming [109]

Weightless-P
[119]

License-exempt
sub-GHz 15 km 100 kbit/s Low power IoT applications

Wi-Fi (IEEE
802.11b/g/n/ac) 2.4–5 GHz <150 m up to 433 Mbit/s

(one stream)

High power,
rechargeable

(hours)

Mobile, business
and home

applications

Wi-Fi
HaLow/IEEE
802.11ah [120]

868–915 MHz <1 km 100 Kbit/s per
channel Low power

IoT and
long-range

applications [110]

Wi-Sun/IEEE
802.15.4g [121] <2.4 GHz 1000 m 50

kbit/s–1 Mbit/s -

Field and home
area networking,
smart grid and

metering

ZigBee [122] 868–915 MHz,
2.4 GHz <100 m 20–250 kbit/s

Very low power
(batteries last

months to years),
up to

65,536 nodes

Industrial
applications [103]
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The DL-UAV communication network is one of the main factors that affect energy consumption.
As a result, there is ongoing research on different network topologies such as rings, stars and, specially,
on ad hoc networks (i.e., on Flying Ad-hoc Networks (FANETS)). There is also research on path
planning and on relay selection to optimize network efficiency. It is important to note that in some
IoT applications, delay requirements of the DL-UAV data traffic can be very strict and real-time data
transfer models may be required (e.g., in emergency situations). Some alternatives for UAV-based data
collection frameworks are presented in the work by the authors of [123]. For instance, a model that
increases the efficiency of collaborative UAV data transmission while optimizing energy consumption
is described in the work by the authors of [124]. Another example of a data gathering framework
for UAV-assisted Wireless Sensor Networks (WSNs) is described in the work by the authors of [125].
In such a paper, to increase the efficiency of data collection, and thus maximize the system throughput,
the authors propose to use a priority-based data access scheme that considers UAV mobility to suppress
redundant data transmissions between sensor nodes and the UAV. Thus, the authors classify the nodes
within the UAV coverage area into different frames according to their locations, and assign them
different transmission priorities. The authors also introduce a novel routing algorithm to extend the
lifetime of the WSN.

4.3.7. Power Subsystem

A UAV power subsystem is responsible for powering the different electronic components. In the
case of the DL-UAVs listed in Table 2, their main energy source are either Li-Po or Li-ion batteries,
which are appropriate for high-power electronics (usually of up to several tens of Watts) and for
powering the propeller subsystem.

However, it must be noted that the higher the battery power, the heavier the battery. This derives
into the fact that current UAV battery technologies like Li-ion or Li-Polymer are a bottleneck when
designing systems that require long battery life and reduced weight. Therefore, nowadays, it is
necessary either to reduce on-board electronics power consumption by introducing novel technologies
(e.g., Polymer Electrolyte Membrane (PEM) fuel cells [126]) or make use of additional power sources.
For the latter case, it is possible to embed energy harvesting devices, which can collect ambient energy
and store it into the batteries [127] or supercapacitors, which are environmentally friendly and provide
an energy density similar to lead–acid batteries, fast charging/discharging speed and a long life
cycle [128]. For UAVs, it seems that motion can be harvested by generating mechanical energy that
can be collected through thermoelectric systems [129]. Other power sources can be collected through
photovoltaic panels [130] or by rectifying electromagnetic waves [131].

Regarding UAV recharging, most systems make use of USB connectors, DC power jacks, or special
dock stations where the batteries are connected. There are a few recent examples in the literature
of wireless UAV recharging, as wireless rechargers are currently inefficient and require the wireless
receiver to be next to the transmitter [132,133].

The impact of the battery on UAV flight time depends mainly on the aircraft and its payload
and on the wind conditions, but it is commonly in the range of minutes. As a result, there is a clear
need for developing systems that can endure longer flights. There are some recent studies on the
topic, but none of them is explicitly focused on DL-UAV systems. For example, the authors of [134]
propose an automated battery-management platform for small-scale UAVs (with a typical endurance
of less than 10 min) that consists of an autonomous battery change/recharge station. The autonomous
battery recharger uses a swapping mechanism with a linear sweeping motion to exchange batteries.
The obtained results indicate that the system lasts at least 5 h. The researchers also evaluated the
proposed recharge stations through flight validation with Markov Decision Process based planning
and a learning algorithm in a 3-h mission with more than 100 swaps. However, the article points out
that there are still open issues with the developed recharge station in relation to accurate landing and
to non-balanced charging. Another alternative is proposed in [135], where the authors jointly manage
the battery levels of UAVs with recharger stations (i.e., solar panels and batteries installed in a set of
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ground sites in a cellular network). A more sophisticated approach is presented in [136], where a UAV
is able to transfer energy and information to several ground IoT devices at the same time, being each
device equipped with a power splitter.

