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Abstract: Studies of the association between air pollution and children’s health typically rely on
fixed-site monitors to determine exposures, which have spatial and temporal limitations. Satellite
observations of aerosols provide the coverage that fixed-site monitors lack, enabling more refined
exposure assessments. Using aerosol optical depth (AOD) data from the Multiangle Imaging
SpectroRadiometer (MISR) instrument, we predicted fine particulate matter, PM2.5, and PM2.5

speciation concentrations and linked them to the residential locations of 1206 children enrolled
in the Southern California Children’s Health Study. We fitted mixed-effects models to examine
the relationship between the MISR-derived exposure estimates and lung function, measured as
forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC), adjusting for study
community and biological factors. Gradient Boosting and Support Vector Machines showed excellent
predictive performance for PM2.5 (test R2 = 0.68) and its chemical components (test R2 = 0.53–0.71).
In single-pollutant models, FEV1 decreased by 131 mL (95% CI: −232,−35) per 10.7-µg/m3 increase
in PM2.5, by 158 mL (95% CI: −273,−43) per 1.2-µg/m3 in sulfates (SO2−

4 ), and by 177 mL (95% CI:
−306,−56) per 1.6-µg/m3 increase in dust; FVC decreased by 175 mL (95% CI: −310,−29) per
1.2-µg/m3 increase in SO2−

4 and by 212 mL (95% CI: −391,−28) per 2.5-µg/m3 increase in nitrates
(NO−

3 ). These results demonstrate that satellite observations can strengthen epidemiological
studies investigating air pollution health effects by providing spatially and temporally resolved
exposure estimates.

Keywords: Aerosol optical depth; particulate matter; particulate matter speciation; machine learning;
exposure estimation; children’s health; children lung function

1. Introduction

Numerous studies have examined the association between exposure to traffic-related air
pollution and children’s respiratory health [1–4]. Long-term exposure to air pollution, indicated
by concentrations of nitric oxides (NO, NO2, NOx), ozone (O3), particulate matter with aerodynamic
diameter less than 2.5 µm (PM2.5), and particulate matter with aerodynamic diameter less than 10 µm
(PM10), has been shown to lead to reduced lung development in children [5]. Fortunately, decreases in
air pollution in Southern California over the past 17 years have led to significant reductions in these
detrimental effects [6].

The air pollution exposures used in the aforementioned studies were estimated from
concentrations measured at national- and state-operated fixed-site monitors [7]. For example, in a
longitudinal assessment of air quality and lung development, Gauderman et al. [6] used concentrations
of nitrogen dioxide (NO2), O3, PM2.5, PM10 from one monitor within each community to determine
exposures. With this approach, the 120 to 300 study subjects residing in each community were assigned
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the same exposure. Spatial statistical techniques such as kriging, smoothing, and land use regression
have been used to incorporate additional information (e.g., traffic, population density, elevation,
land cover, and other geographic data) to characterize the spatial relationships in fixed-site monitoring
data and interpolate concentrations to the unmonitored locations where there are health data [8,9].
While these approaches are valuable for generating exposures with greater spatial coverage, it has
been shown that if their prediction performance is poor, subsequent epidemiological studies can yield
severe biases and underestimation of standard errors in the health effects estimates [10].

Advances in using satellite observations of aerosol optical depth (AOD) to estimate ground-level
concentrations of particulate matter (PM) air pollution have been extremely valuable in improving
the spatial and temporal coverage of exposure estimates [11–15]. Among the satellite instruments
most commonly used for PM estimation are the Multi-angle Implementation for Aerosols (MAIAC) of
the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board the NASA Earth Observing
System (EOS) Terra and Aqua satellites [16], and the Multiangle Imaging SpectroRadiometer (MISR)
on-board the Terra satellite [17]. Recent algorithms applied to observations from these instruments
provide global, near-daily AOD at a spatially resolved grid resolutions (1 km, 4.4 km) [16,18].

Some studies have combined AOD from MODIS and MISR to derive PM2.5 concentrations [19]
and more recently PM2.5 speciation concentrations [20]. MISR, given its configuration of nine cameras
and four spectral bands, has the capability of differentiating aerosol size and type resulting in
fractionated AOD [21]. In a recent study over Southern California, we reliably estimated PM2.5 with
MISR 4.4-km resolution AOD small+medium, and PM10 with AOD large using generalized additive
models (GAMs) [22]. The MISR AOD-derived PM concentrations were well correlated (confirmed
by leave-one-site-out cross validation, CV) with EPA monitoring site data (PM2.5 CV r = 0.71, PM10

CV r = 0.66). In the same region, speciated PM2.5 (sulfate, SO2−
4 ; nitrate, NO−

3 ; organic carbon, OC;
and elemental carbon, EC) were estimated using GAMs from 8 MISR component fractions combined
with meteorology and geographic characteristics [23].

