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Abstract: To improve the accuracy of the geographic positioning of a single aerial remote sensing
image, the height information of a building in the image must be considered. Oblique remote sensing
images are essentially two-dimensional images and produce a large positioning error if a traditional
positioning algorithm is used to locate the building directly. To address this problem, this study uses
a convolutional neural network to automatically detect the location of buildings in remote sensing
images. Moreover, it optimizes an automatic building recognition algorithm for oblique aerial remote
sensing images based on You Only Look Once V4 (YOLO V4). This study also proposes a positioning
algorithm for the building target, which uses the imaging angle to estimate the height of a building,
and combines the spatial coordinate transformation matrix to calculate high-accuracy geo-location
of target buildings. Simulation analysis shows that the traditional positioning algorithm inevitably
leads to large errors in the positioning of building targets. When the target height is 50 m and the
imaging angle is 70◦, the positioning error is 114.89 m. Flight tests show that the algorithm established
in this study can improve the positioning accuracy of building targets by approximately 20%–50%
depending on the difference in target height.

Keywords: remote sensing; target geo-location; building target; elevation error; deep learning;
error analysis

1. Introduction

To realize remote sensing photogrammetry, various photoelectric sensors have been carried out
on aircrafts to obtain ground images. Obtaining the location information of the target in the image
using a geo-location algorithm is a research hotspot in recent years [1–3]. Currently, research on target
positioning algorithms focuses on improving the positioning accuracy of ground targets, implying that
the positioning error caused by the building height is rarely considered in the algorithm.

Obtaining high-accuracy geo-location of building targets in real time requires automatic detection
of buildings in remote sensing images and an appropriate method to calculate the height of buildings
from the image. Traditional aerial photogrammetry uses vertical overlook (i.e., nadir) imaging and
uses an airborne camera to obtain a large-scale two-dimensional (2D) image of the city. On this basis,
most research on building detection algorithms also aims at overlooking remote sensing images.
Owing to the differences in buildings in an image, semantic analysis and image segmentation are
used for automatic detection. A single overlooking remote sensing image can contain a large number
of buildings. With the development of aerial photoelectric loads, such as airborne cameras and
photoelectric pods, long-distance oblique imaging has become a major method for obtaining aerial
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remote sensing images. Unlike overlooking imaging, oblique imaging can better describe specific
details of urban buildings, which is conducive to 3D modeling, map marking, and other works [4].
To achieve these goals, a high-accuracy geo-location of urban building targets should be realized.
Scholars have conducted extensive research on target geo-location algorithms. To locate the target
with a single image, an earth ellipsoid model is widely used in the positioning process. For example,
Stich proposed a target positioning algorithm based on the earth ellipsoid model; this realizes the
passive positioning of the ground target from a single image by using an aerial camera and reduces
the influence of the earth’s curvature on the positioning result [5]. The Global Hawk unmanned
aerial vehicle (UAV) positioning system is also based on an earth ellipsoid model to calculate the
geodetic coordinates of the image center [6]. To improve the positioning accuracy, scholars have
optimized the algorithm by using multiple measurements and adding auxiliary information [7–9].
L.G. Tan proposed the pixel sight vector method through the parameters of the laser range finder (LRF)
and angle sensors, establishing a multi-target positioning model that improves the accuracy of the
positioning algorithm. Similarly, N. Merkle used the information provided by the synthetic aperture
radar (SAR) to achieve high-accuracy positioning of targets. Considering a problem wherein single UAV
positioning is significantly affected by random errors, various multi-UAV measurement systems have
been established to reduce random errors [10–13]. G. Bai and Y. Qu proposed cooperative positioning
models for double UAVs and multi-UAVs, respectively. Many scholars used filtering algorithms to
locate targets. For example, the target positioning algorithm based on Kalman filtering proposed
by H.R. Hosseinpoor improves the accuracy of target positioning through multiple measurements.
This filtering-based positioning algorithm is widely used in target tracking [14].

