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Abstract: GPS tomography has been investigated since 2000 as an attractive tool for retrieving the
3D field of water vapour and wet refractivity. However, this observational technique still remains a
challenging task that requires improvement of its methodology. This was the purpose of this study,
and for this, GPS data from the Australian Continuously Operating Research Station (CORS) network
during a severe weather event were used. Sensitivity tests and statistical cross-comparisons of
tomography retrievals with independent observations from radiosonde and radio-occultation profiles
showed improved results using the presented methodology. The initial conditions, which were
associated with different time-convergence of tomography inversion, play a critical role in GPS
tomography. The best strategy can reduce the normalised root mean square (RMS) of the tomography
solution by more than 3 with respect to radiosonde estimates. Data stacking and pseudo-slant
observations can also significantly improve tomography retrievals with respect to non-stacked
solutions. A normalised RMS improvement up to 17% in the 0-8 km layer was found by using 30 min
data stacking, and RMS values were divided by 5 for all the layers by using pseudo-observations.
This result was due to a better geometrical distribution of mid- and low-tropospheric parts (a 30%
coverage improvement). Our study of the impact of the uncertainty of GPS observations shows
that there is an interest in evaluating tomography retrievals in comparison to independent external
measurements and in estimating simultaneously the quality of weather forecasts. Finally, a comparison
of multi-model tomography with numerical weather prediction shows the relevant use of tomography
retrievals to improving the understanding of such severe weather conditions.

Keywords: GPS tomography; methodological improvement; a priori condition; data stacking;
pseudo-slant observations; severe weather
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1. Potential of GPS Tomography for Meteorological Applications

Global Positioning System (GPS) tomography considers the use of slant-integrated estimates,
wet delays, or corresponding water vapour content estimated from the data records of ground-based GPS
stations to respectively retrieve the 3D field of wet refractivity or water vapour density, as introduced
by [1,2]. Comparisons of tomography retrievals with other techniques (e.g., those using a water
vapour radiometer, radiosonde, raman lidar, or atmospheric emitted radiance interferometer) and
with numerical weather models have shown relevant results and an encouraging understanding of
meteorological situations ([3-17]) The resolution and configuration/geometry of the network of GPS
stations are critical parameters with which to obtain the best scenario for applying GPS tomography to
retrieve water vapour density or wet refractivity. These fields can be ideally retrieved for meteorological
applications with a horizontal resolution of a few kilometres, a vertical resolution of ~500 m in the lower
troposphere, and a vertical resolution of ~2 km in the upper troposphere, with a time resolution of 15 to
5 min. However, to obtain this remarkable geometrical resolution, data from a dense homogeneously
distributed network of GPS stations (e.g., a network with 5-25 km spacing) are required, ideally with
stations at different altitudes (with a range of a few hundred meters) according to the orography [18-20].

The description of the humidity field, especially the flux of water vapour in the lower atmosphere,
is essential for the understanding of convective meteorological events by forecasters and the quantitative
prediction of precipitation [21]. Looking at GPS tomography, the limitations and reliability of retrievals
can be linked to two main hurdles. The first limitation is the geometry and resolution of the grid
adjusted by the inversion process. This is directly linked to the resolution of the network of stations
considered. Note that Bender et al. [22] have shown that minor improvements can be expected by
combining GPS (US Global Positioning System), GLONASS (GLObal NAvigation Satellite System
of Russian government), and Galileo (EU global satellite-based navigation system) observations,
especially for the volume pixels (so called voxels) of the lower troposphere. The second limitation,
deeply linked to the lack of geometrical distribution and representativeness of retrievals, concerns the
convergence of the inversion process to a reliable solution. Improvements of the tomographic method,
with the aim to obtain the best convergence of retrievals, have been developed by [23] using singular
value decomposition combined with a Kalman filter. Improvements have also been developed by
Bender et al. [13] with algebraic reconstruction, by Perler et al. [14] with the use of new parametrised
approaches, and more recently by Rohm [24] with an unconstrained approach and the use of a robust
Kalman filter [25], and by Zhao et al. [26] by considering various input observation weighting schemes.
Note that for all these methods, the observation-a priori weighting scheme affects the inversion process,
and the redundancy or the conflict of information from GPS slant observations crossing the same
voxel are critical for good achievement of the tomography technique. Currently, methodological
improvements are still needed to face these two limitations in the GNSS (Global Navigation Satellite
System) tomography processes.

The structure of this manuscript is as follows. The next section describes the selected meteorological
situation used when applying our new methodology. Section 3 presents a description of the GPS data
and independent observations considered. Section 4 characterises the five tomography models of this
study (i.e., the setting used in calculations, the algorithm of convergence processes, the approach used
to constrain the a priori condition and the weight attributed to the data, and the intrinsic specificity
of each model and their quality controls). Section 5 presents the methodology suggested for use to
face the limitations of GNSS tomography. Section 6 shows results of improved GPS tomography
retrievals and the interest in using sensitivity tests in meteorological applications. Section 7 presents a
cross-comparison of tomography models with profiles from external observations. Finally, the last
section summarises and highlights conclusions and perspectives for future works.

2. Overview of the Selected Severe Weather Situation

Although the pattern of Australia’s rainfall accumulation is one of the lowest on Earth,
mainly due to the fact that deserts cover slightly more than half of the surface of this country,
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heavy rainfall can take place seasonally, i.e., in the northern equatorial region, which has a tropical
climate, and in the southern sub-tropical region, which has a with temperate climate. This study focusses
on torrential rainfall, which happens occasionally during the autumn season in the southeastern
Australian Victoria region, and more specifically on the meteorological situation of the March 2010
Melbourne storm.

Heavy rainfall affected the state of Victoria from 6 to 8 March, 2010, and caused consequent
flash floods that disrupted the life of the population of the greater Melbourne region, with several
injuries and damages resulting [27]. This event was probably the most severe of the past decade for
this region [28]. Such an event, acting as a mesoscale convective system (MCS) with a horizontal
extension of generally over 10 km, a long life-time (sometimes of a few hours), and a strong vertical
vorticity, largely caused by wind shear, is called a supercell storm. The mean monthly precipitation of
Melbourne (50 mm) fell in only one day (61 mm on 6 March, 2010), including hailstones with a size
of up to 5 cm, as reported by the Australian Bureau of Meteorology [29]. Considering estimations of
cloud top altitudes from Global Ozone Monitoring Experiment-2 (GOME-2) and Ozone Monitoring
Instrument (OMI) sensors, a vertical extension which was at least higher than 10 km was induced close
to Melbourne by a supercell storm and can be observed in Figure 1. Cloud top altitudes were evaluated
using cloud top pressure retrievals [30,31] combined with the assumption of an atmosphere in a
hydrostatic equilibrium. This application of hypsometric equations required inputs of ground pressure
and mean temperature of the column of air for each footprint considered. These two parameters were
obtained from the outputs of the analysis of the Australian Community Climate and Earth-System
Simulator (ACCESS-A), with a focus on Australian area, and the operational Numerical Weather
Prediction (NWP) of the Australian Bureau of Meteorology [32]. Figure 1a,b show the cloud top
altitudes obtained by GOME-2 and OMI during the overpass over Melbourne at 23:56 UTC (on 5 March,
2010) and 04:07 UTC (on 6 March, 2010), respectively. In Figure 1a, the MCS (with a vertical extension
of over 9 km) covers an area of 80 X 80 km? (the size of a pixel from the GOME-2 instrument is
80 x 40 km?), and the area with stratiform precipitation (with a vertical extension of over 6 km) is
about 160 x 160 km?.
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Figure 1. Observations of cloud top altitudes from (a) Global Ozone Monitoring Experiment-2 (GOME-2)
at 23:56 UTC on 5 March, 2010 and (b) Ozone Monitoring Instrument (OMI) satellite’s sensors at
04:07 UTC on 6 March, 2010 (background from the Moderate Resolution Imaging Spectroradiometer
(MODIS)/Aqua).

In Figure 1b, convective precipitation with a high vertical extension can be seen to concern
an area of about 24 x 84 km? (a pixel from OMI is 24 x 13 km?) and stratiform precipitation in
an area of 168 x 195 km?. The background of Figure 1b is an image (visible channel) from the
Moderate Resolution Imaging Spectroradiometer (MODIS). This imager, on board the Aqua satellite,
simultaneously looks at the same area of the Earth as OMI/Aura. The dimension of the MCS detected
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by GOME-2 and OMI are respectively confirmed by heavy and moderate precipitation recorded by the
weather radar of Melbourne; see Choy et al. [27] and Manning et al. [33] for more details regarding this
meteorological situation.

A typical configuration of the atmosphere with instability in the troposphere (e.g., that triggered
by the topography or due to low level convergence) associated with the opposition of dry and moist air
was required to initiate deep convection during the 6-8 March superstorm of greater Melbourne [27].
At the end of the day on 5 March, 2010 (UTC time), the lifting of moist air coming from the south and
southeast sides of Melbourne and warm dry air coming from westwards of Melbourne triggered the
convection. The water vapour content of the troposphere is a key parameter which initiates and keeps
running deep convection. Its monitoring is critical to evaluating the severity of severe weather events
(nowcasting) and to forecasting meteorological situations. Figure 2 shows the 2D field of integrated
water vapour (IWV) from ACCESS-A NWP during the supercell storm of Melbourne in March 2010.
Even a horizontal resolution of ACCESS-A outputs of 12 km, the weather prediction used in this study,
was not sufficient to properly forecast this storm and the creation of such a supercell. Strong differences
with the IWV fields from GPS are observed in Figure 2 (see Section 3.1 for more details regarding
estimates of water vapour content from GPS).

| grad %m’) |

Figure 2. 2D fields of integrated water vapour (IWV) from (a) ERA-Interim Numerical Weather
Prediction (NWP), (b) Australian Community Climate and Earth-System Simulator (ACCESS-A) NWP,
and (c) GPS observations at 06:00 UTC on 6 March, 2010 (the black circles are the locations of GPS
stations and the grey arrows show the horizontal IWV gradients).
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The flux of water vapour from the south of Melbourne is indicated by horizontal IWV gradients
(Figure 2c), aligned along south north in a southeast-northwest direction in the central section of Victoria
and north south in the west part of Victoria. These opposite gradients illustrate the critical condition
that took place in the region surrounding Melbourne which maintained a convective process inside the
supercell. Note that IWV gradients were obtained using a k conversion factor [34] (see Equation (6))
applied on wet gradients (see Equation (4)). Monitoring by GPS techniques using a dense network
can be essential for improving the capability to better understand and forecast such events. For this
purpose, this study focusses on testing five different types of tomography software for estimating
reliable tomography retrievals.

3. GPS Data and External Observations

3.1. Data Inputs for GPS Tomography Using the Continuously Operating Reference Station (CORS) Network

During the Melbourne storm in March 2010, 69 stations of the Victorian GPS CORS network
were recording signals emitted from 31 GPS satellites. The locations of these stations are presented in
Figure 3a. The GPS data were processed by the Royal Melbourne Institute of Technology University
using the double difference technique with Bernese 5.0 software [35]. The full details of the processing
strategy are available in a paper by Rohm et al. [36]. The data used in this study were derived using
the “shortest baselines network solution” with the following parameters: precise final International
GNSSS Service (IGS) orbits in an IGS05 reference frame with an L3/L5 strategy, minimum constraints
applied on the translation parameters for Helmert transformation based on IGS fiducial stations,
elevation dependent weighting, and a 5°-cutoff angle. Zenith total delays of the neutral atmosphere
(ZTDs) had relative constraints applied and were estimated in 30 min steps with gradients modelled
by tilting every 6 h. The GMF mapping function [37] is employed for geodetic software analysis and

retrievals of tropospheric parameters. Hence, ZTDs and horizontal delay gradients G = (Gns, Gew)
were retrieved every 30 min (a piece-wise linear function was evaluated every 30 min) covering the
period from 3 March, 2010 to 10 March, 2010.