In a simulation study, high-resolution exposure estimates derived from satellite AOD were
found to produce less biased acute and chronic health effects estimates with smaller standard errors
than did exposure estimates derived from kriging PM2.5 concentrations from fixed-site monitors [10].
Satellite-derived PM2.5 concentrations have been instrumental in studies of the global burden of
disease [24,25]. A few epidemiological studies of smaller cohorts have used satellite-derived PM2.5 to
estimate residential exposures in longitudinal children’s health effects [26–28].

In this study, we derived daily PM2.5 and PM2.5 speciation (SO2−
4 , NO−

3 , EC, dust) exposures from
2000–2018 over the state of California by applying machine learning approaches to ground-level air
quality measurements linked with the high-dimensional 4.4-km MISR AOD products and mixtures.
Estimated annual average concentrations were then assigned to the residences of children in 8 Southern
California communities to examine the chronic effects of exposure to PM2.5 and the aforementioned
PM2.5 components on lung function. This study is unique in that it is the first of its kind to examine
the differential effects of satellite-derived PM2.5 speciation on children’s respiratory health.

2. Materials and Methods

2.1. Particulate Matter Measurements

The United States Environmental Protection Agency (EPA) provides data on PM2.5 concentrations
from outdoor monitoring sites across the US through their Air Quality System (AQS) [29], and PM2.5

speciation concentrations including ions, carbons, and metals through their Chemical Speciation
Network (CSN) [30] (Figure A1). The AQS PM2.5 data we used include daily averages of hourly
measurements or 24-h integrated measurements from Federal Equivalent and Reference Method
(FEM/FRM) instruments. The CSN sites measure 24-h chemical composition on a 1-in-3- or 1-in-6-day
sampling schedule. In this study, we used all available AQS and CSN data in California beginning in
March 2000, the earliest date for which MISR AOD data are available, and ending in July 2018 for PM2.5
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speciation and in December 2018 for PM2.5 mass. Among PM2.5 species, we focused on predicting
SO2−

4 ion, NO−
3 ion, elemental carbon (EC), and dust, which was calculated as a linear combination of

aluminum (Al), calcium (Ca), iron (Fe), silicon (Si), and titanium (Ti) [31]:

Dust = 2.2 × Al + 2.49 × Si + 1.63 × Ca + 1.94 × Ti + 2.42 × Fe.

This definition of dust pertains to fugitive geological materials, and has been shown to have a
temporally stable compositional source profile over California [32].

2.2. MISR Aerosol Optical Depth Data

The MISR instrument has been collecting data from nine camera angles and four spectral bands
since early 2000. Due to its narrower retrieval swaths, the instrument overpasses any given location
every 3–5 days (between 10:00 and 13:00 local time) instead of daily as is the case with MODIS/MAIAC.
The latest version (V23) of the retrieval algorithm re-processed the entire MISR mission at a 4.4-km
spatial resolution (from 17.6-km resolution) [18] with improved retrievals over water [33]. In addition
to total column AOD, MISR also characterizes the size, shape, and type of aerosol particles via these
fractionated measures: small, medium, and large AOD (amount of particles of each size), nonspherical
AOD (amount of nonspherical particles), and absorption AOD (amount of light-absorbing particles).
These AOD features are hereafter referred to as AOD products.

In its auxiliary data products, MISR further provides 74 AOD mixtures, which are more
fine-grained groupings of aerosol particles characteristics [21]. Specifically, AOD mixtures numbered
1–30 are made up of spherical, non-absorbing components, mixtures 31–50 contain spherical, absorbing
components, and mixtures 51–74 contain spherical and nonspherical dust analogues. The MISR particle
properties provide robust aerosol-type classification for distinguishing aerosol mass types including
polluted, smoky, maritime, and dusty conditions [21,34]. Details of processing MISR data, particularly
AOD mixtures, are documented in our previous paper [35].

