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Abstract: Southeast China, a non-core region influenced by the El Niño–Southern Oscillation (ENSO),
has been seldom investigated before. However, the occurrence of ENSO will affect the redistribution
of precipitation and the temperature (T) spatial pattern on a global scale. This condition will further
lead to flood or drought disasters in Southeast China. Therefore, the method of monitoring the
occurrence of ENSO is important and is the focus of this paper. The spatiotemporal characteristics of
precipitable water vapor (PWV) and T are first analyzed during ENSO using the empirical orthogonal
function (EOF). The results showed that a high correlation spatiotemporal consistency exist between
PWV and T. The response thresholds of PWV and T to ENSO are determined by moving the window
correlation analysis (MWCA). If the sea surface temperature anomaly (SSTA) at the Niño 3.4 region
exceeded the ranges of (−1.17◦C, 1.04◦C) and (−1.15◦C, 1.09◦C), it could cause the anomalous change
of PWV and T in Southeast China. Multichannel singular spectral analysis (MSSA) is introduced
to analyze the multi-type signals (tendency, period, and anomaly) of PWV and T over the period
of 1979–2017. The results showed that the annual abnormal signal and envelope line fluctuation of
PWV and T agreed well in most cases with the change in SSTA. Therefore, a standard PWV and T
index (SPTI) is proposed on the basis of the results to monitor ENSO events. The PWV and T data
derived from the grid-based European Center for Medium-Range Weather Forecasting (ECMWF)
reanalysis products and GNSS/RS stations in Southeast China were used to validate the performance
of the proposed SPTI. Experimental results revealed that the time series of average SPTI calculated
in Southeast China corresponded well to that of SSTA with a correlation coefficient of 0.66 over the
period of 1979–2017. The PWV values derived from the Global Navigation Satellite System (GNSS)
and radiosonde data at two specific stations (WUHN and 45004) were also used to calculate the
SPTI. The results showed that the correlation coefficients between SPTI and SSTA were 0.73 and
0.71, respectively. Such results indicate the capacity of the proposed SPTI to monitor the ENSO in
Southeast China.

Keywords: El Niño–Southern Oscillation (ENSO); precipitable water vapor (PWV); temperature (T);
standard PWV and T index (SPTI)

1. Introduction

Water vapor is a major driving force of weather change and atmospheric circulation, and its
dynamic trend is an important factor affecting climate and weather prediction [1–3]. According to the
Clausius–Clapeyron (C-C) equation, a rise of 1 K in atmospheric temperature (T) will result in a 7%
increase in water vapor when the relative humidity is regarded as a constant [4]. A total of 7% K-1 exits
deviations in the tropics and mid-latitude, could be canceled in the global mean [5]. An increase of
precipitable water vapor (PWV) will cause slight climate change in China, which is the focus area of
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this paper [6]. Therefore, better knowledge on the accurate distribution and change in atmospheric
water vapor is important for climate research and weather prediction.

Techniques, such as radio sounding and water vapor radiometer, have been used to retrieve
precipitable water vapor (PWV) for reflecting the variation of atmospheric water vapor. However, these
techniques are restricted by their shortcomings. For example, radiosonde (RS) provides water vapor
distribution products with limited horizontal and temporal resolution. The general distance between
the adjacent sounding stations are nearly 200–300 km, and their sounding balloons are launched 2–4
times a day. Therefore, PWV obtained from RS is used primarily for data calibration [7]. PWV can also
be derived from reanalysis products, which use advanced data assimilation technology and provide
variables of global atmospheric circulation with high spatial integrity and continuity of data [8–10].
However, the accuracy and quality of such PWV need further verification. Since [11] proposed the
conception of PWV retrieval using the observations gathered from the Global Navigation Satellite
System (GNSS), GNSS meteorology has rapidly developed. Compared with traditional techniques,
PWV derived from GNSS observations is characterized by all weather conditions, high precision, high
temporal resolution, and low cost [12,13].