The understanding of meteorological situations by using GPS tomography techniques can rely
on retrieving the 3D fields of wet refractivity and water vapour density. Initial GPS tropospheric
parameters are converted into slant wet delays (SWDs) and slant-integrated Water Vapour contents
(SIWVs) to retrieve, respectively, these fields. Estimates of ground pressure and mean temperature
(of the column) are required for each station of the GPS CORS network. These parameters were
obtained using outputs from the ACCESS-A weather model. The ground pressures and temperatures
of the four surrounding ACCESS-A grid points of a GPS station were converted to the altitude of the
GPS site (using a hypsometric equation and linear vertical interpolation, respectively). Then, pressures
and temperatures at the location of the GPS site were obtained using bi-linear horizontal interpolation.
This strategy is best in the absence of a collocated meteorological station [38]. A time interpolation was
also applied from 6 h of a weather model to a 30 min time resolution of GPS tropospheric parameters.
The formula of Saastamoinen [39] was used to convert pressure data into zenith hydrostatic delay
(ZHD). The zenith wet delay (ZWD) was obtained by simply subtracting ZHD from ZTD estimates
(i.e., ZWD = ZTD - ZHD). Using the field of ground pressure from ACCESS-A, the hydrostatic part of
the azimuthal contribution of GPS gradient to delays to slant delays was removed to allow only the
wet contribution to remain [40,41].

The elevation (ie) and azimuth (x) dependency of the SWD is described by an isotropic (L‘S"}’,‘ﬁl) and

anisotropic (LY®") component in Equation (1).

SWD = L% (i) + L% (ie, ) 1)

sym
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The isotropic SWD (L;‘;,‘;;) is obtained by mapping of the ZWD using a wet mapping function
mf;“;er; (in our case GMF from [37]) in the direction of the GPS satellite in a view above 5° elevation

(Equation (2)).
Ly (ie) = ZWD-mfg5 (ie) ()

The first order wet anisotropic contribution (L¥") is formulated in Equation (3).

LYt (je, o) = mf;‘;et(ie,C)-(Gﬁgt- cos(a) + Ggy -sin(oc)) 3)

This equation uses a gradient mapping function (m wet = 1/(sinietanie + C)) which depends on
the satellite’s elevation and on a constant (C = 0.0032) ([42,43]), and the gradient wet components
(G%gt, GE"&}) in the north-south and east-west direction, which are multiplied with the cosine or sine of
the azimuth (), respectively. Note that the one-way residual has not been considered in the LY** and
SWD retrievals here.

The gradient components (Gys, Ggpw) retrieved by GPS technique describe the total asymmetric
effect. This means there is no distinction between wet and hydrostatic gradients [1,43]. However, the wet
gradient component can be expressed by the difference of the hydrostatic to the total component, i.e.,

( Gvagt ) ( Gns ) ( Glﬁllysdrostatic ) W
wet | = - drostatic
GEw Gew G
. . . hydrostatic hydrostatic s

To obtain the hydrostatic gradient components (Gyq and G, ), a characterisation of

the surface pressure field around each GPS station is required. In that case, the hydrostatic gradient

can be established by fitting a plane through the pressure measurements [40,41]. The spatial variations
hydrostatic
NS

) directions can be calculated from the pressure field for each GPS site. Surface pressure

of the hydrostatic delay per unit of distance (km) in the north-south (Z

hydrostatic
(Zgw
measurements around all GPS stations of the CORS network were not available during the supercell

storm of 6-8 March 2010. For this reason, the pressure field of ACCESS-A NWP was considered.
Assuming an exponential law in the hydrostatic refractivity and considering the scale height of the
gradients in the hydrostatic delays as being set to H = 13 km, as suggested by [43], the spatial variations
of the hydrostatic delay can be converted into hydrostatic gradients [1,44,45], i.e.,

hydrostatic hydrostatic
Gﬁls T Z%IS .
G ydrostatic 17 ydrostatic

EW EW

) and east-west

©)

The resulting slant wet delays (SWD = f Ny ds) are used as inputs for GPS tomography to
retrieve 3D fields of wet refractivity (Ny). ds is the differential distance along the slant path travel
of the GPS signal. The second type of slant measurements used is water vapour slant total column
density, also called slant-integrated water vapour contents, which can be simply obtained from SWDs
by multiplication with factor k, as shown in Equation (6). Then, GPS tomography retrieves the 3D field
of water vapour density (o).

SIWV = k SWD = f Puwo ds (6)

The expression of the k factor [34] requires an estimation of the mean temperature of the column
of air (Trn) above the GPS station. Hence, temperature profiles from ACCESS-A were interpolated
in space and time. The obtained « factors were applied in Equation (6) for the conversion of SWDs
into SIWVs.

From 3 March, 2010 to 10 March, 2010 (288 epochs, 30 min time resolution), in total, 197429 pairs
of SWDs/SIWVs were retrieved (about 686 pairs at each time). These observations were the basis input
data for our tomography and sensitivity tests.
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Figure 3. (a) GPS stations (red circles), Radiosonde sites (blue triangles), Radio-occultation profiles
(white—purple lines), OMI cloud top altitude at 04:07 on 6 March, 2010 (purple-blue-orange pattern;
compare with Figure 1b) and the tomography grid (inner grid in thick black lines and outer grid in thin
black lines); (b) the red square represents altitudes above the sea level of the centres of each voxel of the
tomography grid.

3.2. Independent Observations of Water Vapour Density and Wet Refractivity Profiles

3.2.1. Profiles from Radiosonde

The most common and accurate technique used to measure the vertical profile of temperature,
pressure, dew point temperature, and wind speed and direction is a sensor attached to an automatic
radio-sounding balloon released either every 6, 12, or at a minimum 24 h. Usually, profiles reach
up to 30 km and have a very high vertical resolution; a major drawback of such measurements is
the horizontal movement of the balloon as it ascents vertically due to winds. The ascent time is
around 1 h. In 2010 in Australia there were 32 radiosonde stations with only one located in Victoria
(Melbourne airport-YMML) and another two within a short distance from the Victorian border (Wagga
Wagga-YSWG and Mount Gambier-YMMG), as shown in Figure 3. Only the YMML radiosonde
station, located at an altitude of 141 m and position of (37.67°S, 144.83°E), has been considered.
This radiosonde (YMML-RS) data was available twice a day (at noon and midnight) for all days
used in the study. The radiosonde technique is highly accurate for observations of the troposphere
with a 1-2 hPa accuracy for pressure, 0.5 °C accuracy for temperature, and 5% accuracy for relative
humidity [46]. Based on the radiosonde data, the following calculations were made to retrieve wet
refractivity and water vapour content: (1) the formula used by Sargent [47] was applied to obtain
the relative humidity from the dew point temperature [48]; (2) the formula used by Sonntag [49] was
used to calculate the partial pressure of water vapour py, from RH and T; and (3) the atmospheric state
parameters py, p, and T were used to calculate wet refractivity Ny, and water density profiles py, using
equations proposed by Davis et al., [50], i.e.,

Pw

— 1 Po o Pw
N=kRsp+¥k> T —|—k3T2

@)
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where ki, k', and k3 denote empirically-derived refractivity coefficients, R; is a gas constant for dry
air, and p is the atmospheric density.

3.2.2. Profiles from the Radio-Occultation Technique

The radio-occultation (RO) profiles used in this study are wet profiles which were acquired via the
Constellation Observing System for Meteorology, lonosphere, and Climate (COSMIC) and re-processed
in 2013 at the COSMIC Data Analysis Archive Center (CDAAC). The wet profile (wetPrf) is an
interpolated product with a vertical resolution of 100 m which was obtained using a one-dimensional
variational (1DVar) technique together with European Centre Medium Weather Forecast (ECMWFE)
low resolution analysis data, and it contains latitude and longitude of the perigee point, pressure,
temperature (T), water vapour pressure (py), refractivity, and a mean sea level altitude of the perigee
point. The atmospheric parameters were computed using a 1DVar approach where refractivity is
weighted in such a way that the temperature is basically the same as the dry temperature in regions
where the water vapour is insignificant [51]. Analyses of specific humidity estimated by GPS RO [52]
have shown consistency of being within 0.1-0.3 g/kg in the median with Global Climate Observing
System (GCOS) Reference Upper-Air Network (GRUAN) radiosonde data and with theoretical studies
of accuracy [53,54]. The RO globally performs better than the radiosondes between 5 and 25 km of
altitude when compared to the ECMWEF global analysis [54].

For a comparison with tomography results, we converted the py, in pyy, by using the gas equation

Pw

= —— % 1
Pwo = 161505+ 7 * 1000 ®)

for the four COSMIC RO reported in Table 1 and shown in Figure 3.

Table 1. List of Radio-Occultations.

Mean Times of Cosmic-GPS - . . -
Measurement Couple Lower Position Top of Tomography Grid Higher Position
3 March, 2010 08:07 UTC C006-G09 (37.99°S, 145.98°E, 2300 m) ~ (37.71°S,145.17°E, 12,800 m) ~ (37.66°S, 144.62°E, 39,900 m)

4 March, 2010 16:39 UTC C004-G12 (37.33°S,147.03°E, 1900 m) ~ (38.81°S, 146.21°E, 12,800 m) ~ (37.66°S, 144.62°E, 39,900 m)
8 March, 2010 05:36 UTC C003-G01 (37.04°S,142.60°E, 1200 m) ~ (38.25°S, 142.33°E, 12,800 m) ~ (38.86°S, 142.35°E, 39,900 m)
8 March, 2010 07:33 UTC C006-G27 (36.83°S,144.63°E, 1300 m) ~ (36.41°S, 143.26°E, 12,800 m) ~ (36.32°S, 142.52°E, 39,900 m)

4. A Selection of Five Tomography Models

GPS tomography uses slant-integrated measurements (SWDs and SIWVs) inside a defined volume
to retrieve Ny, or pyy, estimates for each voxel Npqr, as illustrated in Figure 4. For highest consistency,
the same GPS data set and the same 3D grid were used for each of the five tomography models
considered in this study.

For each GPS station within the voxel model, the integrated slant observations SLANTgps (in our
case the SWDs or SIWVs) were converted into 3D fields of Ny, or pyy using Equation (9), i.e.,

NByx
SLANTGps (P, & €) = ) Ny, As; ©
i=1

where P is the position of a GPS station (latitude, longitude, and altitude), eis the elevation and o the
azimuth angle of a GPS satellite, NB,y is the number of voxels crossed by each observation, and As;
is the ray length in each voxel i (x; € [1, p], y; € [1, q], z; € [1, r]). Following this, axes X, y, and z are
associated, respectively, with longitude, latitude, and altitude. For the tomographic grid, the horizontal
size of the voxels in the inner grid is 0.5° ~50 km (thick black lines in Figure 3a), which is slightly denser
than the mean baseline (~70 km) of the GPS network; see preconditions from Bender and Raabe [55].
Twelve voxels are considered longitudinally (p = 12) and six voxels latitudinally (g = 6). All around
this inner grid, voxels of the outer grid are considered inside a band with a width of about 400 km
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(thin black lines of Figure 3a). The outer grid is used to compensate for water vapour contributions
outside the tomographic model, and, therefore, keep stations in the solution which are located close to
the edge of the inner grid. To deal with the topography under the tomographic grid, note that the
lower layer of the grid is at the altitude above the sea level (altitude = 0 m a.s.1.). The voxels for which
there is no GPS station inside or under are simply not retrieved by tomography models. Section 6.1
and Table 5 discuss the percentage of voxels retrieved in our calculations according to different types
of calculations and settings.
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Figure 4. Discretisation of the space by a tomographic grid in which the values (Npqr) represent the
unknowns (wet refractivity or water vapour densities) of each voxel. Dash lines are rays of propagation
of GPS signals from satellites to ground stations.