2.3. Meteorological Data

Similar to other studies [10,19,22,26,36], we used meteorological data including temperature,
relative humidity, wind speed, and wind direction to better inform the association between
ground-monitored air pollutants and satellite-observed AOD. The Climatology Lab at the University
of Idaho provides daily meteorological data, called gridMET, in the contiguous United States from
1979–yesterday [37]. This dataset has been extensively validated [38] and, at 4-km resolution,
is particularly useful for our study. The gridMET data also provide surface shortwave radiation
(SSR–the amount of shortwave radiation that reaches the earth), whose negative correlation with
aerosol emissions has been documented by Smith et al. [39] and Freychet et al. [40].

2.4. Health Data

Since its inception in the early 1990s, the Southern California Children’s Health Study (CHS) has
enrolled over 11,000 children in a series of five cohorts. In this study, we focused on the most recent
cohort that began in 2003, enrolling approximately 3,000 children at age 6–7 years, and followed until
2012 when they were 15–16 years old. These children resided and went to school in eight communities
in the greater Los Angeles, California area: Anaheim, Glendora, Long Beach, Mira Loma, Riverside,
Santa Barbara, San Dimas, and Upland (Figure 1).

From 2007–2012, pulmonary function tests were conducted on each child by trained respiratory
staff, measuring FEV1 and FVC with pressure transducer-based spirometers (ScreenStar Spirometers,
Morgan Scientific, Haverhill, Massachusetts, USA). A written questionnaire was also administered to
obtain information including age, sex, self-identified race and ethnic background, parental education,
occurrences of acute respiratory illness, exercise, tobacco-smoke exposure (personal smoking or
environmental), and housing characteristics (air conditioning, age of house, presence of mildew,
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pets in the home). Ethnic background in the CHS specifically relates to Hispanic ancestry, identifying
Caucasian subjects with Hispanic and non-Hispanic ethnicity [41]. Study protocols were approved by
the Institutional Review Board at the University of Southern California (USC), and additional details
of CHS community and subject selection have been previously reported [42,43].
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Figure 1. Map of the Children’s Health Study participants who were recruited in Santa Barbara (left)
and other communities (right).

2.5. Exposure Estimation Methods

We expand upon our previous work [22,35] to include MISR aerosol properties of absorption
(absorbing or non-absorbing), shape (spherical or nonspherical), and type provided by 74 weighted
aerosol optical depths (mixtures) [21] to predict PM2.5 and PM2.5 SO2−

4 , NO−
3 , EC, and dust.

We matched daily PM2.5 and PM2.5 speciation measurements from ground monitors to the nearest
available MISR pixel within 4.4 km (Figure A2) and then further matched them to the nearest
gridMET pixel within 4 km. As some PM2.5 monitors are close to each other, it is possible they
share the same MISR or gridMET pixel. In these instances, we used an algorithm to pair the shared
MISR/gridMET pixel to the nearest monitor, and the remaining monitors were paired with the next
available MISR/gridMET pixel within 4.4/4 km. If there were no other available MISR/gridMET pixels
within an appropriate distance, the PM2.5 measurement on that day for that monitor was removed in
order to avoid duplicating AOD and meteorological data in the dataset.

We trained the PM2.5 models on 70% of the data using 5-fold CV and assessed performance
of the best model on the remaining 30%. We also trained the PM2.5 speciation models on 70%
of the data with 5-fold CV and tested on 30%, but repeated the process 20 times to assess model
stability due to much smaller sample sizes. Five machine learning methods were considered: Ridge
regression, Least Absolute Shrinkage and Selection Operator (LASSO), Gradient Boosting (GBM),
Random Forests (RF), and Support Vector Machines (SVM), all within a regression setting. Inputs to
the models were meteorology and either the MISR AOD products or the 74 MISR AOD mixtures. The
optimal model for each pollutant was chosen based on its test R2 as the primary metric and its test
RMSE as the secondary metric. We further supplemented the model with geospatial (coordinates of
MISR pixels projected to UTM zone 11) and temporal (Julian date and month) predictors. The best
predicting model for each pollutant was trained on the full dataset prior to estimating exposures for
the epidemiological assessment.
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2.6. Epidemiological Methods

To examine the association between air pollution exposure and lung function during the children’s
critical period of development, we focused on pulmonary function tests (FEV1 and FVC) taken
at ages 15–16 (2011–2012). During each assessment visit, the study participants reported their
current addresses, which were geocoded. We identified MISR aerosol optical depth and gridMET
meteorological data within 4.4 km of each study participant’s residence for the 12 months prior to their
pulmonary function test, and predicted PM2.5, NO−

3 , SO2−
4 , EC, and dust concentrations spatially and

temporally specific to each child. The 12-month means of these air pollutant estimates were assigned
as exposures of interest for each child.