The phenomenon of the El Niño–Southern Oscillation (ENSO) is a disturbing normal weather
pattern that causes severe drought, floods, tropical cyclones, forest fires, and extreme weather events
around the world [14]. [15] reported that the ENSO occurred at a sea surface temperature anomaly
(SSTA) value at the Niño 3.4 region, lasting for five months or longer than 0.4 ◦C, whereas La Niña
occurred at the value of a continuous value for five months or more than the time of less than −0.4◦C.
ENSO has an independent influence on the winter rainfall over Southern China [16–19]. The anomalous
southwesterly winds occur along the southeast coast of China in El Niño years. These anomalous
winds substantially enhance the moisture supply to Southern China (SC) and contribute to an increase
in January, February, and March (JFM) rainfall in the region [16,19]. Furthermore, [16] found that
ENSO has a dominant contribution to temperature anomalies at the upper level, which may enhance
convective instability over South China and further contribute to an increase in JFM rainfall over SC.
Conversely, Western China and Northern China experienced a high drought risk and a low flood risk
in the developing fall of El Niño [20]. Southern China is an important economic zone in China and is
densely populated. The abnormal rainfall in winter and spring has a great impact on the economy and
human activities. In addition, the East Asian winter monsoon (EAWM) and South China Sea (SCS) sea
surface temperature (SST) affects the cold season rainfall in Eastern China [16,17]. EAWM, one of the
most influential components of the global climate system, which could induce circulation and further
affects the winter season climate in China [17,21]. Among the many affecting parameters of EAWM, the
change in tropical SST associated with ENSOs may be a major factor [22]. When the ENSO strengthens,
there is a rainfall surplus in Southern and East-Central China and deficits in Northern China [20].
Therefore, ENSO has seriously affected the drought and flood in Eastern and Southern China [22–24].

The contribution of ENSO to rainfall and T change has gradually attracted the attention of academic
communities [25,26]. Some studies have shown that climate change is correlated with PWV and
T [3,4,27]. [28] found that inter-annual variations of tropical water vapor are correlated with T. [3] found
that ENSOs significantly affect the change in GNSS-derived PWV and that a 1 K rise in sea surface T will
cause an 11% increase in PWV. [29] found PWV data can effectively estimate surface wet and dry changes.
These studies have shown that PWV can be used to monitor meteorological drought/flood. Currently,
SPI (standard precipitation index), SPEI (standard precipitation evapotranspiration index), and scPDSI
(self-calibrating Palmer Drought Severity Index) can generally be used to monitor drought/flood.
However, these three indexes have some shortcomings. SPI does not consider the role of T in future
drought conditions. The calculation process of SPEI is complex, wherein the key parameter (potential
evapotranspiration) is calculated on the basis of the empirical model rather than measured data [30].
ScPDSI is vulnerable to the strong impact of calibration cycles and produces inaccurate estimates at
high altitudes and in winter [31,32]. Therefore, it is necessary to develop a new index to monitor
drought/flood.
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In this study, the spatiotemporal characteristics of PWV and T were first analyzed based on the
empirical orthogonal function (EOF) method in Southeast China over the period of 1979–2017, which
showed that the time coefficients of PWV and T first mode had a high correlation with SSTA, with
values of −0.54 and −0.55, respectively. Then, the response thresholds of anomalous change of PWV
and T in Southeast China were determined by moving window correlation analysis (MWCA), and the
thresholds were credible based on the experiment data period (1979–2017) and the percentile method.
Finally, a novel index, namely, standard PWV and T index (SPTI), is proposed to monitor the effect of
ENSO on the anomalous change of PWV and T in Southeast China. The PWV and T are used, and their
contributions to SPTI are determined by multichannel singular spectral analysis (MSSA). In addition,
the proposed SPTI is validated using ECMWF, GNSS, and RS data over the different period, and the
results show a good performance of the proposed index.