Although extensive research has been conducted on positioning algorithms, only a few analyzed
the positioning error caused by the target height. A remote sensing image is obtained by projecting the
target area on a sensor that receives the photoelectric signal. The sensor is usually a charge-coupled
device (CCD). The essence of an aerial remote sensing image is a 2D image, resulting in a traditional
positioning algorithm that cannot calculate the height of the building in the image. C. Qiao considered
the influence of elevation information on the positioning results and relied on digital elevation model
(DEM) data, instead of the earth ellipsoid model, which resolved the elevation error of ground
targets [15,16]. However, the DEM data do not contain the elevation information of the building and,
thus, cannot resolve the large positioning error of the building target. Some algorithms, based on
LRFs, for obtaining distance information can locate building targets. However, the positioning result is
significantly affected by the ranging accuracy, and most airborne LRF has a limited working range
(within 20 km). To obtain a large range for remote sensing images, the shooting distance of long-distance
oblique remote sensing images is usually more than 30 km. Therefore, this algorithm cannot meet the
requirements of high-accuracy positioning of building targets. Manual building identification and
calculation by downloading the aerial remote sensing image results in poor timeliness of the data,
and it cannot meet the requirements of obtaining the target’s geo-location in real time.

This study aims to address the problem of large positioning error of building targets and establishes
a building target positioning algorithm that can be widely used in oblique remote sensing images.
The remainder of this paper is organized as follows. Section 2 optimizes the YOLO v4 convolutional
neural network based on deep learning theory and characteristics of building remote sensing images
and realizes the automatic detection of buildings in various squint remote sensing images. Section 3
calculates the building height in the image based on the angle information and proposes a high-precision
positioning algorithm for the building target. Section 4 proves the importance and effectiveness of the
algorithm through simulation analysis and actual flight tests. Finally, Section 5 summarizes this study.

2. Automatic Building Detection Algorithm for Oblique Remote Sensing Images

As mentioned previously, the essence of aerial remote sensing images is 2D images. The principle
of the traditional target positioning algorithm is calculated by the intersection of the collinear equation
composed of the projected pixel points, camera main point, and earth ellipsoid equation or DEM model.
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Therefore, when locating a building target, the actual positioning result is the ground position blocked
by the building, as shown in Figure 1. In the figure, Tr is the actual position of the target point, and TP

is the calculation result of the traditional positioning algorithm.
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Figure 1. Building target positioning results.

An appropriate method that can detect the image and automatically identify the building should
be selected to distinguish the building target in the image from the ground target to avoid affecting
the positioning result of the ground target. The buildings in the oblique images show different
characteristics from those of the overlooking images, such as neighboring buildings being blocked
in the image. The height, shadow, angle, and edge characteristics vary for each building. Therefore,
the traditional top-down image recognition method is less effective and cannot detect buildings in
oblique images. Recently, owing to the rapid development of deep learning algorithms based on
convolutional neural networks, scholars have conducted research on the building detection in remote
sensing images through deep learning. However, most research focused on the detection of targets
from overlooking images, especially for the automatic recognition of large-scale urban images [17,18].
The relevant research results cannot be directly applied to oblique images. Therefore, although the
application of long-range oblique imaging is widely used, limited research has been conducted on
related datasets and detection algorithms.

YOLO is a mature open-source target detection algorithm with the advantages of high accuracy,
small volume, and fast operation speed [19–22]. Its advantages and characteristics perfectly match
the requirements of aerial remote sensing images. Aerial oblique images are usually captured using
airborne cameras or photoelectric pods carried by an aircraft, requiring real-time image processing and
high recognition accuracy. The computing power of aerial cameras is limited, so the operation speed
requirement of the algorithm is also high. This study uses YOLO v4 as the basis and optimizes it to
achieve the automatic detection of buildings from telephoto oblique remote sensing images.

Figure 2 clearly describes the neural network structure of the building detection algorithm. CBL is
the most basic component of the neural network, consisting of a convolutional (Conv) layer, a batch
normalization (BN) layer, and a leaky rectified linear unit (ReLU) activation function. In the CBM,
the Mish activation function is used to replace the leaky ReLU activation function. Moreover, a Res
unit exists to construct a deeper network. The CSP(n) consists of three convolutional layers and n Res
unit modules. The SPP module is used to achieve multiscale integration. It uses four scales of 1 × 1,
5 × 5, 9 × 9, and 13 × 13 for maximum pooling [22].
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Figure 2. Structure diagram of the neural network for the building extraction algorithm.