We fitted single-pollutant models to examine the effects of each predicted air pollutant exposure
on lung function. Multi-pollutant models were also fitted to assess whether multiple predicted
exposures better informed the associations of interest. Using mixed-effects models, we adjusted for
study community with a random intercept and for biological characteristics such as age, gender, height,
BMI, and race/ethnicity as fixed effects. Based on previous studies of the CHS, log transformation of
FEV1 and FVC as well as quadratic terms for height and BMI were considered [1,3,4,6]. We separately
fitted similar models with central-site PM2.5 to compare with MISR-derived PM2.5 models. Akaike
information criterion (AIC) was used as the main metric for model comparison and Bayesian
information criterion (BIC), which favors more parsimonious models, as the secondary metric.
Generalized variance inflation factor was calculated to assess potential collinearity among the
predictors (using GVIF ≤ 10 as the cutoff).

3. Results

3.1. Exposure Estimation

From March 2000 through December 2018, there were 2828 days where MISR had complete
retrievals of AOD products that could be matched to EPA-PM2.5 stations, resulting in a dataset of
N ≈ 56, 000. In the same period, there were 2864 days where MISR had complete retrievals of AOD
mixtures that could be matched to EPA-PM2.5 stations, resulting in a dataset of N ≈ 35, 000. While
there were more days with successful AOD mixtures retrieved, the AOD-products datasets was larger
because AOD-products were successfully retrieved in more locations per day compared to AOD
mixtures. In a similar time frame (ending in July 2018), MISR had 698 days with AOD-products data
and 544 days with AOD-mixtures data that were matched to PM2.5 speciation concentrations from
CSN sites in California, resulting in datasets of sizes N = 1965 for models using AOD products and
N = 1090 for models using AOD mixtures.

Non-linear machine learning methods (GBM, RF, and SVM) generally predicted better than
linear methods (ridge and LASSO) for all exposures of interest and for both AOD-products and
AOD-mixtures models. Although the AOD-mixtures models for PM2.5 had a smaller training dataset,
the increase in model complexity with 74 AOD mixtures versus 6 AOD products led to much more
time-expensive model fitting. We experimented with a smaller sample size (N = 8000) but the
AOD-mixtures models did not perform better than the AOD-products models. The GBM model using
AOD products had the best performance for PM2.5 (R2 = 0.68) (Table 1).

The boxplots of test R2 (Figure A3) for PM2.5 speciation models show that AOD-products models
outperformed AOD-mixtures models and did so consistently (narrower boxplots) with the exception
of dust, where AOD-mixtures models performed better. The best test R2 for SO2−

4 and NO−
3 was 0.71,

EC 0.63, and dust 0.53 (Table 1). The most important variables for PM2.5 include an interpretable mix
of AOD, small and medium AOD, as well as meteorological variables (surface shortwave radiation,
wind speed, and temperature) (Figure 2). Similar variables were important for SO2−

4 and NO−
3 ,

but nonspherical AOD played a larger role in both (Figure 3). Interestingly, AODs only ranked 8th and
9th for EC, with meteorology and temporal indicators playing a larger role in its prediction. Finally,
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most important for dust were AOD mixtures relating primarily to dust (mixtures 70 and 53) and
non-absorbing (mixtures 4, 12, 13, 19, 21) particles.

Month
Temperature

Medium AOD
Longitude

Wind speed
Latitude

Small AOD
Julian date

AOD
SSR

0% 5% 10% 15% 20%
Feature importance

Figure 2. Relative importance of the ten most important features in model predicting PM2.5 using
gradient boosting.

Nonspherical AOD

SSR

Small AOD

Wind direction

Humidity

Large AOD

Medium AOD

Temperature

Julian date

AOD

0% 10% 20% 30%
Feature importance

Temperature

ERC

Julian date

Longitude

Wind speed

Small AOD

SSR

AOD

Nonspherical AOD

Medium AOD

0% 5% 10% 15% 20%
Feature importance

ERC

Medium AOD

AOD

Humidity

Month

Wind direction

Temperature

Julian date

Wind speed

SSR

0% 10% 20% 30% 40%
Feature importance

AOD mixture 41

AOD mixture 19

AOD mixture 49

AOD mixture 13

AOD mixture 4

AOD mixture 53

AOD mixture 21

AOD mixture 12

AOD mixture 38

AOD mixture 70

0% 1% 2% 3%
Feature importance

Figure 3. Relative importance of the ten most important features in models predicting SO2−
4 (top left),

NO−
3 (top right), EC (bottom left), and dust (bottom right). Feature importance were calculated using

relative influences in GBM models (PM2.5, SO2−
4 , and EC) [44] and global sensitivity analysis in SVM

models (NO−
3 and dust) [45]. SSR: surface shortwave radiation; ERC: energy release component.