2. Materials and Methods

2.1. Materials Description

A total of 5 kinds of data (PWV, T, SST, solar radiation, and SSTA) were used in this study, and the
specific spatiotemporal resolutions of these data are summarized in Table 1. The grid-based PWV and
T data in Southeast China were obtained from the fourth-generation reanalysis dataset of the European
Center for Medium-Range Weather Forecasting (ECMWF ERA-Interim), and their spatiotemporal
resolutions were monthly and 0.5◦×0.5◦, respectively. ECMWF ERA-Interim covered the corresponding
meteorological data from 1979 to 2–3 months before the present. The PWV data at some GNSS and RS
stations were also obtained from the Crustal Movement Observation Network of China (CMONOC)
and Integrated Global RS Archive Version 2 dataset, respectively [33]. The corresponding geographical
distribution of GNSS and RS stations is presented in Figure 1, where the name are WUHN and 45004,
respectively. The corresponding sea surface T (SST) data in the ENSO area were derived from the
National Oceanic and Atmospheric Administration (NOAA ERSST v3b) [34], and the spatiotemporal
resolutions were monthly and 2◦×2◦, respectively.

Table 1. Characteristics of the datasets selected in the experiment.

Data Spatial and Temporal Resolution Temporal
Coverage/Year Sources

ECMWF -derived
PWV and T 0.5◦ × 0.5◦ monthly 1979–2017 https://www.ecmwf.int/datasets/

SST 2◦ × 2◦ monthly 1979–2017 https://www.esrl.noaa.gov/psd/data/
GNSS-derived

PWV station hourly 2005–2016 [33]

RS-derived PWV station daily 2005–2016 [33]
SSTA El Niño 3.4 monthly 1979–2017 http://www.cpc.ncep.noaa.gov/

Solar radiation 0.5◦ × 0.5◦ daily 1981–2016 https://rda.ucar.edu/datasets/

According to previous studies [15,35], both SOI and SSTA could represent ENSO events, but
based on two different perspectives, SOI is considered from the aspect of atmosphere, while SSTA
is considered from the aspect of sea surface temperature. They are different manifestations of the
same phenomenon in two media, and they are two sides of the same body. In our study, only SSTA
was selected to reflect the ENSO event. The monthly average SSTA in the El Nino 3.4 area (5◦N–5◦S,
120◦W–170◦W) were derived from the National Centers for Environmental Prediction (NCEP). The
ENSO happened when the SSTA value lasted for 5 months or longer, being larger than 0.4 ◦C, while
the La Niña happened when the SSTA value lasted for 5 months or longer, being less than −0.4 ◦C [15].
The solar radiation data in Southeast China was also obtained from the university corporation for
atmospheric research to analyze the anomalous variation of T during the ENSO period.

https://www.ecmwf.int/datasets/
https://www.esrl.noaa.gov/psd/data/
http://www.cpc.ncep.noaa.gov/
https://rda.ucar.edu/datasets/
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Figure 1. Geographical distribution of Global Navigation Satellite System (GNSS) radiosonde (RS)
stations in Southeast China, where the solid blue triangle and red circle are the WUHN and 45005
stations, respectively.

2.2. Empirical Orthogonal Function

The empirical orthogonal function (EOF), which is also called principal component analysis, was
first proposed by [36]. Since this theory was introduced into atmospheric, oceanic, and climatic studies
by [37], it has been widely used as a convenient and effective theory [38,39]. EOF can decompose the
meteorological dataset of spatiotemporal distribution into a pattern sorted by its time variance [40],
that is, the original correlated variable field is decomposed into several irrelevant spatial functions and
time coefficients [38] without losing the original data information [41], to analyze the spatial structure
of the actual field. EOF can also represent the change pattern of a single variable (EOF pattern) and
explain the proportion of the total variance of all variables in the dataset [42].