Assuming the hypothesis of straight rays (the bending effect which can affect observations under
15° elevations ([56]) has not been considered in our study), the inversion problem becomes linear.
The formulation of the linear inverse problem reads

d= Gm+ Cp (10)

where d represents the SWD/SIWV observations. This is connected to the model m of wet
refractivity/water vapour density (Ny / pwo) (Which we want to retrieve) by the geometrical matrix G and
the observation errors defined by the covariance operator Cp. Positions of stations and satellites used
to characterise the geometrical matrix are expressed in Cartesian coordinates. SWD/SIWV observations
are associated with errors (ASWD/ASIWV) which are expressed using Cp. Positions and observations
are the inputs of this inverse problem. The solution m does not exist because GPS tomography is an
ill-posed problem. However, the alternative is to find m’, which minimises the L,-norm using the
minimisation factor &, which is expressed as

ld— Gm'[l, < & (11)

Different standard techniques exist for solving such linear inverse problems, e.g.,
singular value decomposition (SVD), truncated singular value decomposition (TSVD),
weighted and damped least-square adjustment (LS), Kalman-filter, simultaneous algebraic
reconstruction technique (SART), conjugate gradient method, Tikhonov-regularisation, stacking,
and double-difference—spline interpolation.

This study uses five models with different inversion techniques, i.e., SVD, TSVD, LS, and SART.
Retrievals were obtained mainly in 3D and for one model in 2D (the Technical University of Ostrava
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(TUO) model), and these were proceeded with for Ny, and pyo, except for the Technische Universitit
Wien (TUW) model (N only) and the University of Beira Interior (UBI) model (pyv only). Table 2
summarises the characterisation of the covariance operator of data and the a priori model, as well as a
the quality check for tomographic retrievals.

Table 2. Overview of the five models and retrievals achieved. Legend: BIRA, Royal Belgian Institute for
Space Aeronomy; WUELS, Wroclaw University of Environmental and Life Sciences; TUW, Technische
Universitat Wien; UBI, University of Beira Interior; TUO, Technical University of Ostrava; SVD, singular
value decomposition; LS, weighted and damped least-square adjustment; TSVD, truncated singular
value decomposition; SART, simultaneous algebraic reconstruction technique; N, wet refractivity;
pwo, water vapour density; RMS, root mean square.

Tomography Covariance Covariance Operator A

Model Inversion Dim. Retrievals Operator Data Priori Model Quality Check
SVD, weighted Resolution matrix,
BIRA and damped LS 3D Nuw, pwo 10% 90% covariance matrix,
adjustment spread
Condition number
Kalman filter with Diagonal obs. . . and
WUELS selective SVD 3D N, puo error fed Diagonal-height-dependent variance—covariance
Ny, Pwo
Elevation . .
TUW TSVD 3D No dependent Altltude-Flependent RMS of weighted
e weights residuals
weighting
UBI SART 3D Pwo Unit covarlance Unit covariance matrix Condition number
matrix and converge
TUO LS adjustment 2D Nuw, pwo - - -

More information about the five tomography models can be found in the Appendices A-E.
Note that for all the tomography models and all the tests performed in this study, the same a priori
condition mp was considered. This condition was based on 6 h of NWP outputs from ACCESS-A
interpolated to the tomography grid of Figure 3. The reader can take a look at Puri et al. [32] for
more details regarding the observations considered in the assimilation chain of ACCESS-A, which is a
four-dimensional observation variational assimilation method (4DVAR). In 2010, the radio-occultation
observations were not assimilated in the ACCESS-A system.

5. Methodological Improvement in GNSS Tomography

The inverse problem treated by GNSS tomography was ill-posed due to a non-homogenous
distribution of slant observations through the 3D grid (lack and redundancy), but it was also
ill-conditioned due to the high number of parameters physically embedded. This explains why
the stabilisation of the tomographic solution remains a challenging task, in spite of methodological
improvements [25]. Two main limitations are currently identified in the methodology of the GNSS
tomography technique: (1) the deficiency of geometric representativeness and (2) the problems of
convergence related to a reliable solution in the inverse process. The present work looks at the limitation
induced by a non-sufficient geometrical distribution of GPS observations (e.g., those due to a network
of stations with a mean baseline >30 km) and investigates methods for improving it. This study
also investigates the issue in the convergence process of the tomographic inversion, which is linked
to geometrical representativeness, and the impact of the observation uncertainty on the quality of
tomographic results.

5.1. Methodology for Improving of the Geometrical Representativeness

Two types of improvement of the geometrical distribution of tomography retrievals are suggested
and tested, namely, stacking of slant GPS data and additional pseudo-slant observations.
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5.1.1. Data Stacking of Slant Observations

The time resolution of the tropopsheric parameters (ZTD and gradients) used to assess the slant
observations triggered the increment chosen for the stacking periods, i.e., 30 min. The resolution of our
tomography grid (50 km), which was related to the resolution of the GPS network considered, was a
limitation to improving the geometrical distribution. In our case, there was no interest in choosing
a shorter stacking period (e.g., 15 min). The observation stacking procedure decreases, in theory,
the condition number of the design matrix (see Equation (A3) and Equation (A4) in Appendix A)
by improving the observation geometry; however, it can also decrease the accuracy of retrieval if
the troposphere is active and changes rapidly within the stacking window. Stacking of GPS data
(SWD/SIWV) was tested for three stacking periods (30, 60, and 120 min before and after the time of
tomography reconstruction).

5.1.2. Use of Pseudo-Slant Observations

This section presents a methodology which is based on adding pseudo-slant observations to the
systems of equations to be solved. The pseudo-slants were implemented according to the orientation
of the delay gradient [57]. To obtain homogeneous repartition of sites (based on the CORS network),
a distance of 20 km on both sides of a station in the direction defined by the GPS gradient was
considered. This means that for two pseudo-sites, the wet delay and the water vapour content were
propagated at a 20 km distance using the amplitude of the gradient, i.e., the additional wet delay
equal to the multiplication of the gradient by the distance. The pseudo-SLANTgps in the direction
of the GPS satellites was estimated using an isotropic mapping function (GMF in this case; see [37])
and considered in tomography calculations, as illustrated in Figure 5. Note also that two other
pseudo-stations located at 10 km from the station were used, considering gradient orientation and its
opposite direction. This makes for a total of four pseudo-sites with four sets of additional pseudo-slants
(only two additional sets are illustrated in Figure 5).

/7 7 7 7 7 %
[T T 77 77 v

. 7
/ K5 A
111 \ /Dpl

Figure 5. Illustration of additional pseudo-slant observations in GPS tomography. The dashed black

—

\‘

lines show slant observations. The blue and dashed-blue arrows represent, respectively, the direction
of the horizontal gradients and their opposites (e.g., for a defined distance of, e.g., 20 km), which were
used to generate pseudo-slants (blue lines).

5.2. A Priori Condition and Improvement of the Convergence in the Inversion Process

This section investigates the ability to obtain an optimal stabilisation of solutions for five
types of tomography software based on different techniques (singular value decomposition,
damped least-squares adjustment, algebraic reconstruction technique, and Kalman filter). Four tests
related to the a priori conditions used in calculations were studied to determine the best strategy.
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These four configurations were designed to test convergence in tomography calculations according
to the a priori condition and time resolution of the tomography models (capital letters when the
interval calculation was 30 min, i.e., tests A or B; lowercase letters when it was 6 h, i.e., tests a or b).
An illustration of the configuration of these four tests is presented in Figure 6, in which arrows in red
indicate when the a priori condition from ACCESS-A was considered in tomography calculations,
and arrows in green indicate when this was the previous tomography retrieval (TR).

Tomography Retrievals (TR): | TR | or | TR 30 min

APRIORI from ACCESS-A )

APRIORI from the previous TR 1 @

3 March 4 March 5 March HHE 6 March 7 March 8 March

: T T T : T T T : T T T : T T T : T T T : T { § T : ) Test a
(I N N N N N OO N O N O OO N O O N O O M S
3 March 4 March 5 March 6 March 7 March 8 March
Test b
L O N O A e R T
3 March 4 March 5 March 6 March 7 March 8 March
Test B

HErttttr ettt eee ettt ettt ettt bttt b ettt bttt betttteetteeetttseettseettesse

3 March 4 March 5 March 6 March 7 March 8 March

Test A
Hittett ettt r ettt et ettt et A bt e et A A AR A A A AR A A A AR A0 01 11 1A 111

Figure 6. Simplistic illustration of the configuration of tests (a, b, B, and A) designed to test the a priori
condition and time resolution of the tomography models. The time-location of the storm that occurred
close to Melbourne is shown with a blue cloud.

5.3. Sensitivity Tests Based on the Uncertainty of Slant Observations

The quality of slant observations is critical for obtaining optimal GNSS tomography retrievals.
The strategy of this section was to modify slant observations using minimal/maximal uncertainties and
to look at the impact on the quality of retrievals. The uncertainties of parameters acting for obtaining
SWDs and SIWVs are presented in Table 3. These parameters are the specific molar gas constant for
dry air (Ry), the specific molar gas constant for water vapour (Ry), the refractivity coefficients (k1, ky,
ks, and ky” = ky — kj.R4/Ryw), the surface pressure (Ps), the mean temperature of the column of air
(Tm), the gravity in the centre of the atmospheric column pressure (gm), the GPS observation of ZTD,
and estimations of ZHD, ZWD, factor k, and IWV. More details regarding the links of these physical
parameters with ZWD and IWV (based on preliminary results from [34,50,58]) and the impact of their
uncertainties on simulations (using a high-resolution non-hydrostatic model during severe weather
situations) are presented in Brenot et al. [40]. Finally, two kinds of empirical mapping functions (NMF
of Niell [59] and GMF of Bohm et al. [37]) have been considered to estimate the impact on SLANTGps
and retrievals from GPS tomography. The impact on the precision of slant retrievals is presented by an
absolute uncertainty (in the unit of the tested parameter) and by a relative error (in %). In the upper
six lines of Table 3 it can be seen that the parameter with the highest relative error is the refractivity
coefficient k’;. The uncertainties of refractivity coefficients (ki, ky, k) provided by Bevis et al. [60]
were used, and the combination of higher and lower values for these coefficients show an absolute
error of about 10% for k.
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Table 3. Absolute uncertainty and relative error of parameters related to GPS tomography. Legend: Ry specific molar gas constant for dry air; Ry, specific molar gas
constant for water vapour; ki, ky, k3, k'», refractivity coefficients; Pg, surface pressure; Ty, mean temperature of the atmospheric column; gm, gravity in the centre of
the atmospheric column; ZTD, zenith total delays; ZHD, zenith hydrostatic delay; ZWD, zenith wet delay; k, conversion factor; IWV, integrated water vapour content;
SWD, slant wet delay; SIWV, slant-IWV; L;"}’,entl, isotropic wet component of SWD; LY, anisotropic wet component of SWD; Gy, East-West component of delay
gradients; Gy, North-South component of delay gradients.

az 7/

Parameter Value Unit Absolute Uncertainty Relative Error

Ry 287.0586 J/(kmol K) +0.0055 +0.002%

Rw 461.525 J/(kmol K) +0.013 +0.003%

k1 77.60 K/hPa +0.05 +0.064%

k; 704 K/hPa +2.2 +3.125%

k3 373900 K?/hPa +1200 +0.321%

ko’ 22.1345 K/hPa +2.2352 +10.090%
Parameter Typical Value Unit Absolute Uncertainty Relative Error
Ps 1000 hPa +2 (1) +0.200% (+0.100%)
Tm 285 K + 1 (+0.5) +0.351% (+0.175%)
gm 9.807 m.s~2 +0.022 +0.227%
ZTD 2.54 m + Formal error + 0.010 (+ 0.005) +0.497% (£0.296%)
ZHD 2.29 m +0.011 (+0.007) +0.494% (+0.326%)
ZWD 0.25 m +0.019 (+0.010) +8.605% (+4.503%)