4.3.8. Storage Subsystem

As it can be observed in Table 2, most UAVs include several gigabytes of flash memory for storing
the collected video and data. Such data are first processed by the main control subsystem in a light
way and then stored in static memories such as EEPROMs or SD cards.

Nonetheless, the majority of the DL-UAV systems in Table 2 stream the collected data to a ground
station, but it could be upload to a cloud server, a cloudlet or to a fog computing gateway to further
process and store the data, which can be ultimately presented to the user through a graphical interface,
(e.g., through a web application).

It is worth pointing out that, although local storage can be inexpensive, it is prone to technical
failures (e.g., SD card failures) or external factors (e.g., UAV impacts), which can harm the storage
subsystem and then loss the stored information. This fact is essential for fostering remote storage
subsystems in cloud servers, fog gateways or cloudlets, which provide redundancy. However, the
information stored in such systems may be affected by cyberattacks (e.g., Denial-of-Service (DoS)
attacks) that affect the availability of the data, and their trustworthiness and integrity. Due to such
problems, DLTs like blockchain have been proposed as an alternative for storing certain data (or a
proof of such data) securely and between entities that may not trust each other [137–141].

There is recent specific research devoted to UAV deployments with limited storage. For example,
the authors of [142] studied joint cooperative transmissions influenced, not only by location planning,
but also by strategic content placement. In addition, in [143] the researchers analyzed a swarm of
miniature UAVs that make use of distributed in-network storage, which allows them to behave as
sensor nodes specialized in detecting certain features. However, none of the above studies takes the
storage issues into account when dealing with DL-UAV systems.

4.3.9. Identification Subsystem

The majority of the UAVs stream images collected with a video camera to the deep learning
subsystem, which process them in order to determine whether there are obstacles in the path of the
drone and then performs the appropriate movement to avoid them.

However, there are other identification technologies that can be used by DL-UAVs, specifically
in conjunction with location, inventory, and traceability applications. For instance, Radio-Frequency
IDentification (RFID) is one of the most commonly used technologies for such applications [7]. It uses
radio frequency transponders (i.e., tags) that transmit unique identifiers and at least one RFID
reader that communicates with them. The most relevant advantage of RFID over other traditional
identification technologies (e.g., barcodes and QR codes) is that no Line-of-Sight (LoS) is required
between the tag and reader.

In the literature, there are several solutions that make use of RFID. For example, in the
work by the authors of [144], an autonomous UAV is described that makes use of RFID and
self-positioning/mapping techniques based on a 3D LIDAR device. Table 4 shows a comparison
of the most relevant UAVs that make use of identification technologies [88].
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Table 4. Comparison of features of the most relevant UAVs with identification technologies.

Type of Solution UAV Characteristics Identification
Technology Architecture Application Additional features

Academic [88]

Indoor/outdoor
hexacopter designed

from scratch as a
trade-off between cost,
modularity, payload

capacity, and robustness.

RFID Modular and scalable architecture
using Wi-Fi infrastructure.

Inventory and
traceability
applications

Performance experiments,
ability to run

decentralized applications.

Academic [145]
Parrot AR Drone2.0 UAV

with three attached
RFID tags

Ultra High
Frequency (UHF)

RFID

RFID tracker and pose estimator,
precise 6-DoF poses for the UAV in a

3D space with a singular value
decomposition method

Localization

Experimental results
demonstrate precise poses
with only 0.04 m error in

position and 2◦ error
in orientation

Commercial, Hardis
Group [146]

Autonomous quadcopter
with a high-performance
scanning system and an

HD camera. Battery
duration around 20 min

(50 min to charge it).

Barcodes
Indoor localization technology.
Automatic flight area and plan,

360◦anti-collision system.
Inventory

Automatic acquisition of
photo data. It includes
cloud applications to

manage mapping, data
processing and reporting.
Compatible with all WMS
and ERPS and managed

by a tablet app.

Commercial, Geodis,
and delta drone [147]

Autonomous quadcopter
equipped with four

HD cameras
Barcodes

Autonomous indoor geolocation
technology, it operates when the site

is closed.

Plug-and-play
solution to all types

of Warehouse
Management

Systems (WMS)

Real-time data reporting
(e.g., the processing of

data, and its restitution in
the warehouse’s

information system).
Reading rates close

to 100%.