Training the neural network through a large amount of data is required to realize the automatic
detection of buildings. However, existing public datasets do not have high-quality data for oblique
aerial building images. A telephoto oblique aerial camera usually adopts the dual-wave or multi-wave
band simultaneous photography mode, the original image is usually a grayscale image and the existing
dataset cannot be used for the neural network training. To complete the neural network training,
this study establishes a dataset of oblique aerial remote sensing images, which is against building
images and is extracted from the remote sensing images captured by an aerial camera during multiple
flights. The dataset currently contains 1500 training images and more than 10,000 examples. The images
in the training set include remote sensing images obtained from different imaging environments,
angles, and distances and are randomly collected from linear array and area array aerial cameras.

After training the original YOLO v4 algorithm through the dataset established in this study,
the buildings in the tilted remote sensing image can be well detected, but some small low-rise buildings
are still lost. To improve the detection accuracy and meet the requirements of real-time geographic
positioning, this study optimizes the algorithm for building detection. The initial anchor boxes of
YOLO v4 cannot be applied well to the building dataset established in this study. This is because the
initial anchor box data provided by YOLO v4 is calculated based on the common objects in context
(COCO) dataset, and the characteristics of the prediction box are completely different from this study’s
building dataset. The initial anchor box data will affect the final detection accuracy. To obtain more
effective initial parameters, the K-means clustering algorithm is used to perform a cluster analysis on
the standard reference box data of the training set. The purpose is to select the appropriate box data in
the clustering result as the prediction anchor box parameter of network initialization. The K-means
clustering algorithm usually uses the Euclidean distance as the loss function. However, this loss
function causes a larger reference box to produce a larger loss value than a smaller reference box,
which produces a larger error in the clustering results. Owing to the large range of tilted aerial remote
sensing images, buildings of different scales often exist in the image simultaneously, and the clustering
results of the original K-means algorithm will produce large errors. To advance this phenomenon,
the intersection over union (IOU) value between the prediction box and standard reference box is
used as the loss function to reduce the clustering error. The improved distance function is shown
in Equation (1).

min
∑

i

∑
j

1− IOU(boxi, truth j) (1)

This problem also exists when calculating the loss of the prediction box. To address this, the loss
function in the YOLO v4 algorithm normalizes the position coordinates of the prediction box and
increases the corresponding weight. The center coordinates, width, and height loss functions are shown
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in Equations (2) and (3). In the equations, xi, yi refer to the center coordinates of the prediction box,

and wi, hi are the width and height values of the prediction box, respectively. Similarly,
∧
xi,
∧
yi refers to the

real center coordinates of the marker box, and
∧
wi,
∧

hi are the real width and height values, respectively.

S×S∑
i=0

M∑
j=0

Iobj
i j (2−wi × hi)[(xi −

∧
xi)

2
+ (yi −

∧
yi)

2
] (2)

S×S∑
i=0

M∑
j=0

Iobj
i j (2−wi × hi)[(wi −

∧
wi)

2
+ (hi −

∧

hi)
2

] (3)

The loss function of YOLO v4 has a satisfactory effect in the training process, but it also leads
to new problems. Owing to the loss function, the prediction frame coordinates given by YOLO are
normalized center point coordinates, and the width and height values that cannot be directly applied
to the positioning algorithm. To achieve high-accuracy building target positioning, a single prediction
box is used as an example to provide the prediction frame coordinate calculation method in the image
coordinate frame.