K 159 kg/m3 +1.335 (+1.053) +0.840% (+0.622%)
IWV 40 kg/m? +3.375 (+2.513) +8.440% (+6.260%)
L;“)’,elfl Variable *, mean: 0.765 m Variable *, mean: +0.069 Mean: +9.020%

wet : * . : * .

and (CI;E:V, Gns) Vigzk\:fd;z]ein[.;so]y (mml,nmm) i\é?;‘lrﬁfelgrl(iein['oz?g(g ((E)O4?(())12)]) Mean: £10.249% (+5.137%)
SWD Variable *, mean: 0.792 m Variable *, mean: +0.072 (+0.039) Mean: +£9.091% (+4.924%)
SIWV Variable *, mean: 122 kg/m2 Variable *, mean: +12.230 (+6.238) Mean: +10.003% (£5.098%)

* depends on the elevation of GPS satellite and data considered.
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The bottom part of Table 3 presents absolute uncertainty and relative error for typical values of
the estimated parameters. In these columns, two types of uncertainty were considered: one which
was more conservative (the higher values) and one which was more realistic (the lower values).
The results related to the more realistic absolute uncertainty and relative error are presented in brackets
(e.g., a conservative uncertainty of Pg of 2 hPa against a more realistic uncertainty of 1 hPa). To estimate
the uncertainty of gn,, the bias between the formulation of Saastamoinen [39] and the formulation of
Vedel et al. [61] was considered (a relative error of about 0.2%). The relative error in ZTD measurements
and in Pg, Ty,,, and ZHD estimates are low (<0.5%). On the other hand, the relative errors of ZWD and
IWYV are high, being about 8.5% for both for the conservative error and 4.5% and 6.2%, respectively,
for the more realistic error. The analytic expression of the conversion factor k takes into account k3,
k', and Ry coefficients and Ty, parameters [34]. T, was estimated using output from the ACCESS-A
model with an absolute uncertainty of 1 K (or 0.5 K). A moderate relative error was found for «
(<1%). Note that this parameter was able to obtain a higher relative error in the case of severe weather
conditions and the occurrence of hydrometeors in the path travel of the GNSS signal [40]. The last
parameter that considered was the uncertainty of the mapping function. The uncertainty of SLANTgps
was estimated using a satellite visible from one station during one epoch of measurements (10 satellites).

To test the uncertainty of SWDs, the uncertainty of L‘S“;,er;
absolute error of the NMF and GMF mapping function [37,59], as shown in Equation (12)

of Equation (2) was considered using the

Ly MN (ie) = ZWD-(GMF - [NMF - GMF)) (12)
Ly 4% (ie) = ZWD-(GMF + [NMF -~ GMF)) (13)

where GMF = mf;‘;‘;t{GMF(ie) and NMF = mf;‘;ﬁf{NMF (ie). This shows a relative error of 9%. To obtain the
uncertainty of LY of Equation (3), the formal error of gradients provided by geodetic software and
the error estimated by [17] were considered. This brought about a relative error of 10% (or 5%, to be
more realistic). Finally, the uncertainties of SWD and SIWV were found to be, respectively, 9% and

10%, with more realistic errors of 5% occurring for both.

6. Results of Methodological Improvement in GPS Tomography

Three GPS tomography methodologies were investigated and combined. The improvement of
geometrical representativeness is linked to convergence in tomography calculations. Independently,
a sensitivity test of the perturbation of the quality of slant observations, inputs of GNSS tomography,
has been presented and was combined with the two others improvements to investigate the interest in
this approach in meteorological applications. The first methodological improvement targets a better
geometrical distribution. The second concerns a better convergence behaviour in tomography solutions
with respect to the a priori condition applied and the time resolution of calculations (i.e., tests a, b, B,
Ain Table 4, as illustrated in Figure 6). The configurations of tests A and B were used as references and
the improvement of the geometrical distribution was investigated using stacking data (e.g., tests A3,
A%, and A'?Y) and/or pseudo-slant observations (e.g., tests A, and A3, In addition, via a third
way of testing and again using the configurations of tests A and B as references, the impact of the
observational uncertainty on the quality of tomographic results was studied (e.g., tests A* and A7).
Table 4 shows an overview of all tested model settings.

For all the tests presented in Table 4, spatial and temporal distributions of the Ny or pyo
parameters were determined for three types of data (“initial observations (I0)”, “IO with additional
pseudo-observations”, and “observations modified considering uncertainties”). The interval calculation
for all the tests in Table 4 was found to be 30 min (except for tests a and b). Using the configuration
of test A or B, other tests with 30, 60, and 120 in the superscript (i.e., A30 A% and Am) were
meant to test improvement of stacked data on solutions using 30, 60, and 120 min -stacked data,
respectively. Tests with 7 in the subscript (i.e., tests A, and B,) were set up to test the improvement
of using pseudo-slants solutions and were combined with the test of stacked data (i.e., A0 A0
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and Ax'?’). The impact of the uncertainty on solutions (columns “positive” and “negative” of
Table 4) was investigated for two types of uncertainty: regular, with labels “+” and “-”, and more
realistic, with labels “(+)” and “(—)”. The “positive” column indicates uncertainty increasing slant
(+) used in the name of the test, e.g., test A* or A®")) and the “negative”
column indicates uncertainty decreasing slant observations (superscript — or (), e.g., test A~ or AC).
The impact of uncertainty on solutions was combined with the test of stacked data (i.e., A3(*), AS(),
and A120(+)),

observations (superscript * or

Table 4. Tests studied divided by data type, a priori data configuration, and stacking settings.

Data Type Initial Observations IO with Additional Observations Modified Considering Uncertainties
P (10) Pseudo-Observations Positive Negative Positive Negative
A Eve First Eve First Eve First
Y Epoch Ty Epoch Y Epoch
6h 6h 6h
Only Only Only
Tests a Tests b
No Test Ax Test Bx Tests A, A® Tests A-, A Tests B*, B®*) Tests B-, BO)
and A and B
30 min Test A% TestB® Test A=  Test Bx¥ Tests A30+, A3 Tests A30-, A30) Tests B30+, B30t Tests B3, B30
60 min Test A% Test B6® - - Tests A3+, A30) Tests A30-, A30) Tests B3+, B30t Tests B3, B30
120 min Test A0 Test B2 - - Tests A120+, A1) Tests A2, A0 Tests B2, BI20)  Tests B120, B1200)

To visualise the results and validate our methodological improvements, tomography retrievals
were compared with external observations (profiles of Ny, and pyp from RS and RO). Profiles of
Ny and pyo from ACCESS-A were also considered (as an example of forecasts) and were the a
priori conditions used in our tomography calculations. ERA-Interim [62] profiles were also prepared
and compared.

Three various comparisons are shown within this study: GPS tomography versus RS profiles,
GPS tomography versus RO profiles, and individual GPS tomography solutions versus each other
or ACCESS-A and ERA-Interim fields. Since all mentioned techniques sense tropospheric water
vapour in a different way, the presented comparisons were based on different approaches. To compare
RS profiles with GPS tomography results, or with ACCESS-A and ERA-Interim fields, RS profiles
were linearly interpolated to individual heights of the tomography grid. Tomography retrievals
and ACCESS-A/ERA-Interim estimates were then bilinearly interpolated to positions of RS stations;
RS profiles were assumed to be vertical (wind field was not considered, given the assumption that
tomography outputs and RS profiles are simultaneous). Slant RO profiles were derived at heights
of the tomography grid. Then, tomography retrievals and ACCESS-A/ERA-Interim estimates were
bilinearly interpolated to latitudes/longitudes of RO profiles. For comparisons between two individual
GPS tomography solutions or between a GPS tomography solution and ACCESS-A/ERA-Interim fields,
no interpolation had to be applied and a direct confrontation in 3D tomographic voxels was realised
(for ACCESS-A/ERA-Interim the closest grid points to the tomography grid were considered).

6.1. Results Regarding the Improvement of Geometrical Distribution

An increased geometrical distribution can be a way to obtain a better stabilisation of tomography
solutions. More voxels being crossed by slant GPS observations (SLANTgps) can improve the
understanding of this meteorological situation. However, this means that more inputs are considered
in tomography processing. Table 5 shows the status of the geometrical distribution (% of voxels crossed
by SLANTps for the different tests considered) inside the inner tomography grid. The mean number
of SLANTGps is provided for each epoch of calculation. Note that the mean time of processing is also
indicated (a 2.66 GHz processor with 24 GB RAM was used) as being a key parameter for nowcasting
(non-linear quasi-quadratic dependency with the number of inputs). According to the distribution
of rays from GPS stations inside the tomographic grid, for the 288 times of measurements from 3 to
10 March, 2010, the mean percentage of voxels retrieved by our classic tomography models was 67.8%
for the whole tomographic grid (geometrical distribution obtained without stacking and pseudo-slant
observations). Using stacked slant data (30, 60, or 120 min stacking), an increase in the geometrical
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distribution (+1.5%, +1.7% or +4.2%, respectively) and a consequent increase in the time of processing
(X2, x4, or x16, respectively) was observed. Note that in these cases of stacked data, slants were only
considered every 30 min, not continuously (this was not relevant for our tomography grid, which had
a horizontal resolution of 50 km). The layers between 2 and 9 km show the main results with a high
increase of geometrical distribution (about +10%). Using pseudo-slant observations, an increase of
+25% can be observed for all layers on average, with an increase of +30% for the layers between
0 and 4 km and an increase of +20% for those between 4 and 9 km. The geometrical distribution only
increased by +3% for the top layer of between 9 and 15 km (for more details regarding pseudo-slants,
see Section 5.1.2).

Table 5. Geometrical distribution and time processing of our sensitivity tests. Legend: SLANTgps,
slant GPS observations and pseudo-observations.

Pseudo-Slant Observations
Stacked Data  Stacked Data  Stacked Data

Type of Tomography Calculation No Stacking

(30 min) (60 min) (120 min) No Stacking Stacked.Data
(30 min)

Mean Number of SLANTGps 685 1370 2050 3400 3140 6275
0-1km 51.0 51.2 51.2 514 82.9 84.6
1-2km 58.3 58.3 58.3 616 88.0 89.4
Disi?grtfxc(ii of  24km 65.6 66.0 67.4 722 93.1 93.1
Voxels Crossed) 4-6 km 73.6 75.0 76.4 82.6 95.8 97.2
for Different Layers ¢ g} 77.0 813 840 875 924 93.1
9-13 km 61.8 67.4 67.8 70.6 64.6 68.0
All 67.8 69.3 69.5 72.0 928 93.7
Indicator of Mean Time of 05 1 5 3 7 130

Processing (minutes)

6.1.1. Interest in Data Stacking for Mid-Troposphere Retrievals

Three sets of stacked slant data were tested, namely, 30, 60, and 120 min stacking. Hence, the two
processing strategies illustrated in Figure 6 by tests A and B were applied for tests (A%, A%, A120) and
(B30, B0, Buo), respectively.