The two main steps of conducting EOF decomposition are to first flatten the original data and
then construct the covariance matrix [43]. The matrix form of the spatiotemporal grid data is:

X =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

 (1)

where X(i, j) is the observed value corresponding to the position i(i ∈ (1, m)) and the time j( j ∈ (1, n)).
The anomaly field XA is as follows:

XA = X − (ST(
1
n

SXT))
T

(2)

where S= (1, · · · , 1) is composed by n numbers of 1. 2): The structure of the covariance matrix C is:

C = XA ·XA
T. (3)
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2.3. MWCA

MWCA is used to investigate the correlation and non-stationarity relationship among parameters.
The value of the moving window is first determined before using MWCA. By moving the selected
windows in the dataset analysis, the independent local correlation coefficient for each window can be
calculated. Therefore, a smooth time series can be generated and the continuity of each time process
can be analyzed [44,45]. In this study, MWCA is introduced to investigate the relationship between
monthly PWV/ T and ENSO. The local correlation coefficient is calculated using the following formula:

R jL =

1
L

L∑
j=1

(a j − a jL)(b j − b jL)

σaLσbL
(4)

where R jL is the correlation coefficient of month j. L is the selected moving window. a j and b j are
the independent variables of the a and b of month j, respectively. a jL and b jL are the mean values of
a and b in the window L, respectively. σaL and σbL are the standard errors of a and b in the window
L, respectively.

2.4. MSSA

The singular spectral analysis (SSA) method is an adaptive data filter that eliminates
background noise and retains leading statistical significances, such as trends, fluctuations, and
noise components [46–48]. This method can effectively display the amplitude and offset of the nonlinear
trend and periodic term over time in the data time series [3], and was extended to MSSA by [49]. MSSA
is an advanced adaptive data method for extracting the trend characteristics of a space and time series
and the nonlinear oscillation embedded in the climate time series without prior information about
functions or stochastic models. Therefore, it can be flexibly applied to various data and has widely been
used in oceanography, meteorology, and climate research [10,50,51]. In this study, the MSSA is used to
analyze the PWV and T time series and obtain their periodic signals and anomalous change trend.

The MSSA algorithm is composed of three main steps. Firstly, a grand covariance matrix is
calculated. The dataset Na( f ) (a = 1, · · · ,A; f = 1, · · · , F), A is the time series or channels, and F is the
size of every time series or channel. A data trajectory matrix is composed by selecting a lag-window M.

Da =


Na(1) Na(2) · · · Na(M)

Na(2) Na(3) · · · Na(M + 1)
...

...
. . .

...
Na(F′) Na(F′+ 1) · · · Na(F)

 (5)

where F′ = F −M + 1 is the size of the overlapping views of the every time series or channel. The
covariance matrix Ka,a′ between channels Na( f ) and Na′( f ) is Ka,a′ =

1
F′Da

TDa′. These matrices are the
blocks of the grand matrix D̃ (size:A×M, A×M):

D̃ =


K1,1 K1,2 · · · K1,A
K2,1 K2,2 · · · K2,A

...
...

. . .
...

KA,1 KA,2 · · · KA,A

 (6)

The second and third steps are to calculate the spatiotemporal principal components (ST-PCs)
and the reconstructed time series, respectively. The eigenvalues λL and eigenvectors EL are obtained
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according to D̃EL = λLEL(L = 1, 2, · · · , A ×M). EL are also called the spatiotemporal empirical
orthogonal functions (ST-EOFs). Then the time series is projected onto the ST-EOFs to get the ST-PCs:

AL( f ) =
M∑

i=1

A∑
a=1

Na( f + i− 1)EL
a (i), 1 ≤ f ≤ F′ (7)

where L and a is Lth eigenvector and ath channel, respectively. Finally to partly reconstruct the time
series Na( f ) [46] based on the ST-PCs (AL) and ST-EOFs (EL

a ):

RL
a ( f ) =



1
f

f∑
i=1

AL( f − i + 1)EL
a (i) 1 ≤ f ≤M− 1

1
M

M∑
i=1

AL( f − i + 1)EL
a (i) M ≤ f ≤ F′

1
F− f+1

M∑
i= f−F+M

AL( f − i + 1)EL
a (i) F′+ 1 ≤ f ≤ F

. (8)

The partial signal could be reconstructed from Equation (7). More details of the MSSA can be
found in [10].