The conversion process is shown in Figure 3. Considering the four corner points of the prediction
frame as an example, the position of the prediction frame output by YOLO can be converted into
the image coordinate system using the following method. First, the YOLO output information
(width, height, and image center position) is converted into a normalized coordinate system with the
image center as the origin.

x′c = xi − 1/2, y′c = 1/2− yi
wi′ = wi, h′i = hi

(4)

Subsequently, the coordinates of the corner points of the predicted frame in this coordinate system
are calculated. 

x′1
x′2
x′3
x′4

y′1
y′2
y′3
y′4

 =


x′c −wi/2
x′c + wi/2
x′c −wi/2
x′c + wi/2

y′c + hi/2
y′c + hi/2
y′c − hi/2
y′c − hi/2

 (5)

Finally, the coordinates are enlarged according to the original size of the image (m ∗ n) to obtain
the coordinates of the corner points, Ps(xs, ys), in the image coordinate frame.[

xs

ys

]
=

[
m 0
0 n

]
×

[
x′s
y′s

]
(6)
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Additionally, this study improves the training speed of the detection algorithm by adjusting the
initial value and decline of the learning rate. To facilitate the subsequent target positioning process,
the detection algorithm can output the pixel coordinates of the prediction box in the image coordinate
frame to be output in real time. Figures 4 and 5 show the detection effect of the partial verification set,
illustrating the detection results for small scattered buildings and dense urban buildings, respectively.
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The optimized building detection algorithm can better identify blocked buildings and small buildings
in large-scale images. A comparison with the original YOLO v4 is shown in Figure 6.
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3. Building Target Geo-Location Algorithm

The building target location algorithm aims to obtain accurate geo-location of the target point.
The aerial cameras may produce inverted images because of the structure of the camera’s optical
system and the scanning direction. However, the image is rotated in post-processing, so the image
results still present a positive image. It is found that the top and bottom of the building usually have
the same latitude and longitude (λ,ϕ), but they differ in the height (h). Considering that no elevation
error exists in the positioning result of the bottom of the building calculated by the collinear equation,
the precise latitude and longitude information of the bottom of a building can be used as the overall
building latitude and longitude. Furthermore, the height of targets on the building can be calculated
by the algorithm provided in this section to improve the positioning accuracy of the building target.

The building detection algorithm described in Section 2 can automatically detect buildings in
remote sensing images and provide the position of the building prediction box in the image coordinate
frame. The high-accuracy geo-location of building targets can be obtained in two steps. First, the target
points on the same y-axis in the prediction box are considered having the same latitude and longitude.
Subsequently, the appropriate base point position is selected and is regarded as the standard latitude
and longitude of the target on a certain Y-axis. Second, the elevation information of the target point
in the prediction frame is calculated according to the proposed building height algorithm. The base
point is proposed to determine the latitude and longitude of the target point on a building. The base
point is determined by the prediction box provided by the building detection algorithm. Considering
that the aerial remote sensing image appears positive, the bottom of the prediction box (with the
smaller y coordinate value) is usually selected as the base point. It should be noted that the buildings
in the remote sensing image may overlap, so the prediction boxes in the image will also overlap.
This phenomenon occurs because the building in front (i.e., closer to the airborne camera) blocks the
building at the back. Hence, only the prediction frame of the building in front should be considered
and is reflected in the image coordinate frame as a prediction box with a small Y-axis coordinate.
As shown in Figure 7, the latitude and longitude of target points 1 and 2 are calculated by the base
points 1 and 2, respectively.
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According to the difference between the image acquisition methods of line array and area array
aerial cameras, the target point on the top floor of the building is used as an example. Two building
height algorithms are presented in this paper. The line array camera can provide angle information
when each line of the image is scanned, implying that the top and bottom of the building have different
imaging angles. The geometric relationship when the linear array aerial camera obtains the building
image is shown in Figure 8.
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Figure 8. Geometric relationship of the linear array camera building imaging.

In this figure, T1 and T2 are the location results of the bottom and top of the building, which are
calculated using the geo-location algorithm; θ1 and θ2 are the corresponding imaging angles; hb is
the height of the building; d is the distance between T1 and T2; and ha is the altitude of the aircraft.
The height of the building can be calculated by trigonometric functions, as shown in Equations (7)
and (8).