In Figure 7a, the results for tests (A3O, A0 Alzo) are compared to test A, as this solution was
also initiated with a priori data every 6 h. The three sets of solutions for the three models show
different patterns. We can see that the 8-13 km layer was not well solved by the tomography models,
which consequently impacted the overall result (respectively, lines/layers 4 and 7). Looking at the layers
under 10 km, the Wroclaw University of Environmental and Life Sciences (WUELS) and University of
Beira Interior (UBI) models show a similar performance for tests A and A (shortest 30 min stacking)
and an improved accuracy for the longer stacking period. WUELS reached a better performance in
test A%, i.e., for 60 min stacking, with a normalised root mean square (RMS) of 0.52 g/m> compared
with 0.96 g/m? for test A. Both UBI and the Royal Belgian Institute for Space Aeronomy (BIRA) model
obtained comparable accuracy retrievals in the first two layers to ACCESS-A values and retrievals
which were slightly better than ERA-Interim (normalised RMS of 0.16 g/m? versus 0.21 g/m?). Note that
normalised RMS values were computed from relative differences of two corresponding values from
two solutions. The relative difference means that an absolute difference of two values is divided by
one of the values. This method of statistics computation allows a reasonable comparison of studied
Nw and p,, parameters, whose absolute values change significantly with height.

The results shown in Figure 7b for tests (B3, B, B12Y) were compared to test B, as this solution
was also initiated with a priori data from NWP (i.e., ACCESS-A) only in the first epoch, the so-called
“stand-alone” mode. The WUELS and UBI models in tests (B%, B®?, B'2%) performed very similarly
to test B as long as the troposphere below 4 km is considered; in the 4-8 km layer, both delivered
improved solutions: WUELS showed in test B® a 30% improvement over test B and UBI performed
in test B30 about 20% better than in test B. However, both solutions were worse than ACCESS-A and
ERA-Interim, especially above 8 km. The BIRA model produced somewhat different results: in the
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0-1.5 km layer the solution for test B’ was better than that in test B and in ERA-Interim (with a
normalised RMS of 0.19 g/m? versus 0.20 g/m® and 0.21 g/m?, respectively). In all higher layers until
13 km test B!?Y was much better than test B, while for the top-most layer it attained a better performance
than ACCESS-A and ERA-Interim (0.90 g/m? versus 0.98 g/m3 and 1.06 g/m?, respectively). Whatever
the tomography model used, the performance in the 0-8 km layer was better in test (B*°, B®?, B!2) than
in test B; however, above an 8 km height, the best performance was found (in the BIRA and WUELS
models) for the longest stacking period of 120 min (test B12?). Note that for BIRA, test B'?Y showed
even better results than ACCESS-A (1.06 g/m3 versus 0.90 g/m3 )

a) | Sensitivity of p_tomography retrievals to data stacking
: 3 Pur ; ; ! A ! ] ! : 413
: : : . (apriori every 6h) : : :
L N e
-1 10
2
T e SITTIN PR z
o 1s E
3 =
2 3
H 3
£ £
7 i T I E I <
4
4
01 1 ~JHifHH-- . - {HH--EHHD- -
‘ | | ‘ ‘ -
0.01 S L M iR sHlllll el Al 0
o & N - i > \ SN B &
P20 K SR K PV MR AR A R AR AR R N
ISR AP MR S SRR SRR S-SR >\ AR\ S\ S\ 3
S S ST N
b) ‘Sensitivity of |p, tomography retrievals to data stacking 113
: : . ("stand-alone" mode) ' ‘ i
T e
------- 10
g
L I SRRt ARRRRS EEEEEN EERREE] EREES EECEEN! EESRES] B SRS B T
sl A A A AN AN EN N A N N N N N N O R | s E
3 =
2 3
= 3
©
£ =
5 'FU M - <
-4
------- 4
04 . - -
‘ ‘ l --------- -
0.01 S I\ ” I 0
& 3
o &

S &
¢ & ® o

Figure 7. (left) Normalised RMS of the differences in water vapour density (puv) between radiosonde
(RS) and 14 datasets (two sets from NWP, ACCESS-A, and ERA-Interim and 12 sets of tomography
retrievals from three models, namely, BIRA, WUELS, and UBI) for four tests: (a) A, A30 A0 and A120
and (b) B, B, B®, and B!?. The names of the tomography models are written along the x-axis with
the tests in square brackets. For each dataset comparison, the normalised RMS was computed over
seven different altitude ranges. (right) Illustration of the altitude ranges covered by the seven layers.

6.1.2. Interest in Pseudo-Slant Observations for Low- and Mid-Troposphere Retrievals

This section investigates the interest in adding pseudo-slants observations (SLANTgps) in
tomography retrievals. As shown in Table 3, the use of pseudo-slants increased the geometrical
distribution by +30% and +20% for the 0—4 km and 4-9 km layers, respectively. To test the implication
of improving the geometry with pseudo-slant observations, test A (with a regular initialisation from
NWP outputs; see Figure 6) and test B (only previous tomography retrievals used as a priori, making a
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‘stand-alone solution”) were compared with tests A, and By, respectively (tests that considered
pseudo-observations); see Figure 8.

Tests A" and B, (with 30 min data stacking) are also shown. Tests with 60 and 120 min
stacked pseudo-slants, as originally planned, were not processed because they are not relevant for
nowcasting (they have time windows which are too long and involve a significant increase of time
processing of about x250 and %4000, respectively). The comportments of the three models considered
were different. While WUELS improved in tests A,; and A" over test A (an improvement of about
15%), a degradation was able to be observed in tests B and B30 over test B (the normalised RMS was
multiplied by 2.4 g/m3 and 2.2 g/m3, respectively). This conclusion was mainly driven by analysis of
the 8-13 km layer. Even with an improvement, the results were still far from the RS data, which had
a normalised RMS of about 73 g/m3 for WUELS and about 1 g/m® for ACCESS-A and ERA-Interim.
For the UBI model, the same tropospheric layer drove the result, but with a degradation according
to both tests A and B (the normalised RMS was multiplied by 6 and 12, respectively). For the BIRA
model, tomography retrievals using pseudo-SLANTgps with a regular initialisation from NWP showed
a small degradation from a normalised RMS of 0.43 g/m? to 0.87 g/m® and 1.27 g/m3 for tests Ax
and A%, respectively (this was mainly driven by the high troposphere layer). However, the use of
pseudo-SLANTgps with ‘stand-alone initialisation” (giving an overall normalised RMS of 2.84 g/m3 for
test B) obtained a consequent improvement with an overall RMS of 0.56 g/m> and 1.05 g/m3 for tests
By and B9, respectively. The improvement took place in five of the seven layers (altitude ranges)
studied; no improvement was observed in the 0-1.5 km and 1.5-4 km layers. In the 8-13 km later,
the BIRA model even showed a slightly better performance than ACCESS-A (which had a normalised
RMS of 0.97 g/m? for BIRA compared with 0.98 g/m? for ACCESS-A).

The recommendation of improving the geometrical matrix of tomography retrievals with
pseudo-slant observations was applied using data from the Belgian dense network (baselines from
5 to 30 km) during the pouring rains of 15-17 August, 2010 (a weather depression called Yvette by
German meteorologists). GAMIT software was used to calculate ZTDs and gradients with a respective
time resolution of 15 and 30 min (see Brenot et al. [40] for more details regarding the settings of these
measurements). SIWVs were obtained using the GMF mapping function and ground pressures and
temperatures from synoptic stations (no post-fit residuals were considered). The horizontal resolution
of the tomography grid was 10 x 10 km and a vertical resolution of 500 m (for up to 10 km) was set.
Figure 9 presents a comparison of profiles from tomography retrievals and ALARO NWP outputs
with RS data from the Uccle station (Brussels) at 12:00 UTC on 16 August, 2010. The a priori condition
from the ALARO NWP model (4 km resolution) was considered and applied to retrieve water vapour
density from GPS tomography (employing the classical method and using pseudo-SIWVs).

The normalised RMS between RS and a priori ALARO, RS and tomography (classical), and RS
and tomography (pseudo-slants) were 1.00 g/m?, 0.97 g/m3, and 0.89 g/m?, respectively, for all layers.
These normalised RMS values became 0.47 g/m3, 0.44 g/m3, and 0.39 g/m? in the 0-6 km layer and
0.11 g/m3, 0.09 g/m3, and 0.02 g/m? in the 0-3 km layer. This confirms interest in using pseudo-slant
observations in GPS tomography.
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Figure 8. Same as in Figure 7, with normalised RMS of the comparisons of water vapour density (pwo)
profiles from RS with 11 datasets; two sets from NWP and nine sets from three tomography models
(BIRA, WUELS, and UBI) for three tests: (a) A, Ay, and A0 and (b) B, B, and B,:V.
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Figure 9. Comparison of water vapour density profiles during severe weather conditions over Belgium
(12:00 UTC on 16 August, 2010). Radiosonde, lauched from Uccle, was compared to ALARO NWP
(a priori condition of GPS tomography), GPS tomography (classical retrievals), and GPS tomography
using pseudo-slant IWV observations.
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6.2. Convergence of Tomography Solutions with Respect to A Priori Conditions and Time Resolution
of Processes

To look at the impact of a priori conditions on tomography retrievals (for 3-8 March 2010),
this section focuses on tests A, b, and B, as presented in Figure 6. RS were launched at 00:00 and
12:00 UTC, so the results of tests A and a were the same.

Figure 10 shows that in test A, wet refractivity estimates from GPS tomography models were
usually the best in the bottom part of the troposphere (below 1.5 km), with two out of three models
displaying a comparable performance (less than 10% degradation) to ACCESS-A, namely, BIRA and
TUW. Tomography retrievals (test A for BIRA, WUELS, and TUW) in the bottom part of the model
showed better agreement with RS than ERA-Interim results, and TUO displayed a similar performance
(not shown in Figure 10). However, this shows that this positive impact of GPS observations on the
estimated troposphere state was diminished once the a priori data introduced to the tomography model
were no longer fed in every epoch (test b) or the time resolution of estimates became higher (i.e., 30 min
for test B). In the second investigated layer (1.5-4 km) the tomography-retrieved refractivity displayed
usually the same or slightly worse accuracy than the NWP-based solutions: BIRA and TUW displayed
0.02 ppm (test A). Once the a priori data were not fed into the solution, the quality of retrievals dropped
substantially, by almost 40%. The retrievals in the higher layers, namely, 4-8 km and 8-13 km, for all
models in this study, were substantially worse than the ACCESS-A retrieval in all three tests. It also
should be noted that the TUO retrieval, even though less accurate than ACCESS-A, provided better
solutions than ERA-Interim for all 10 km, producing a normalised RMS of 0.36 and 0.38.
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Figure 10. Same as in Figure 7, with normalised RMS of the comparisons of wet refractivity (Ny)
profiles from RS with 11 datasets; two sets from NWP and nine sets from three tomography models
(BIRA, WUELS, and TUW) for tests A, b, and B.