Commercial, Drone
Scan [148] Camera and a

mounted display Barcodes

DroneScan base station
communicates via a dedicated RF

frequency with a range of over 100 m.
Its software uploads scanned data

and position to the Azure IoT cloud
and to the customer systems.

The imported data are used to
re-build a virtual map of the

warehouse so that the location of the
drone can be determined.

Inventory

Live feedback both on a
Windows touch screen and

from audible cues as the
drone scans and records

customizable data.
50 times faster than
manual capturing.

Academic [144]
Autonomous Micro

Aerial Vehicles (MAVs),
RFID reader, and two

high-resolution cameras

RFID, multimodal
tag detection.

Fast fully autonomous navigation
and control, including avoidance of

static and dynamic obstacles in
indoor and outdoor environments.

Robust self-localization based on an
onboard LIDAR at high velocities

(up to 7.8 m/s)

Inventory -

Academic [149] IR-based camera QR

Computer vision techniques (region
candidate detection, feature

extraction, and SVM classification)
for barcode detection

and recognition.

Inventory
management with

improved path
planning and

reduced power
consumption

Experiment performance
results of 2D barcode

images demonstrating a
precision of 98.08% and a
recall of 98.27% within a
fused feature ROC curve.

Academic [150] - QR

It combines sub-GHz wireless
technology for IoT-standardized

long-range wireless communication
backbone and UWB for localization.

Plug-and-play capabilities.

Autonomous
navigation in a

warehouse mock-up,
tracking of runners in

sport halls.

Theoretical evaluation in
terms of update rate,
energy consumption,

maximum communication
range, localization

accuracy and scalability.
Open source code of the

UWB hardware and MAC
protocol software
available online.

Academic [151]
Phantom 2 vision DJI

(weight 1242 g,
maximum speed 15 m/s

and up to 700 m)

RFID

Drone with a Windows CE 5.0
portable PDA (AT-880) that acts as a
UHF RFID reader moves around an

open storage yard

Inventory No performance
experiments

Academic [152]

DraganFly
radio-controlled

helicopters 82×82 cm,
with an average flight

time of 12 min.
and RFID readers

attached.

RFID (EPC)
Three-dimensional graphical

simulator framework has been
designed using Microsoft XNA

Inventory Coordinated distribution
of the UAVs

Academic [153] UAVs and UGVs with
LIDARs

Barcodes, AR
markers

Cooperative work using vision
techniques. The UAC acts as a

mobile scanner, whereas the UGV
acts as a carrying platform and as an

AR ground reference for the
indoor flight.

Inventory -
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4.3.10. Deep Learning Subsystem

In Table 2 most of the analyzed systems make use of convolution neural networks. This type of
neural network and other deep learning techniques, which are commonly used for avoiding collisions
and detecting obstacles, were previously discussed in detail in Section 3.

5. Main Challenges and Technical Limitations

5.1. DL Challenges

Given the nature of the DL methods that extract complex hierarchical abstractions from the data
used throughout the training stages, the effectiveness and capability of generalization is bounded by
the quantity and quality of the used data. Therefore, most of the shortcomings of the DL models are
due to the data used for the learning processes:

• A limiting factor of the supervised approaches is the large amount of data required to generate
robust models with generalization capability in different real-world environments. In order
to minimize annotation effort, self-supervised algorithms allow automating the collection and
annotation processes to generate large-scale datasets, the results of which are bounded by the
strategy for generating labeled data.

• The diversity of the datasets in terms of representative scenarios and conditions, the variety
of sensors, or the balance between the different classes are also conditioning factors for
learning processes.

• The trial and error nature of RL raises safety concerns and suffers from crashes operating in
real-world environments [48]. An alternative is the use of synthetic data or virtual environments
for generating the training datasets.

• The gap between real and virtual environments limits the applicability of the simulation policies
in the physical world. The development of more realistic virtual datasets is still an open issue.

• The accuracy of the spatial and temporal alignment between different sensors in a multimodal
robotic system impacts data quality.

5.2. Other Challenges

As it can be observed after reviewing the different aspects of the DL-UAV hardware and the
proposed communications architecture, it is possible to highlight several additional shortcomings:

• Most current DL-UAV architectures rely on a remote cloud. This solution does not fulfill
the requirements of IoT applications in terms of cost, coverage, availability, latency, power
consumption, and scalability. Furthermore, a cloud may be compromised by cyberattacks.
To confront this challenge, the fog/edge computing and blockchain architecture analyzed in
Section 4.2 can help to comply with the strict requirements of IoT applications.