MISR AOD-products were used to predict all exposures except for dust, which was predicted
using MISR AOD mixtures. Figures 4 and 5 show 6-year (2007–2012) means of the predicted air
pollution exposures over greater Los Angeles and Santa Barbara. Over this period the correlation
between annual mean MISR-derived PM2.5 and PM2.5 speciation with its central-site counterpart were
positive and statistically significant, with Spearman r = 0.68 and p < 0.001 (Table A1).
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Figure 4. Maps of mean MISR-derived PM2.5 (µg/m3) from 2007 through 2012 over Santa Barbara
(left) and other communities in Southern California (right).

Figure 5. Maps of mean MISR-derived SO2−
4 (top left), NO−

3 (top right), EC (bottom left), and dust
(bottom right) from 2007 through 2012, all measured in µg/m3 over Santa Barbara (left in each) and
other communities in Southern California (right in each).

Table 1. Summary of machine learning methods, MISR predictors, and best test R2 for predicting each
exposure of interest.

Exposure ML Method MISR Predictors Best Test R2 Best Test RMSE (µg/m3)

PM2.5 GBM AOD Products 0.68 4.75
SO2−

4 GBM AOD Products 0.71 0.69
NO−

3 SVM AOD Products 0.71 2.13
EC GBM AOD Products 0.63 0.37
Dust SVM AOD Mixtures 0.53 0.60

3.2. Health Outcomes

There were 1206 children assessed in 2011–2012 with mean age 15.2 (SD = 0.6) years, whose
geocoded addresses were linked with MISR-derived exposure estimates. Summary statistics of the
study population, including gender, height, weight, race/ethnicity, and study community, are shown
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in Table 2. Both FEV1 and FVC were significantly higher among boys compared to girls; mean FEV1

was 4111 mL among boys and 3304 mL among girls (t-test p < 0.001), mean FVC was 4801 mL among
boys and 3752 mL among girls (t-test p < 0.001). Among race/ethnicity groups, there were significant
differences in mean FEV1 and FVC with one-way ANOVA test p = 0.003 and p < 0.001, respectively
(Table A2). The associations between biological factors and lung function remained significant when
evaluated in fully adjusted models (Table A3).

Table 2. Characteristics of the study population

Mean (SD) N (%)

N 1206 Gender
Lung function Boys 588 (48.8)
Forced Vital Capacity (mL) 4265 (856) Girls 618 (51.2)
Forced Expiratory Volume (mL) 3700 (703) Race/Ethnicity
Exposures (µg/m3) White 413 (34.2)
Central site Asian 54 (4.5)

PM2.5 11.99 (2.9) Black 23 (1.9)
MISR-derived Hispanic 617 (51.2)

PM2.5 14.22 (2.6) Others 99 (8.2)
Sulfate 1.37 (0.3) Community
Nitrate 2.36 (0.4) Anaheim 113 (9.4)
EC 0.82 (0.1) Glendora 228 (18.9)
Dust 1.12 (0.3) Long Beach 56 (4.6)

Demographics Mira Loma 146 (12.1)
Age 15.24 (0.6) Riverside 138 (11.4)
Height (cm) 166.20 (8.6) San Dimas 170 (14.1)
Weight (kg) 64.41 (15.8) Santa Barbara 186 (15.4)
BMI (kg/m2) 23.23 (5.0) Upland 169 (14.0)

Table 3. Air pollution single-pollutant effect estimates by outcome adjusted for demographic factors.

FEV1 FVC

Source Exposure Estimate * 95% CI p Estimate * 95% CI p

Central site PM2.5 −41 (−161, 80) 0.521 −21 (−162, 119) 0.775

MISR-derived PM2.5 −131 (−232,−35) 0.013 −122 (−260, 25) 0.103
SO2−

4 −158 (−273,−43) 0.008 −175 (−310,−29) 0.015
NO−

3 −75 (−265, 124) 0.447 −212 (−391,−28) 0.026
EC −161 (−446, 128) 0.289 −218 (−547, 106) 0.206
Dust −177 (−306,−56) 0.011 −106 (−305, 95) 0.316

* Effect estimates are the difference in FEV1 and FVC from the highest to the lowest
concentration of each air pollutant in µg/m3: [Central sites] PM2.5: 8.9; [MISR-derived]
PM2.5: 10.7, SO2−

4 : 1.2, NO−
3 : 2.5, EC: 0.6, dust: 1.6.