A similar pattern was obtained for models producing water vapour density (not presented).
Compared to radiosonde in Melbourne, the tomography solution (test A) was of similar quality to the
ACCESS-A model in the first two layers of the atmosphere (below 4 km), especially for the models BIRA
and UBI, while WUELS and TUO showed a slightly lower performance. Between 4-8 km, only BIRA
and TUO retrievals were of useful accuracy, while WUELS and UBI showed five and four times lower
performance, respectively. Interestingly, the 8-13 km retrieval from TUO showed a better performance
than ACCESS-A data (displaying a normalised RMS of 0.94 g/m? and 0.98 g/m3). Test b and B showed
a much worse solution, especially in the higher levels of the model. The BIRA model in test A reached
a better agreement with RS than ERA-Interim results across the whole 0-10 km profile (producing a
normalised RMS of 0.28 g/m3 and 0.38 g/m?).
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6.3. Results Regarding the Impact on the Precision of Slant Retrievals

To investigate the impact on the precision of slant retrievals, the uncertainties of parameters acting
for obtaining SWDs and SIWVs were considered; see Section 5.3. The higher and lower estimates of
slants (as shown in Table 3) were used to look at the repercussions on tomography solutions. Figure 11
highlights differences of normalised RMS (related to py, observations) from 13 datasets (compared
to RS, e.g., RS-BIRA [A%*]) with RS~ACCESS-A. A highlight of eight tests regarding the impact of
uncertainty is presented (tests A* and A, for higher and lower slants, respectively, without stacking;
tests A3* and A3%- with 30 min stacking; tests A%+ and A®" with 60 min stacking; and tests A120+
and A!2" with 120 min stacking). Superscripted labels + and - and (+) and (-) refer to regular and
more realistic uncertainties (see values in brackets in Table 3), respectively, shown in Figure 11a,b.
These eight tests were used a priori from ACCESS-A every 6 h and can be compared to tests A, A%,
A% and A2, The difference in normalised RMS from RS-ERA-Interim with RS—~ACCESS-A is also
presented. To avoid differences in normalised RMS which were less or equal to 0.01 g/m? in the
logarithm scale of the y-axis, an offset of +0.03 g/m?® was considered.
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Figure 11. (left) (a) Difference in normalised RMS from 13 datasets of water vapour density (puo)
profiles (one set from NWP, i.e., RS—-ERA-Interim, and 12 sets from tomography, i.e., RS-BIRA A, A*,
A=, A3, A30+ A30- A6 A6+ A60- AT20 A120+ and A120); to avoid values of less than 0.01 g/m3 an
offset of +0.03 g/m3 was used. (b) Same as (a) but using more realistic uncertainties. For each dataset,
differences over seven altitude ranges have been presented. (right) Illustration of the altitude ranges
covered by the seven layers.

We found consistent comportment of tomography retrievals according to the type of uncertainty
(regular with strong impact and more realistic with weak impact). We also observed that stacked
data amplified the impact of uncertainty in tomography retrievals. Considering RS—ACCESS-A as a
reference, the sensitivity of the bias (i.e., the difference of normalised RMS) between RS and tomography
water vapour density for different kinds of slants (maximum/minimum uncertainty with regular/more
realistic errors), in comparison to the RS-ERA-Interim, showed interesting results regarding the
quality and possible improvements in SLANTgps as well as the validation of the NWP model using
tomography retrievals. Adding an uncertainty measure to the observation matrix increased the
accuracy of stochastic modelling for tomography retrievals and using a priori every 6h (in Figure 11)
and stacked solutions (e.g., A3(), A®0) and A120(9)) Jed to a better performance in the bottom 1.5 km.
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In the upper layer (1.5-4 km), these solutions were of lower quality than in ACCESS-A, but still better
than those of ERA-Interim. The 4-8 km layer was again better resolved using the BIRA model in
tests A3 and A%C). The topmost layer was of lower quality in all tests. The same kinds of tests
were performed using a priori from ACCESS-A only for the first epoch (to be compared with tests
B, B3, B, and Blzo). In comparison to the results of Figure 11, the impact of the uncertainty was
amplified due to the stand-alone situation of the tomography technique which was less constrained
by the a priori condition and ACCESS-A model. To illustrate this, we looked at the 4-8 km layer
and the comparison of py, from RS with estimates from ACCESS-A, ERA-Interim, test A3 test A0+,
and test A3, We found respective normalised RMS values of 0.50 g/m?, 0.67 g/m3, 0.61 g/m3, 0.72 g/m3
(0.67 g/m3 for test A39+)) and 0.48 g/rn3 (0.55 g/m3 for test A390)), and also looked at a comparison
with test B, test B30+, and test B%?", which showed respective normalised RMS values of 3.49 g/m3,
3.50 g/m3 (3.17 g/m3 for test B3*), and 2.11 g/m3 (2.49 g/m? for test B3()).

7. Cross-Comparison of Tomography Models with Profiles from External Observations

7.1. Comparison with Profiles from Radiosondes

Figure 12 illustrates the comportments of p,, retrievals from three tomography models (BIRA, UBI,
and WUELS) with respect to Melbourne RS estimates during the whole five-day period; comportments
of NWP (ACCESS-A or ERA-Interim) are also presented. Even ACCESS-A and ERA-Interim show py,
estimates closer to RS measurements than the tomography models, and it is possible to notice that the
three tomography models show the same p,,, pattern in the 0—4 km layer. A trend of moistening was
observed in the low troposphere by GPS tomography and was not seen by RS and ACCESS-A NWP.
Such features could be further studied by ensemble tomographic processing, which could be a way
to identify anomalies in the low troposphere with respect to NWP or other measurement techniques.
Note that tomography outputs and RS were assumed to be simultaneous (without considering the
wind field that affected the trajectory of RS profiles). These assumptions could be the reason for the
difference between tomography models and RS observations.
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Figure 12. Comparison of water vapour density retrievals from NWP models (ACCESS-A and
ERA-Interim) and tomography models (BIRA, UBI, and WUELS; test B®) with respect to Melbourne
RS measurements over the whole five-day period (left: mean bias; right: standard deviation (SDEV)).

7.2. Comparison with Profiles from Radio-Occultations

From 3 to 8 March, 2010, there were four RO events reported by CDAAC that coincided with
the location of our tomography network. The Ny, profiles from RO were compared with the BIRA,
WUELS, and TUW model results, whereas the BIRA, WUELS, and UBI models were compared to the
Pwo profiles obtained from RO (the wetPrf product). The profiles collected on 3 March, 2010 08:07
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UTC, 8 March, 2010 05:36 UTC, and 8 March, 2010 07:33 UTC (see Figure 1) showed no significant
difference between RO (mean normalised bias from 10 to 20%), tomography retrievals, and ACCESS-A
and ERA-Interim results, and followed a typical exponential pattern. Hence, these profiles will not be
discussed further.

Figure 13 presents profiles which run from the south-west towards the north—east over the
Australian Alps (see Figure 3) on 4 March, 2010 at 16:39 UTC (08:39 a.m. local time). Over 6 km the
radio-occultation (RO) profiles are outside the inner tomography grid. For this reason, only RO and
Numerical Weather Prediction (NWP) models show estimates of wet refractivity (Ny) over 6 km in
Figure 13. The tomography solution for Ny, is the one referred to in Table 4 as “no stacking”, with a
priori data fed into the model only in the first epoch. The results of the WUELS, BIRA, and TUW
tomography models were similar, distinguishing one inversion layer at heights between 4 and 6 km
(we can define this as a Ny, anomaly). For the RO profile, there were also local minima at these heights;
however, the largest inversion occurred below 4 km. The RO- and tomography-based values of Ny,
and pyy significantly differed from the ACCESS-A results in the lowest layer, as the latter did not show
any inversion. The ERA-Interim result for this particular location was much closer to the tomography
solution (BIRA and WUELS) and RO retrievals, showing a slight inversion between 5 and 6 km. The Ny,
anomaly retrieved by both tomography models is a relevant piece of information for nowcasting.
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Figure 13. Profiles of wet refractivity determined on the basis of radio-occultation (RO) technique
(purple), the ACCESS-A NWP model (black), the ERA-Interim NWP model (grey), and three tomography
models: BIRA (blue), WUELS (red), and TUW (yellow).

7.3. Selected Results—Focus on Tomography Network in the East and during Selected Epochs

Based on the day of the previous investigated RO profile, we decided to verify the performance of
the tomography models with respect to NWP forecasts in the eastern part of this model (orange/red
pixels with high top cloud detected by GOME-2 in Figure 1a). The investigation was focused on the
most accurate processing test A3 and times 12:00 and 18:00 UTC on 4 March 2010 (see Figure 14).

First of all, we can see in Figure 14 that the BIRA and TUW models were in better agreement with
ACCESS-A in the nine voxels (the south-eastern part of the network) than for all voxels, with the lowest
discrepancy in the lower 10 km of the atmosphere being 0.15 ppm and 0.14 ppm, respectively, (for all
the voxels, as shown in Figure 14a), and 0.10 ppm and 0.08 ppm, respectively, (for the nine voxels in
the south-eastern part of the network, as shown in Figure 14b). At the same time, there was a much
larger discrepancy between ACCESS-A and ERA-Interim in the same height range (0.23 for all the
voxels and 0.29 for the nine voxels). Taking into account this disagreement, it should also be mentioned
that the discrepancy between ERA-Interim and BIRA as well as ERA-Interim and TUW was smaller
(about 0.18 ppm for all the voxels and 0.20 ppm for the nine voxels) in the height range 0-1.5 km than
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the respective discrepancies between ACCESS-A and ERA-Interim (0.27 ppm for all the voxels and
0.28 ppm for the nine voxels). For the 4-8 km layer, similar behaviour can be observed for model TUW
(0.16 ppm for all voxels and 0.11 ppm for the nine voxels) versus ERA-Interim (0.20 ppm for both tests
with nine or all voxels). The 1.5-4 km layer in the tomography models (BIRA and TUW) did not align
well with ERA-Interim but aligned much better with the ACCESS-A solution (about 0.24 ppm versus
0.11 ppm for all voxels and 0.30 ppm versus 0.07 for nine ppm voxels). Note that ACCESS-A was
better at modelling the 1.5-4 km layer in the region around Melbourne than ERA-Interim, and that a
substantial improvement in the tomography model solution was most visible in this layer.
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Figure 14. (left) Normalised RMS of the comparison of wet refractivity (Ny) profiles from ACCESS-A
with four datasets (i.e., ERA-Interim, BIRA [A3], WUELS [A%], and TUW [A%]) and from ERA-Interim
with three datasets (i.e., BIRA [A3], WUELS [A30], and TUW [A30]), (a) for all the voxels and (b) for
nine voxels in the south-eastern part of the network. For each dataset comparison, normalised RMS
values related to seven layers are presented. (right) Illustration of the altitude ranges covered by the
seven layers.

8. Summary, Conclusions, and Perspectives for Future Works

This study aimed to conduct sensitivity tests and methodological improvements by
cross-comparing five independent tomography models. GPS data from the Australian CORS network
were considered during a severe weather event, i.e., the 6-8 March superstorm of greater Melbourne.
The same dataset of GPS slant observations was fed into tomography models and statistical results
(bias, standard deviation, and root mean square error) have been shown in reference to independent
observations from radiosonde and radio-occultation profiles. The inverse problem treated by GPS
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tomography was ill-posed due to non-homogenous distribution of slant observations through the 3D
grid, but this was also ill-conditioned due to the high number of parameters physically embedded.
This explains why the stabilisation of the tomographic solution remains a challenging task. In this
study, software based on different techniques were considered to test improvements of the stabilisation
of solutions. Three means of testing were investigated and combined: (1) the improvement of the
geometrical representativeness of retrievals, (2) the influence of the a priori condition in the convergence
process, and (3) the use of the uncertainty of inputs on tomographic solutions. This study has tested
a number of variants for which the impact on the quality of tomographic results has been assessed.
These variants are, notably, the interest in stacking data and the use of pseudo-slant observations, the a
priori condition considered in the tomography process, and the quality of initial observations and the
impact of observation uncertainty. We used five tomographic models, namely, BIRA, WUELS, TUO,
UBI, and TUW (see the Appendices for more details about these models); the processed results were
compared to data obtained from ACCESS-A and ERA-Interim outputs, RS profiles, and RO products.