• Flight time is related directly to the drone weight and its maximum payload. Moreover, a trade-off
among cost, payload capacity, and reliability should be achieved when choosing between single
and multirotor UAVs (as of writing, quardrotors are the preferred solution for DL-UAVs).

• Considering the computational complexity of most DL techniques, the controller hardware must
be much more powerful than traditional IoT nodes and UAV controllers, so such a hardware
needs to be enhanced to provide a good trade-off between performance and power consumption.
In fact, some of the analyzed DL-UAVs have been already enhanced, some of which even have
the ability to run certain versions of Linux and embedding dedicated GPUs. The improvements
to be performed can affect both the hardware to control the flight and the one aimed at interacting
with the other UAV subsystems.

• Although some flight controllers embed specific hardware, most of the analyzed DL-UAVs
share similar sensors, mainly differing in the photo and video camera features. Future
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DL-UAV developers should consider complementing visual identification techniques with other
identification technologies (e.g., UWB and RFID) in order to improve their accuracy.

• Regarding the ways for powering a UAV, most DL-UAVs are limited by the use of heavy Li-Po or
Li-ion batteries, but future developers should analyze the use of energy harvesting mechanisms
to extend UAV flight autonomy.

• Robustness against cyberattacks is a key challenge. In order to ensure a secure operation,
challenges such as interference management, mobility management or cooperative data
transmission have to be taken into account. For instance, in [154], the authors provide a summary
of the main wireless and security challenges, and introduce different AI-based solutions for
addressing them. DL can be leveraged to classify various security events and alerts. For example,
in the work by the authors of [155], the ML and DL methods are reviewed for network analysis
of intrusion detection. Nonetheless, there are few examples in the literature that deal with
cybersecure DL-UAV systems. One such work is by the authors of [156], where an RNN-based
abnormal behavior detection scheme for UAVs is presented. Another relevant work is by the
authors of [157], which details a DL framework for reconstructing the missing data in remote
sensing analysis. Other authors focused on studying drone detection and identification methods
using DL techniques [158]. In such a paper, the proposed algorithms exploit the unique acoustic
fingerprints of UAVs to detect and identify them. In addition, a comparison on the performance
of different neural networks (e.g., CNN, RNN, and Convolutional Recurrent Neural Network
(CRNN)) tested with different audio samples is also presented. In the case of DL-UAV systems,
the integrity of the classification is of paramount importance (e.g., to avoid adversarial samples
[159] or inputs that deliberately result in an incorrect output classification). Adversarial samples
are created at test time and do not require any alteration of the training process. The defense
against the so-called adversarial machine learning [160] focuses on hardening the training phase
of the DL algorithm. Finally, it is worth pointing out that cyber-physical attacks (e.g., spoofing
attacks [161] and signal jamming) and authentication issues (e.g., forging of the identities of the
transmitting UAVs or sending disrupted data using their identities) remain open research topics.

6. Conclusions

This article reviewed the latest advances on the development of autonomous IoT UAV systems
controlled by DL techniques. After analyzing the problems that arise when UAVs need to detect and
avoid obstacles, the paper presented a thorough survey on the state-of-the-art of DL techniques for
autonomous obstacle detection and collision avoidance. In addition, the most relevant datasets and
DL-UAV applications were detailed together with the required hardware. In relation to such hardware,
the most common and the newest DL-UAV communications architectures were described, with special
emphasis on the different subsystems of the architecture and the few academic developments that
have proposed DL-UAV systems. Finally, the most relevant open challenges for current DL-UAVs were
enumerated, thus defining a clear roadmap for the future DL-UAV developers that will create the next
generation of affordable autonomous UAV IoT solutions.
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Abbreviations

The following abbreviations are used in this manuscript.

COTS Commercial Off-The-Shelf
CNN Convolutional Neural Network
CRNN Convolutional Recurrent Neural Network
DL Deep Learning
DL-UAV Deep Learning Unmanned Aerial Vehicle
DNN Deep Neural Network
DoF Degrees of Freedom
IMU Inertial Measurement Unit
IoT Internet of Things
LIDAR Light Detection and Ranging
LSTM Long Short-Term Memory
ML Machine Learning
RFID Radio-Frequency IDentification
RL Reinforcement Learning
RSSI Received Signal Strength Indicator
RNN Recurrent Neural Network
SLAM Simultaneous Localization and Mapping
SOC System-on-Chip
UAV Unmanned Aerial Vehicle
UHF Ultra High Frequency
UAS Unmanned Aerial System
VGA Video Graphics Array
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