2.5. Retrieval of PWV Based on the GNSS Observation

The original GNSS observations from the CMONOC were processed using the GAMIT/GLOBK
(Ver. 10.4), and the double differences in phase observations were applied [52]. Therefore, the key
troposphere parameter, zenith tropospheric delay (ZTD), which consists of zenith hydrostatic delay
(ZHD) and zenith wet delay (ZWD), could be estimated. ZHD, which accounts for approximately
90% of ZTD, can be precisely calculated using the surface pressure with the empirical Saastamonien
model [53]:

Zhd =
0.0022768Ps

1− 0.00266 cos(2ϕ) − 0.00028H
(9)

where Ps and ϕ refer to the surface pressure in hPa and latitude of the GNSS station in radian,
respectively. H is the geoid height of the GNSS station in km. A rise in Ps of 1 hPa will only lead to a
ZHD error of 0.2 mm [54].

ZWD can thus be obtained by extracting ZHD from ZTD, and the final PWV is calculated by the
following formula [55,56]:

Pwv =
106
· Zwd

Rg(k3/Tm + k′2)ρw
(10)

where ρw is the liquid water density constant with a value of 103 kg/m3, Rg, k′2, and k3 are constants
with values of 461J · kg−1

·K−1, 16.48K/hPa−1, and (3.776± 0.014) × 105K2/hPa, respectively. Tm is the
weighted average T of atmospheric water vapor in K, and the accurate value can be calculated as:

Tm =

∫
(e/T)dz∫
(e/T2)dz

(11)

where e is the layered water vapor pressure, T is the layered absolute temperature, and dz is the integral
path. Due to the layered meteorological parameters being generally unavailable, an empirical formula
proposed by [57] using the surface T was used in this paper:

Tm = 44.05 + 0.81 T (12)
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3. Analysis of Anomalous Variations of PWV and T During ENSO

3.1. Spatiotemporal Characteristic Analysis of PWV and SST/T

The anomalous variation of PWV and SST in the El Niño area over the period of 1979–2017 is
analyzed initially using EOF to assess the correlation between ENSO and PWV/ T. Figure 2 presents
the spatiotemporal pattern of PWV and SST first mode, compared with the time series of SSTA in the
El Niño area over the period of 1979–2017. As shown in Figure 2a,b, the spatial distributions of PWV
and SST first mode were negative in the El Niño area but with different values. The extreme values of
PWV and SST first mode appeared in the Central and Western equatorial Pacific Ocean (150◦W–170◦E,
4◦S–4◦N), in the Eastern Equatorial Pacific (95◦E–135◦W, 2◦S–2◦N), and Nino 2 area (80◦E–87◦W,
1◦N–5◦S), respectively. Numerical results revealed that the variance contribution rates of PWV and
SST first mode were 67% and 76%, respectively. Therefore, 67% and 76% of anomalous variations of
PWV and SST were affected by the weather system of the same scale, and the variation trend was
consistent. Figure 2c and d present the time series of time coefficient of PWV and SST first mode,
where the moving average method was used to smooth the time coefficient with a moving window of
9 months. When the time coefficient of PWV and SST first mode was a negative (positive) extreme
outlier, the SSTA corresponded to a positive (negative) extreme outlier. The correlation coefficients
between the time coefficient of PWV and SST first mode and SSTA were 0.88 and 0.92, respectively.
Therefore, the PWV and the SST were affected by ENSO in the El Niño area.
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Figure 2. Spatiotemporal pattern of PWV and SST first mode, and compared with the time series of
SSTA in the El Niño area over the period of 1979–2017, where (a) and (b) are the spatial distributions of
PWV and SST first mode, respectively and (c) and (d) are the time series of time coefficients of PWV
and SST first mode and SSTA, respectively.
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To further analyze whether the anomalous changes of PWV/T were affected by ENSO event in
Southeast China, Figure 3 shows the spatiotemporal pattern of PWV and T first mode compared with
that of SSTA in Southeast China over the period of 1979–2017. As shown in Figure 3a,b, the spatial
distributions of PWV and T first mode were similar in Southeast China but with opposite values. The
covariance contribution rates of PWV and T first mode were 70% and 75%, respectively, and both cases
passed the North test. Therefore, the spatial pattern of PWV and T in Southeast China had a significant
physical significance. The temporal patterns of PWV and T first mode are also presented in Figure 3c,d.
The time coefficients of PWV and T first mode had a good consistency with the time series of SSTA.
The corresponding coefficients between the time coefficients of PWV and T first mode and SSTA were
−0.54 and −0.55, respectively. Such results reveal that the ENSO also had a moderate negative impact
on the anomalous variation of PWV and T in Southeast China [58], which means that the increasing of
temperature of SST could cause a decrease of PWV and T in Southeast China.
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Figure 3. Spatiotemporal pattern of first mode in PWV and T, and compared with the time series of
SSTA in Southeast China over the period of 1979–2017, where (a) and (b) are the spatial distributions of
PWV and T first mode, respectively and (c) and (d) are the time series of time coefficients of PWV and
SST first mode and SSTA, respectively.