Tomography models produce parameters that are usually of similar or worse quality than
ACCESS-A retrievals (see Figures 7, 8, 10, 11 and 14) with few exceptions, i.e., in the bottom part of
the troposphere for the BIRA and TUW tomography models (0-1.5 km), wet refractivity retrievals
were of 0.5% better quality compared to ACCESS-A for tomography models fed with 6 h a priori data.
Time stacking improved the solution with respect to non-stacking in all investigated cases without a
continuous feed of a priori data (i.e., in tests B3, B, and Blzo). In addition, a short stacking period
of 30 min (test B*) gave a better response in the BIRA, WUELS, and UBI models (with 5, 3, and 17%
respective improvements in the 0-8 km layer in comparison to test B), while for all other layers longer
stacking worked better (120 min, test B'2?): the lowest discrepancy between the tomography model
and RS was found in the 8-13 km layer and the stacking test B2
in the BIRA solution in comparison to ACCESS-A. The use of pseudo-slant observations showed
variable results. Sometimes it did not bring about any visible improvement in terms of RMS, but in
some cases (e.g., in the 0-10 km layer), the use of a pseudo-SLANTps with ‘stand-alone initialisation’
obtained a consequent improvement (see tests B,y and B>’ in comparison to test B in Figure 8b;
0.56 g/m? and 1.05 g/m?® were obtained, respectively, in comparison to 2.84 g/m?, for all the layers).
The BIRA solution of test B> was indeed 1% better than that of ACCESS-A for the 8-13 km layer.
Our sensitivity tests showed that when using 30 min stacking data, an improvement was obtained
relative to RS profiles (a 5% improvement in the 0-1.5 km layer was observed for the BIRA model and
an 18% improvement in the 4-8 km layer was observed for the UBI model) without bringing too old
data into the tomography process, allowing for a proper understanding of the meteorological situation.
However, the increase in the geometrical distribution (Table 3) was weak using only 30 min stacking
data (+1.5 %). We found that the use of pseudo-slants can significantly improve the geometrical matrix
of tomography retrievals (i.e., by +25 %, showing a better special representativeness) and can bring
about, in some cases, an improvement (a five times lower RMS value was obtained for all the layers
when comparing test B, with test B for the BIRA model). The a priori condition tests on tomography
show that the best results (with respect to RS) can be obtained using the best a priori. This is why,
assuming that the ACCESS-A a priori was reasonably good (and close to the RS profiles), tomography
retrievals, using regular a priori from NWP, obtain the best results (a three times lower RMS value
was obtained for the 0-8 km layer, considering solutions from the BIRA, WUELS, and UBI models),
illustrating that the “stand-alone” strategy (using the previous tomography retrievals as the a priori of
the next calculation) is not always successful. A divergence in results is obtained, especially when the
a priori is far from the real state of the atmosphere.

Figure 15 summarises the results of water vapour density retrievals obtained for three types of
a priori conditions (tests b, B, and A; see Figure 6), the use of 30 min stacking (B30 and A3O), the use
of pseudo-observations (B, and Ay), and the combined models (B0 and A,%0). The impact of
the uncertainty of tomography inputs (error for model A) is one order of magnitude lower than the
use of stacking or pseudo-observations. The results for the 0-8 km, 8-13 km, and 0-13 km layers

, which showed an 8% improvement
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are shown. The mean and best results highlight the recommendations of using 30 min stacking or
pseudo-observations for the 0-8 km layer. The use of combined stacking and pseudo-observations
shows consequent instability in the solutions of the three types of tomography software considered.
This is due to the high number of data inputs ingested by tomography models and an unsatisfied
adjustment for the top layers of the tomography grid. For this reason, the overall mean result of the
8-13 km layer does not show an improvement when using stacking and pseudo-observations.
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Figure 15. Normalised RMS of the differences in water vapour density (pyv) between RS and (1) mean
tomography models (b, B, B30, B, B39, A, A% A, and Aﬂ30) and (2) best models. For each dataset
comparison, the normalised RMS are shown over three different altitude ranges (0-8 km, 8-13 km,
and 0-13 km layers). Using uncertainty of slant observation inputs for tomography, the error of the
dataset comparison with model A is presented.

The results regarding the quality of initial observations and the impact of observation uncertainty
are the following. The relative error of parameters related to GPS tomography (e.g., refractivity
coefficient ky’, SWD, and SIWV) had a moderate impact on the GPS tomography solution (going from
4% without stacking to 24% with 2 h stacking), as shown in Figures 11 and 15. However, an interesting
result of this sensitivity test is that, for some cases with lower (or higher) values of SWDs or SIWVs,
closer tomography estimates were obtained in comparison to RS profiles. With the use of strong and
more realistic uncertainties applied positively and negatively, respectively, this was, finally, the four sets
of SLANTGps that we tested to assess the sensitivity of tomography retrievals. The order of magnitude
in observations was transferred to tomography retrievals (e.g., in Figure 11, an increase in observation
amplitudes shows an increase in normalised RMS from tomography with respect to RS, meaning
that lower SLANTps applied in tomography showed closer results to RS). A key result obtained
in this study is that a moistening anomaly was found in tomography retrievals (and RO profiles)
compared to the NWP forecast. This is all the more interesting if such an anomaly is identified by
several tomography models, as shown in Figure 13. We recommend the use of ensemble tomography
(from several models) in nowcasting systems.

Interest in using stacking slant data and optimal configuration of the tomography grid has
been investigated by [17] and involved consideration of synthetic data from a BASCOE (Belgian
Assimilation System of Chemical Observations from Environmental satellite) NWP model and external
validation from satellite sensors and RS retrievals. Building on conclusions from previous studies,
this paper focused on comparison with independent external observations from RS and RO techniques
(measurements in all weather conditions) across five days (involving quiet and severe conditions) to
validate methodological improvements. It is important to notice that this study did not contain an
evaluation of SWD and SIWV quality; SWDs and SIWVs were computed from ZTDs and horizontal
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gradients estimated from GPS observations and obtained using outputs of ground pressure and
mean temperature from ACCESS-A NWP. Note that an interpolation in time (from 6 h to 30 min) of
ACCESS-A outputs was considered to obtain SWDs and SIWVs, rather than considering observations
of ground pressures and temperatures from synoptic stations. Fortunately, when the a priori condition
from ACCESS-A was considered every 6 h in GPS tomography, the time interpolation was not a
problem in the comparison with RS data. Hence, the contribution of hydrometeors to the delay was not
considered. Errors in ground pressure and hydrometeor contributions can impact ZTDs measurements
by up to a few centimetres in extreme weather [40], which can lead to an error in IWV of up to more
than 5 kg/m?.

Finally, to conclude, we used independent external observations to assess the impact of several
tests. Even better results (in comparison to the a priori condition from ACCESS-A) were obtained
only for a few configurations and layers (i.e., an up to 0.5% improvement of normalised RMS in the
0-1.5 km layer for tomography models fed with 6h a priori data was observed, as well as an up to
1% improvement in the 8-13 km layer when using pseudo-observations), and interest in improving
the geometrical matrix (with a priori every 6 h or “stand-alone” solutions used) has been clearly
highlighted by comparing improved solutions with classical retrievals. We recommend using stacking
data (using a maximum time window of 30 min) and pseudo-slant observations in case studies and
nowcasting applications.

A hypothesis of straight ray propagating was considered in this study for modelling the path
delay from GPS stations to ground-based receivers in our tomography models. Because the bending
effect is negligible over 10° [3,63,64], the inversion problem becomes linear and can be formulated
using the discrete theory. Post-fit residuals cleaned from systematic effects, which were not used in
this study, could be beneficial for GPS slant observations under severe weather conditions. These two
aspects need to be considered in future work.

Author Contributions: Authors Hugues Brenot (H.B.), Witold Rohm (W.R.), Michal Ka¢maiik (M.K.),
Gregor Moller (G.M.), Andre S4 (A.S.), Damian Tonda$ (D.T.), Lukas Rapant (L.R.), Riccardo Biondi (R.B.),
Toby Manning (T.M.), and Cédric Champollion (C.C.) made the following contributions: conceptualization,
H.B. and W.R.; formal analysis, M.K.; funding acquisition, W.R., H.B., and G.M; investigation, H.B., W.R., M.K,,
and G.M.; methodology, H.B.; project administration, W.R.; software, H.B., W.R.,, M.K,, GM., AS,, D.T,, LR, R.B,,
T.M., and C.C; supervision, C.C.; validation, M.K. and G.M.; visualization, M.K. and H.B.; writing—original draft
preparation, H.B. and W.R.; writing—review and editing, H.B., WR., M.K,, and G.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was partially supported by the Solar-Terrestrial Centre of Excellence (http://www.stce.be) and
the Wroclaw Center of Networking and Supercomputing (http://www.wcss.wroc.pl) computational grant using
MATLAB Software License No. 101979. This work was supported by The Ministry of Education, Youth and Sports
from the National Programme of Sustainability (NPS II) project ‘IT4Innovations excellence in science - LQ1602’.

Acknowledgments: This work was achieved in the frame of the European COST Action ES1206 GNSS4SWEC
(http://www.cost.eu/COST_Actions/essem/ES1206; GNSS for Severe Weather and Climate monitoring) which
aims to study the use of GNSS tropospheric products for high resolution NWP and severe weather forecasting
(http://gnss4swec.knmi.nl/wg?2). This investigation was also a contribution to the International Association of
Geodesy (http://www.iag-aig.org) and the Solar-Terrestrial Centre of Excellence. We thank Roeland Van Malderen
and Alex Deckmyn from the Royal Meteorological Institute of Belgium for providing radiosonde data and ALARO
NWP outputs.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Overview of the BIRA Tomography Model

The 3D tomography model used at the Royal Belgian Institute for Space Aeronomy (BIRA-IASB)
is an adaptation of the LOFTT software developed by Champollion et al. [6]. In its current version this
software uses weighted and damped least-squares inversion with SVD. The inversion by least-squares
adjustment resolves the Ny, or pyr model, minimising the misfit function x% when considering the
Ly-norm [65], i.e.,

X2 = (Gm—-d)" C5! (Gm—-d) + (m-mg)" C} (m —my) (A1)
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where C); is the covariance operator associated with the a priori model mg of Ny, or pyp. The inversion by
least-squares is optimal when the errors follow a Gaussian law (a hypothesis we can assume). Note that
if this is not the case, the least-squares inversion gives an approximate solution. The uniqueness
of the solution depends on the geometry of the network and the number of observations. For GPS
tomography, the geometry of the network is unfavourable because the atmosphere is only scanned from
the surface. All the voxels are not lit by GPS rays (an under-determined problem) but the information
conveyed by the set of rays is redundant for some voxels (an over-determined problem). We consider
then a mix-determined or ill-posed inverse problem. In this case, the inverse of the geometrical matrix
(or another matrix linked to it, e.g., the inverse of the A matrix described in Equation (A2) does not
exist. An approximate solution for A™! can be obtained from the SVD technique and the generalised
inverse A™8 The use of an a priori model my in the least-squares process is also a good way to optimise
the adjustment of the solution m. To express the associated covariance operator Cy; to the a priori
model, external measurements (like radiosonde profiles or climate weather models) can be considered.
In this tomography software, my itself (outputs from ACCESS-A) and a damping coefficient (6p; = 0.9)
are applied to describe the covariance operator of the a priori model (Cyy = 0 mg). The weight
is directly linked to the values of the a priori model mg. The closer Oy is to 1, the more difficult it
is for solution m to differ from my. Note that in the same way, the covariance operator Cp of data
observations is estimated by (Cp = 0p d) with a damping coefficient (op = 0.1). The higher 6p is,
the higher the freedom applied in the adjustment of solution m.
The least-squares solution m of (Ny, or pyy) is retrieved using Equation (A2), i.e.,

m = mg+ CyGTA™8 (d - Gmy) (A2)

with
A =GCyGT +Cp (A3)

Note that an equivalent expression: m = mg + (GTCI_)lG + CK,[l)_g GTCI_)l (d — Gmyp) for Equation

(13) can also be found in the literature ([65] page 36, Equation (1.106)). The SVD concerns a factorisation

of the A matrix (called the covariance square matrix; this is linked to G, Cy, and Cp), as shown in
Equation (A4), i.e.,