θt2 = π/2− θ2 (7)

hb = d× tanθt2 (8)

If the remote sensing image is acquired by an area array camera, the calculation process is more
complicated. The area array camera records the imaging angle θ0 of the main optical axis (also called
line of sight, LOS) of the camera when obtaining each image. The angles corresponding to the top and
bottom of the building in the image should be calculated through the geometric relationship, as shown
in Figure 9.
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In this figure, T′1(m1, n1), T2
′(m2, n2) are the projection positions of the top and bottom of the

building on the CCD, respectively. The number of pixels is represented by m and n. The angle θ1

between the imaging light at the bottom of the building and the main optical axis can be calculated
using Equation (9), where f is the focal length of the camera and a is the size of a single pixel.

θ1 = arctan(n1 × a/ f ) (9)

The angle θ2 between the imaging light at the bottom of the building and the main optical axis
can be calculated similarly.

θ2 = arctan(n2 × a/ f ) (10)

The angle parameters required by the building height algorithm can be calculated through
geometric relationships as follows:

θt0 = π/2− θ0,θt1 = θt0 − θ1. (11)

θt2 = θt1 − (θ2 − θ1). (12)

The angle information required by the algorithm can be obtained using Equations (9)–(12), and the
height of the building in the area array camera image can also be calculated using Equation (8).

As shown this algorithm, the height of building targets is calculated based on the geographic
location of the bottom of the building combined with the direct positioning result of the target point.
This article provides a simple and fast positioning algorithm based on the collinear equation as a
reference. The geographic coordinates of a point in the remote sensing image can be calculated using a
series of coordinate transformation matrices. CB

A represents the transformation process from the A
coordinate frame to that of B; CB

A can be abbreviated as a block form; L is a third-order rotation matrix
composed of cosines in the three-axis direction; and R is a translation column matrix composed of
the origin position of the coordinate system. The inverse matrix of CB

A represents the transformation
process from the B coordinate frame to that of A.

CB
A =


l1 l2 l3 r1

m1 m2 m3 r2

n1 n2 n3 r3

0 0 0 1

, CB
A =

[
L R
0 1

]
, CA

B = (CB
A)
−1

(13)

The earth-centered earth-fixed (ECEF) coordinate frame, also known as the earth coordinate frame,
can be used to describe the position of a point relative to the earth’s center. The coordinates of the target
projection point must be converted to the ECEF coordinate frame to establish the collinear equation
in the earth coordinate frame. This process usually requires three coordinate frames: geographic
coordinate frame, aircraft coordinate frame, and camera coordinate frame. Figure 10 is a schematic
diagram of the corresponding coordinate frames.

The optical system is fixed on a two-axis gimbal, which is rigidly connected to the UAV or
other airborne platforms. The camera coordinate frame (C) and aircraft coordinate system (A) can be
established with the center of the optical system as the origin. The X-axis of the aircraft frame points to
the nose of the aircraft, the Y-axis points to the right wing, and the Z axis points downward to form an
orthogonal right-handed set. The attitude of the camera can be described by the inner and outer frame
angles, θpitch and θroll, respectively, and the transformation matrix of the camera frame and aircraft
frame is as expressed in Equation (14).

CC
A =


cosθpitch 0 − sinθpitch 0

0 1 0 0
sinθpitch 0 cosθpitch 0

0 0 0 1

×


1 0 0 0
0 cosθroll sinθroll 0
0 − sinθroll cosθroll 0
0 0 0 1

 (14)
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As shown in Figure 8, according to the established method, the geographic coordinate frame
is also called the north-east-down (NED) coordinate frame and is used to describe the position and
attitude of the aircraft. The position of the airborne camera is considered as the origin, the N and E
axes point to the real north and real east, and the D axis points to the geocentric along the normal line
of the earth ellipsoid. Equation (15) is the transformation matrix between the A and NED coordinate
frames, where attitude angles ϕ, θ, and ψ represent roll, pitch, and yaw angles, respectively.