3.2. Determination of Response Thresholds of PWV and T to ENSO in Southeast China

Although China is not the core area affected by ENSO, PWV and T are affected by such an event
to a large extent, as discussed in Section 3.1. Therefore, the condition under which ENSO will cause
the anomalous variation of PWV and T becomes the focus of this section. The monthly PWV and T
were averaged in Southeast China, and MWCA was conducted to explore the relationship between
ENSO and PWV/T in Southeast China. A moving window of 18 months was selected following [44].
Therefore, the correlation coefficients between PWV/T and SSTA could be obtained (Figure 4). It can
be observed from Figure 4 that the correlation coefficients between PWV-SSTA and T-SSTA were
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consistent over the period of 1979–2017. In addition, the time series of PWV-SSTA/T-SSTA coefficients
and ENSO showed an evident negative correlation. Thus, PWV and T were negatively correlated with
a strong El Niño and positively correlated with a strong La Niña (P < 0.05). The maximum values of
the correlation coefficients between PWV/T and strong El Nino were larger than −0.55. Therefore, a
medium remote correlation existed between ENSO and PWV and T in Southeast China.Remote Sens. 2019, 10, x FOR PEER REVIEW  10 of 17 
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Figure 4. Correlation coefficient between PWV and T and SSTA in Southeast China over the period
of 1979–2017.

A linear fitting was used between SSTA and PWV/T to quantify the impact of ENSO on PWV/T
in Southeast China (pink line). For quantitative purposes, the correlation coefficients between the
PWV-SSTA/T-SSTA were divided into three parts based on the percentile method. The upper percentile
and lower percentile were 75% (upper dotted line) and 25% (lower dotted line), respectively. Figure 5
presents the scatter plots of the correlations of PWV-SSTA/T-SSTA and SSTA. The results show that the
response thresholds of PWV to El Niño and La Niña were −1.17◦C and 1.04◦C, respectively. Therefore,
when the SSTA value exceeded −1.17◦C or 1.04◦C, the anomalous change in PWV in Southeast China
was evidently affected by El Niño and La Niña. Figure 5b reveals that the response thresholds of T to
El Niño and La Niña were −1.15◦C and 1.09◦C, respectively. Thus, when the SSTA value exceeded
−1.15◦C or 1.09◦C, the anomalous change in T in Southeast China was evidently affected by El Niño
and La Niña.
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3.3. Anomalous Analysis of PWV and T during ENSO Period using MSSA

MSSA is used with the experimental windows of 35 [59] to analyze the long-term series PWV and
T in Southeast China for obtaining the nonlinear anomalous trend included in PWV and T. Figure 6
presents the first seven components of PWV and T in Southeast China from 1979 to 2017 using MSSA.
The PWV and T included the inter-annual trend (RC1), annual (RC2–3), semi-annual (RC4-5), and
anomalous (RC6) periods. RC7 may be the noise or unknown signal information. Table 2 also gives
the variance contribution rates of the first six components. The cumulative variance contribution rate
of RC1–3 was 99.44%. Therefore, the changes of PWV and T in Southeast China were primarily driven
by trend and annual signals.
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Figure 6. First ten components of PWV and T in southeast China from 1979 to 2017 using multichannel
singular spectral analysis (MSSA).