In single-pollutant mixed models adjusted for biological characteristics, MISR-derived PM2.5,
SO2−

4 , and dust were significantly associated with decreases in FEV1, and SO2−
4 and NO−

3 were
significantly associated with decreases in FVC. Notably, central-site PM2.5 was not associated with
either lung function measure (Table 3). Among multi-pollutant models, we did not find any grouping
of two or more pollutants to be significantly associated with FEV1 or FVC. Furthermore, while certain
multi-pollutant models achieved modest reductions in AIC, none outperformed single-pollutant
models in BIC. Log transformation of the lung function measures, with slight improvements in
normality on Q-Q plots, did not improve model fit for either outcomes. Collinearity was not an issue
in any of the models (all GVIF ≤ 3).

Effect estimates in Table 3 represent the difference in mean FEV1 and FVC between the highest
and the lowest exposure level for each pollutant in single-pollutant models. After accounting for
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biological and community effects in single-pollutant mixed models, FEV1 on average decreased by
131 mL (95% CI: −232,−35) per 10.7-µg/m3 increase in PM2.5, by 158 mL (95% CI: −273,−43) per
1.2-µg/m3 in SO2−

4 , and by 177 mL (95% CI: −306,−56) per 1.6-µg/m3 increase in dust. Meanwhile,
FVC on average decreased by 175 mL (95% CI: −310,−29) per 1.2-µg/m3 increase in SO2−

4 and by
212 mL (95% CI: −391,−28) per 2.5-µg/m3 increase in NO−

3 .

4. Discussion

In this study, we used satellite observations of AOD, characterized by size, shape, and absorption
properties as well as fractionated into 74 mixtures, to estimate PM2.5 and select PM2.5 chemical
components. We then incorporated these estimates into an epidemiological assessment of their
association with children’s lung function. In terms of exposure estimation, MISR AOD products
resulted in better and more robust estimates than did AOD mixtures, except for dust. Non-linear
models (GBM, RF, and SVM) performed better than linear models (Ridge and LASSO), which was
consistent with previous studies where linear models were inadequate in explaining the relationship
between AOD and ground-monitored PM [22,35,46]. Although MISR aerosol data have coarser
temporal and spatial resolution compared to MAIAC (every 3–5 days vs. daily and 4.4 km vs. 1 km,
respectively), our model achieved high prediction performance (Table 1) using MISR-specific data
products on size, shape, and absorption, which proved vital in the prediction models. At least two MISR
AOD products were among the five most important features for predicting PM2.5, SO2−

4 , and NO−
3 ,

and the ten most important features for predicting dust were all AOD mixtures (Figures 2 and 3).
Our PM2.5 prediction performance was similar to those by Sorek-Hamer et al. [46], who modeled

PM2.5 using AOD data from MODIS (Collection 5 Level 2) and the Ozone Monitoring Instrument (OMI)
at 10-km resolution over the Central Valley in California. In Southern California, we improved upon
previous work that predicted PM2.5, SO2−

4 , and NO−
3 by Franklin et al. [22], whose meteorological

data from NOAA weather stations did not provide the spatial coverage of gridMET data. Surface
shortwave radiation provided by gridMET was also among the most important predictors for PM2.5,
NO−

3 , and EC (Figures 2 and 3). Our PM2.5, SO2−
4 , NO−

3 , and EC models performed comparably to
those by Meng et al. [23], who reconstructed fractional AOD using the AOD mixtures (V22) while we
relied on MISR AOD products (V23).