A = UAV! (A4)

where U is the orthonormal matrix (data space), A the diagonal singular values matrix, and V
the orthonormal matrix (model parameter space). A~ cannot be obtained, and for this reason,
the generalised inverse A™® is finally used, as formulated in Equation (A5) by

A8 = VATIUT (A5)

This methodology provides six quality control parameters: (1) the accumulated distance of each
ray inside each voxel (geom™Y), (2) the diagonal elements (diagre“’l) of resolution matrix R, (3) the
trace (trace™°!) of R, (4) the diagonal element (diag®"?) of covariance square matrix A, (5) the spread
factor (spread®) which is linked to the distance to the next voxel and the resolution matrix, and (6) the
condition number (cond™™) that is the ratio between the maximum and the minimum singular values
(diagonal elements of matrix A). The resolution matrix is defined by R = CMGTA_gG. Quality controls
diag™s°! and diag®"? are generally low (note that the closer the diag™°' and diag®®"? are to 1, the closer
trace is to the number of observations, and the better the solution). Concerning cond™™, because
GPS tomography is an ill-posed problem, this value of the singular values can be extremely high (from

resol

100 to 1012 for the maximum values and from 108 to 10° for the minimum). To facilitate the visualisation
of this quality control, the ratio between maximum and minimum singular values (cond™™ from 50 to
2000) can show the quality of retrievals. If cond™™ is low (under 100), the quality of retrievals can be
considered good.
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Appendix B. Overview of the WUELS Tomography Model

In TOMO?2, the 3D tomography software from Wroclaw University of Environmental and Life
Sciences, the SVD, and robust Kalman filter techniques are used to determine Ny, or py, values;
for more details the reader is referred to Rohm et al. [25]. This algorithm estimates the system state
based on the previous state and the correction to the measurement. In the case of Ny, denoted here by
m., determining the future state my_ 1 is described by Equation (A6), i.e.,

M1 = Ppmy + wi (A6)

where @y is the system change matrix and wj contains the system noise with an expected value of
E(wy) = 0, and covariance E(a)kw{) = Qk, which is called the dynamic noise matrix. The linear
observation model is expressed by

SWDy = Ap-my + S (A7)

where SWDy, are assumed to be independent slant observations of the GPS signal delay, Ay is a design
matrix containing As; for each SWDy, and 9 denotes measurement noise with the expected value
E(9) = 0 and covariance E(SkSZ) = Cp. Kalman’s robust filter allows for the reduction of weights for
outliers. The form of the variance covariance matrix can also be determined from the previous state
based on the following relationship, i.e.,

Pmk(_) = qu'Pmk_1 (+)q)kT + ka—l (A8)

where my(—)s the future state of the system and my1(+) describes the previous system state for
wet refraction, and Py, (—) is the predicted matrix variance—covariance, whereas Py, ,(+) is the
variance—covariance of the previous system state. As described above, the use of a robust Kalman filter
is associated with outlier detection, i.e.,

e = Ak-mk(—) - SWDk (A9)

where 7y is the residual value of observation. This is the basis for assigning new values in the covariance
matrix Cp, i.e.,

Cp = (diag(py, p2,---,pm))”" (A10)
where p; values are determined on the basis of residual values r;, i.e.,
o-c
WP
where o is the variance reference value, usually assumed to be 1, c is a scaling parameter whose value

is 1.5, and p is the weight of the observation. If the condition is fulfilled then p; = p. Otherwise, p; is
calculated from
_coNp

pi =
[7]

7] < (A11)

(A12)

The last phase of the Kalman filter is the state correction. It is based on the so-called Kalman’s
gain, i.e.,
-1
Koy, = P (=) AL (AP (<AL + Cp) (A13)
The determination of the state of the system (Equation (A13)), together with the
variance—covariance matrix (Equation (A14)) for the wet refractive index is finally expressed in

the form
my(4) = my(=) + Ky, (SWDy — Ay (=) (A14)

Py (+) = Py (=) + Kig AP () (A15)
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The TOMO2 model does not use constraints between voxels, either vertically or horizontally,
and the solution to Equation (A12), i.e., the definition of the Kalman gain is performed using truncated
singular value decomposition, as discussed in [24].

Appendix C. Overview of the VSB Tomography Model

The 2D GPS tomography technique used at the VSB Technical University of Ostrava (VSB-TUO)
represents a different approach compared to typical 3D tomography. It uses the least-square adjustment
technique and is based on a limited number of GPS reference stations positioned as much as possible in
a straight line, and builds a single narrow strip of 3D voxels above it. Only slant delays with azimuthal
angles similar to the orientation of the line enter the solution. The number of available input slant
delays is therefore generally dependent on the line orientation and strongly changes with time due to
the moving satellite constellation of the GPS used. Although Ny, or py, values are estimated in all
voxels, the main output of the technique is a vertical profile of Ny, or py» in voxels above the middle
of the line, since these are crossed by the largest number of slant delays. Generally, these values are
obtained by solving a linear system as in Equation (A16), i.e.,

SWDy, = Ag-my (A16)

where values of SWDy, Ag, my have the same meaning as in Equation (A6). These linear systems are
rarely well defined (i.e., they have the same number of equations as variables). More usually, they are
either over- or underdetermined. This property complicates the use of standard techniques of solving
systems of linear equations and requires a more general approach. One of the possible approaches to
solving linear systems is defined by Equation (A17), i.e.,

my = argmin(Agmg — SWDy) (A17)

This form of the problem opens the use of several numerical optimisation techniques like
least-squares or gradient descent. These methods, however, have proven to be barely usable due to the
high number of local minima present in this problem. Therefore, a more general global optimisation
algorithm has been used in the form of simulated annealing (SA) (see Zelinka and Skanderova [66]).
This method is based on a metallurgical technique involving heating and controlled cooling of a
material to increase the size of its crystals and reduce their defects. Generally, the state of some physical
systems, and the function A to be minimised, can be likened to the internal energy of the system
in that state. The goal is to move the system from some initial state to a state with the minimum
possible energy. At each step, the algorithm finds some neighbouring solutions m;, of the current
solution xy and probabilistically decides between moving the system to state m, or keeping it in
state my. When correctly set, these probabilities lead the system to move to states with lower energy.
This procedure is repeated until the system reaches a state that can be considered good enough for the
application, i.e., a state that does not change between iterations or until a given number of iterations has
been met. Iterating the algorithm ensures, together with the probabilistic approach used for accepting
the different states, that it does not get stuck in local optimums. Other bio-inspired metaheuristics like
differential evolutions or SOMA (see [67]) were also considered but none gave as good results as SA.

We also impose several constraints that should help with the convergence of the method. Values of
the optimised parameters are bounded by the initial value of my. In our experiments, we chose to
bound the values of m to a <% ;3> multiple of the initial value. Additionally, the residuals of each
optimisation step were weighted by the elevation angle of the observation using linearly decreasing
weights. For more information regarding the principles of this technique, the reader is referred to [68].

Appendix D. Overview of the TUW Tomography Model

The tomography solution used by the Vienna University of Technology (Technische Universitit
Wien) is based on a software package for atmospheric tomography (short: ATom, https://github.
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com/GregorMoeller/ATom). ATom combines weighted least-squares techniques with TSVD and 2D
ray-tracing methods for iterative reconstruction of signal paths and refractivity fields from tropospheric
signal delays. Based on the number of observation types or constraints, the equation system is split
into several partial solutions. In the case of two subsets (slant delays and a priori information, as used
within this study), the tomography solution m and its partial solution mp read as

mp = VAT'UTGp Cpld (A18)

where U, V, and A are obtained by a singular value decomposition of matrix GDT-CB1 -Gp. The diagonal
elements op , of the apriori variance—covariance matrix Cp are computed as a function of elevation,
%TD, where O'%TD = 2.5mm reflects the accuracy of the estimated zenith total delays.
In a second step, solution mp is combined with the a priori information mg as

ie,opy = sintie-o

m = mp + VAT'UTG' C;* (mg — Gomp) (A19)

where U, V, and A are obtained by SVD of the matrix GOT'Cal'GO + C_ml with C; = VA™IUT as
the variance—covariance matrix of the first partial solution. The diagonal elements oy, of the
variance—covariance matrix Cop were derived in an initial step from comparisons of the a priori data
(ACCESS-A) with radiosonde measurements (altitude-dependent weighting).

The benefit of the partial solution is that mp depends solely on the observations (d), which allows
for a proper selection of singular values, e.g., by means of an L-curve technique [56]. Hence, less resolved
voxels are detected and ejected individually for each observation type.

Finally, the obtained tomography solution is checked for outliers by analysis of the post-fit residuals.
In the case of large residuals, outliers are removed and the processing is repeated. Usually three to
four iterations are necessary until the RMS of the residuals converges. The quality of the obtained
refractivity fields is assessable by analysis of the normalised misfit function, condition number, residuals,
and standard deviation of the estimates. The reader is referred to Moller [56] for more details.

Appendix E. Overview of the UBI Tomography Model

Space and Earth Analysis Laboratory (SEGAL) GPS Water Vapour Reconstruction Image Software
(SWART) was developed at SEGAL in the University of Beira Interior. SWART uses algebraic
reconstruction techniques (ART) to compute Ny, or py» tropospheric distributions over a specified area
using SWDs or SIWVs, respectively, and plots results as 2D images of horizontal or vertical sections.

Various algebraic iterative methods for reconstruction, i.e., for solving large linear systems (see the
form presented in Equation (A15), are used in tomography and many other inverse problems [5,69-73],
and were implemented in SWART. In this specific case, for the inversion, we used SART, which was
implemented as a simultaneous iterative reconstruction technique (SIRT).

SIRT methods are “simultaneous” in the sense that all parameters in vector m are updated at the
same time in one iteration. The method can be written in the general form

it = i 4 A TATM(b — Am), k= 0,1,2, .. (A20)

k= ik 4+ A TATM(b - Antt), k= 0,1,2, .. (A21)

where m* denotes the current iteration vector, m*! is the new iteration vector, Ak is a relaxation
parameter, and the matrices M and T are symmetric positive definites. Different methods depend
on the choice of these matrices. The iterates of the form Equation (A22) converge to a solution m* of
miny||Am — bl|p if and only if

0<e< A <2/p(TATMA) - ¢ (A22)
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where ¢ is an arbitrary small but fixed constant and p(.) is the spectral radius (the largest positive
eigenvalue). If, in addition, m® e R (TAT) then m" is the unique solution of the minimum T1 norm
(minimum 2 norm if T = I).

For SART, Equation (A23) was written as

m* T = mk + A DI ATD (b - A%) (A23)
where the diagonal matrices D, and D, are defined in terms of the row and column sums, i.e.,
D, = diag(lla'ly)  De = diag(lla,lly) (A24)

We do not include weights in this method. The convergence for SART was independently
established in Equations (A18) and (A21), where it was shown that y(Dr_ ATD; 1A) = 1 and that
convergence is therefore guaranteed for 0 < Ay < 2. Hence, regarding the approach to constraining
the a priori condition, SWART uses a unit covariance matrix, and, considering that at the top of the
troposphere (10-15 km) there is no water vapour, the corresponding top voxels are forced to have a
value of zero.

A priori data can be used as the first guess of m to speed up the convergence by reducing the
number of the necessary iterations. To define the number of iterations, the back-projection technique
was implemented as stop criteria. Following Equation (A15), A m* = b¥ is close to the experimental
datab =10, ie., ’bo — Amk|: min.

Using the back-projection technique where b represents the observations in Equation (A15), if the
computed x is used to retrieve b (bswarT), it is possible to calculate residuals (r) and use these for
quality control (Equation (A25)).

r =b—bswart (A25)
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