Table 2. Contribution rates corresponding to the first seven eigenvalues in Southeastern China from
1979 to 2017.

Contribution Rate
Principal Components

1 2 3 4 5 6 7

Variance Contribution Rate 85.71 7.05 6.68 0.1 0.1 0.01 0.01
Accumulated Variance

Contribution Rate 85.71 92.76 99.44 99.54 99.64 99.65 99.67

Apart from the influence of the trend, annual and semi-annual periods, PWV and T had an evident
anomalous variation (RC6) over the period of 1979–2017, as shown in Figure 6. Therefore, Figure 7
presents the time series of anomalous variations of PWV and T derived from RC6 in Figure 6a and
b with SSTA in the period 1979–2017 in Southeast China. The anomalous variations of PWV and T
showed an upward trend when medium or strong ENSO occurred. Compared with the anomalous
variation of T, PWV had a more evident response characteristic to ENSO. Envelope lines of PWV and T
were also obtained in Southeast China. The change trend in Southeast China was primarily affected
by trend and periodic signals. Therefore, the abnormal time series of PWV and T were obtained
by removing the trend and periodic signals. The maximum abnormal value of each year could be
determined, and the envelope lines of PWV and T could be obtained by the cubic spline interpolation
at other months. Figure 8 presents the envelope lines of PWV and T with SSTA over the period of
1979–2017 in Southeast China. The envelop line of PWV had a good relationship with ENSO. However,
the relationship between the envelop line of T and SSTA was slightly poor. This result was acceptable
because solar radiation was also an important influencing factor of the T change in Southeast China.
For example, the envelop line of T over the period of 2015–2017 showed an evident decreasing trend
because the solar radiation in Southeast China in these years decreased by 32% compared with the
same data in the previous years.
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3.4. Standard PWV and Temperature Index (SPTI)

The above-mentioned analysis of the anomalous variations of PWV and T proved that these
variations were related to the ENSO occurring over the period of 1979–2017 in Southeast China.
Therefore, the SPTI, which is an index for monitoring ENSO using the anomalous change in PWV and
T, is proposed in this section. The specific steps of determining this index are listed as follows:

(1) The time series of PWV and T is reprocessed by removing the trend and periodic terms using
the MSSA;

(2) The reprocessed PWV and T time series are normalized due to their different magnitudes using
the following formula [60]:

Ñi =
ymax − ymin

Nmax −Nmin
· (Ni −Nmin) + ymin (13)

where ymax and ymin are the maximum and minimum values of the mapping range, which usually
are 1 and −1, respectively. Nmax and Nmin are the maximum and minimum values of the N vector,
respectively. Ni and Ñi are the ith value in the N vector and the normalized value corresponding
to the ith value in the N vector, respectively;

(3) The optimal weightings of the normalized PWV and T time series are determined using the MSSA
method. The anomalous variations (RC6 in Figure 6) of PWV and T obtained using the MSSA
are correlated with ENSO. Therefore, the reprocessed PWV and T time series are used to obtain
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the variance contribution rates of abnormal signals. Then, these rates are used to determine the
optimal weightings between PWV and T. The weighted normalized value for calculating the SPTI
can be obtained and expressed as:

NPT = (ÑPWV × PPWV + ÑT × PT)/(PPWV + PT) (14)

where ÑPWV and ÑT are the normalized PWV and T values, respectively. PPWV and PT are the
weightings of PWV and T, respectively. NPT is the normalized PWV and T value, which is used
to calculate the SPTI based on the Z score method [61]. The Z score is the deviation from the
mean in units of the standard deviation. The SPTI time series is calculated using the monthly
NPT value over the period of 1979–2017 as follows:

SPTImn =
NPTmn −NPTm

σm
(15)

where SPTImn refers to the monthly SPTI value during month m for year n. NPTm is the mean
NPT during month m over n years. σm is the standard deviation of NPT during month m over n
years, which is used to reflect the degree of deviation of PWV and T from normal value.