One limitation in our PM2.5 speciation prediction models is the scarcity of data. As the number of
CSN sites in California increased from 3 in 2000 to 19 in 2013 and decreased to 16 in 2018 (California
PM2.5 mass sites increased from 95 in 2000 to 157 in 2018), spatial coverage was certainly restricted
(Figure A1). Furthermore, the locations of these sparsely available monitors are not necessarily
representative of the population density of Southern California. We used the coordinates of MISR
pixels, which lacked a fixed grid, instead of monitoring sites as geospatial predictors to help mitigate
this problem by introducing additional spatial variability. We also attempted prediction models
for PM10 and SO2 (detailed results not reported here) to compare with our previous work over
Mongolia [35]. While PM10 models performed about the same, i.e., average test R2 < 0.10, SO2

models over California performed much worse, with average test R2 < 0.10 (vs. test R2 > 0.45 over
Ulaanbaatar). Poor prediction performance for SO2 was likely due to much lower concentrations of
SO2 in California (mean SO2 = 2.4 ppb in 2000–2018) compared to Ulaanbaatar (9.7 ppb in 2008–2017),
where SO2 is the more dominant source of PM. For the epidemiological purposes of the current study,
we focused on models predicting PM2.5 and its chemical components.

This study is unique in estimating air pollution exposure specifically to the residence and
follow-up period of each subject. Previously, exposures were assigned using annual means from
one central air pollution monitoring site for each study community [5,6,42], even if the children might
have lived far away from these sites. Furthermore, the follow-up period spanned about 211 days,
yet the annual means of central-site air pollutants for each community were calculated using a fixed
time window. Leveraging MISR aerosol and gridMET meteorological data, we improved upon these
limitations by assigning exposures that were spatially within 4.4 km of where each child lived and
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temporally specific to the 12 months prior to each child’s assessment visit. Nevertheless, our exposure
prediction models are not without unexplained residual variance; our best models had CV R2 from
0.53 (dust) to 0.71 (SO2−

4 , NO−
3 ). As noted by Alexeeff et al. [10], there can be 1–5% upward bias in

subsequent health effects estimates when exposure predictions have performance statistics in the
range we observed, and their standard errors may be underestimated. It is difficult to mitigate these
issues due to imperfect exposure models, but it is worth keeping in mind while interpreting our
epidemiological results.

While this is not the first study using AOD-derived PM2.5 concentration in an epidemiological
context, it is the first examining satellite-derived PM2.5 speciation. Previous studies of AOD-derived
PM2.5 include Rice et al. [27], who found that each 2 µg/m3 increase in AOD-derived PM2.5 was
associated with a 28 mL (−43.9 to 0.2 mL) decrease in forced vital capacity (FVC) and higher odds of
forced expiratory volume in 1 second (FEV1) being less than 80% predicted (OR = 1.41, 1.03 to 1.93).
In another study, AOD-derived PM2.5 concentrations were associated with an increased rate of asthma
onset (HR = 1.31, 1.28 to 1.33) in Quebec [28].

Similar to previous evaluations of the CHS [3,5,6], biological characteristics (age, gender,
race/ethnicity, height, height squared, BMI, and BMI squared) were significantly associated with
both measurements of lung function (Table A3). With these adjustments, several MISR-derived
estimates of air pollutants were able to explain the residual differences in lung function measurements
among the children. Another strength of this study is identifying the effect of specific PM2.5 chemical
components on lung function. While MISR-derived PM2.5 was significantly associated with decreases
in FEV1, its effect, measured as the difference in FEV1 between the highest and lowest exposure level
for each pollutant, is smaller than those of SO2−

4 and dust (Table 3). Similarly, although FVC was only
marginally statistically significantly associated with MISR-derived PM2.5, its associations with SO2−

4
and NO−

3 were clinically significant. In California, secondary aerosols including nitrate and sulfate
have been shown to be the most abundant contributors to ambient PM2.5, with nitrate accounting for
as much as 55% of the total mass [47]. Geologic dust can also contribute up to 20% of the mass in
summer in more arid regions of Southern California. Importantly, we were able to distinguish that
these PM2.5 species had differentially stronger associations with children’s FEV1 and FVC.

Urman et al. [3], who examined the cross-sectional effect of central-site air pollution on lung
function in the same cohort but at an earlier visit when the children were at ages 11–12, found
central-site PM2.5 to be significant with both log-transformed FEV1 and FVC. In our study, we did
not find central-site PM2.5 to be significant with either outcomes. We did find MISR-derived PM2.5

to be significantly associated with log-transformed FEV1, with a similar effect size, but not with
log-transformed FVC. Children exposed to the highest level of MISR-derived PM2.5 on average were
−3.54% (95% CI: −6.24%,−0.49%) lower in FEV1 compared to those exposed to the lowest level. In
the same CHS cohort and during the same follow-up period, Franklin and Fruin [4] found a significant
association between NOx on FVC when adjusted for traffic-related noise exposure. We found a
similarly significant relationship between NO−

3 and FVC where an IQR increase in NO−
3 (0.64 µg/m3)

is associated with 53 mL decrease in FVC (95% CI: −98,−7).