4. Validation of the SPTI for Monitoring ENSO

4.1. Validation of the SPTI using the ECMWF Data

The monthly PWV and T in Southeast China were derived from grid-based ECMWF ERA-Interim
products. The mean PWV and T in Southeast China were obtained and used to calculate the month
SPTI following the steps in Section 3.4. Figure 9 gives the time series of monthly SPTI in Southeast
China with SSTA over the period of 1979–2017. It can be observed from Figure 9 that the SPTI had a
good response to the occurrence of ENSO. The proposed SPTI showed an evident upward trend when
strong El Niño occurred in 1983, 1987, 1998, 2009, and 2016. A similar downward trend is presented
when the strong La Niña happened in 1989, 1996, 2008, and 2011. In addition, the proposed SPTI
showed a strong correlation with SSTA, in which the correlation coefficient was 0.66. Such results
verify the potential capacity of the proposed SPTI for monitoring ENSO on the basis of the anomalous
variations of PWV and T data.
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4.2. Validation of SPTI At GNSS/RS Stations

High-precision PWV data can also be obtained using GNSS or radio sounding techniques at
specific stations. In consideration of this fact, SPTI calculated using GNSS-/RS-derived PWV with SSTA
is compared. One GNSS station (WUHN) and a RS station (45004) were selected in Southeast China.
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The specific geographic locations of selected stations are shown in Figure 1. The T and PWV data at
specific GNSS/RS stations were also interpolated using the grid-based ERA-Interim product. Figure 10
presents the time series of monthly SPTI calculated using ERA-Interim/GNSS/RS data with SSTA at
GNSS and RS stations (WUHN and 45004, respectively) over the period of 2005–2016. This period is
selected because only the GNSS- and RS-derived PWV could be obtained in this period.
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As shown in Figure 10a, the time series of GNSS-/ERA-Interim-derived SPTI at WUHN station
were similar, and both time series had a good consistency with those of SSTA. The correlation
coefficient between GNSS-derived SPTI and SSTA was 0.73, while that between ERA-Interim-derived
SPTI and SSTA was 0.59. Similar results could also be observed from Figure 10b, that is, the
RS-derived SPTI at 45004 station agreed well with that from ERA-Interim, and the coefficients between
RS-/ERA-Interim-derived SPTI and SSTA were both 0.71. In addition, the change trend of ENSO could
be reflected by SPTIs derived from GNSS and RS stations. This condition further verifies the good
performance of the proposed SPTI. Such results obtained above also show that the tele-correlation
effect of ENSOs on PWV and T anomalies in Southeast China can be monitored.

5. Conclusions

In this paper, we firstly proposed a novel index SPTI for monitoring the impact of ENSO over
Southeast China, and its performance was then validated in the entire area of Southeast China and at
GNSS and RS stations, respectively. The EOF method was first introduced to analyze the correlation
between SSTA and PWV/T. The results indicated that the time coefficients of PWV and T first mode
showed a high correlation with SSTA with coefficients of −0.54 and −0.55, respectively. MWCA was
then applied to quantify the extent to which ENSO affected PWV/T in Southeast China. The response
thresholds of PWV to El Niño /La Niña were −1.17 ◦C and 1.04 ◦C, respectively. Meanwhile, those of T
to El Niño /La Niña were −1.15 ◦C and 1.09 ◦C, respectively. In addition, MSSA was used to extract the
anomalous signal in PWV and T. The results showed that this signal had a high correlation with SSTA.
Therefore, SPTI was proposed using the anomalous change in PWV and T to monitor the ENSO.
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The performance of SPTI was validated using the ECMWF ERA-Interim data in the whole of
Southeast China over the period of 1979–2017. A comparison showed that SPTI had a good consistency
with SSTA and that the coefficient was 0.66. The GNSS- and RS-derived SPTIs at WUHN and 45004
stations were also calculated in 2005–2016 compared with the corresponding SSTA. A similar result
was obtained, that is, a good correlation existed between GNSS-/RS-derived SPTIs and SSTA with
correlation coefficients of 0.73 and 0.71, respectively. Such comparisons in the whole of Southeast
China and specific stations verify the capacity of the proposed SPTI in monitoring ENSO.
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