5. Conclusions

We have shown in this study that MISR AOD observations distinguishing size, shape, absorption
and mixture properties can aid in predicting PM2.5 and its chemical speciation including SO2−

4 , NO−
3 ,

EC, and dust, particularly when supplemented with spatio-temporal information and high-resolution
meteorological data. Machine learning methods such as Gradient Boosting and Support Vector
Machines were more suitable for characterizing the non-linear relationships between air pollutants and
AOD. We further showed that different MISR-derived PM2.5 composition, estimated specifically to the
residence and follow-up period of CHS study participants, were able to explain clinically significant
differences in lung function measurements FEV1 and FVC. This demonstrates that satellite-observed
aerosol data products can be incorporated to strengthen epidemiological studies investigating the
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health effects of environmental pollution. Epidemiological assessments will only be made more viable,
particularly as the quality of remote sensing data and estimation models continue to improve and
exposure measurement error decreases.
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Abbreviations

The following abbreviations are used in this manuscript:
ANOVA Analysis of variance
AOD Aerosol Optical Depth
CHS Children’s Health Study
CSN Chemical Speciation Network
FEV1 Forced expiratory volume in 1 second
FVC Forced vital capacity
MAIAC MultiAngle Implementation of Atmospheric Correction
MISR Multiangle Imaging SpectroRadiometer
MODIS MoDerate resolution Imaging Spectroradiometer
NO−

3 Nitrate
NO2 Nitrogen Dioxide
NOx Nitrogen Oxides
PM Particulate Matter
PM2.5 Particulate Matter with aerodynamic diameter ≤ 2.5 µm
PM10 Particulate Matter with aerodynamic diameter ≤ 10 µm
PM Particulate Matter
SO2−

4 Sulfate

Appendix A

Table A1. Spearman correlation coefficients for annual means of air pollution exposures during the
three CHS follow-up periods (2007–2012).

PM∗
2.5 PM†

2.5 SO2−
4 NO−

3 EC Dust

PM∗
2.5 1 0.68 0.55 0.34 0.29 0.68

PM†
2.5 1 0.74 0.59 0.15 0.38

SO2−
4 1 0.92 0.29 0.14

NO−
3 1 0.37 −0.12

EC 1 0.32
Dust 1

∗Central-site PM2.5; †MISR-derived PM2.5.
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Table A2. Mean (SD) of FEV1 and FVC by gender and race/ethnicity.

FEV1 FVC

Gender
Female 3304 (453) 3752 (537)
Male 4111 (680) 4801 (797)

Race/Ethnicity
White 3746 (665) 4377 (831)
Asian 3492 (635) 3892 (746)
Black 3271 (548) 3777 (683)
Hispanic 3715 (733) 4258 (884)
Others 3634 (688) 4162 (774)

Table A3. Effect estimates of biological characteristics on lung function in mixed models without air
pollution exposure.

FEV1 FVC

Characteristic Estimate 95% CI Estimate 95% CI

Age (year) 121 (−81, 162) 112 (67, 156)
Gender

Girls (ref.) – (ref.) –
Boys 317 (−256, 378) 440 (372, 506)

Race/ethnicity
White (ref.) – (ref.) –
Asian −21 (−145, 102) −188 (−323,−54)
Black −331 (−513,−151) −454 (−653,−254)
Hispanic 96 (−38, 154) 40 (−24, 103)
Others 52 (−42, 146) −12 (−115, 91)

Height (cm) 47 (44, 51) 59 (55, 63)
Height2 0.3 (0.0, 0.5) 0.5 (0.3, 0.8)
BMI (kg/m2) 35.7 (29, 42) 49 (42, 56)
BMI2 −2.4 (−3.0,−1.8) −2.8 (−3.5,−2.2)
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Figure A1. Maps of EPA PM2.5 monitoring sites (left) and CSN monitoring sites (right) from 2000
to 2018.
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Figure A2. Maps of EPA PM2.5 monitoring sites and the MISR pixels within 4.4 km of each site, in
Santa Barbara (left) and other communities (right).
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Figure A3. Boxplots of test R2 from 20 iterations of each machine learning method applied to predicting
PM2.5 speciation, in AOD-products (coral) and AOD-mixtures (teal) models.
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