CA
NED =


1 0 0 0
0 cosϕ sinϕ 0
0 − sinϕ − cosϕ 0
0 0 0 1

×


cosθ 0 − sinθ 0
0 1 0 0

sinθ 0 cosθ 0
0 0 0 1

×


cosψ sinψ 0 0
− sinψ cosψ 0 0

0 0 1 0
0 0 0 1

 (15)

The ECEF coordinate system can describe the position of the target, and its coordinate value
can be converted into the geo-location information (i.e., latitude, longitude, and altitude). The origin
of the ECEF coordinate frame is at the geometric center of the earth, where the X-axis points to the
intersection of the equator and prime meridian, the Z-axis points to the geographic north pole, and the
Y-axis forms an orthogonal right-handed set. Equation (16) is the conversion formula between the
ECEF coordinate values and geo-location information. Equation (17) is the transformation matrix
between the ECEF coordinate frame and NED coordinate frame, where λ, φ, and h correspond to
longitude, latitude, and altitude, respectively.

XE

YE

ZE

 =


(Rn + h) cosϕ cosλ
(Rn + h) cosϕ sinλ
(Rn(1− e2) + h) sinϕ

 (16)

CNED
ECEF =


1 0 0 0
0 1 0 0
0 0 1 Rn + h
0 0 0 1

×

− sinϕ 0 cosϕ 0

0 1 0 0
− cosϕ 0 − sinϕ 0

0 0 0 1

×


cosλ sinλ 0 0
− sinλ cosλ 0 0

0 0 1 0
0 0 0 1

×


1 0 0 0
0 1 0 0
0 0 1 Rne2 sinϕ
0 0 0 1

 (17)
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If T′C is the position of the target projection point in the camera coordinate system, then its
coordinates in the earth coordinate system T′E can be calculated using the above transformation matrices.

TE
′ =


xT
′

yT
′

zT
′

1

 = CECEF
NED ×CNED

A ×CA
C × TC

′ (18)

The collinear equation in the ECEF coordinate frame is composed of T′E and the origin OC of the
camera coordinate frame.

L :
xT − xC
x′T − xC

=
yT − yC

y′T − yC
=

zT − zC
z′T − zC

, OC = [XC, YC, ZC] (19)

The position of the target in the ECEF coordinate system can be obtained by solving the intersection
of the collinear equation and earth model. The earth model uses the ellipsoid model or DEM data.
Our study uses the ellipsoid model as an example. If the altitude of the target is hT, the earth ellipsoid
equation of the target can be expressed as Equation (20) [6].

xT
2

(Re + hT)
2 +

yT
2

(Re + hT)
2 +

zT
2

(Re + hT) × (1− e2)1/2
= 1, (20)

where Re = 6, 378, 137 m and Rp = 6, 356, 752 m are the semi major and semi-minor axes, respectively.
The geo-location information of the target can be obtained through an iterative algorithm based

on the calculation results of Equations (19) and (20).
N0 = Re

h0 = [(xT)
2 + (yT)

2 + (zT)
2]

1/2
− (ReRp)

1/2

ϕ0 = arctan
{

zT [(1−e2)N0+h0]

[(xT)
2+(yT)

2]
1/2

(N0+h0)

}


Ni =
RE

(1−e2 sin2 ϕi−1)
1/2

hi =
[(xT)

2+(yT)
2]

1/2

cosϕi−1
−Ni−1

ϕi = arctan
{

zT [(1−e2)Ni−1+hi−1]

[(xT)
2+(yT)

2]
1/2

(Ni−1+hi−1)

}
(21)

λ0 = arctan(
yT

xT
),λ =


λ0 xT > 0

λ0 + π xT < 0, λ0 < 0
λ0 −π xT < 0, λ0 > 0

(22)

The precise geo-location information of the building (λB,ϕB, hT) can be obtained using the above
algorithm. Meanwhile, the precise geographic information of a target on the building consists of two
parts: the latitude and longitude of the bottom of the building (λB,ϕB) and the height of the target
point (hT). The complete positioning process is illustrated in Figure 11.
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4. Experimental Results

4.1. Simulation Results

The traditional positioning algorithm is used to locate the target on the building in the simulation
environment. Through a simulation analysis of the positioning error caused by the height of the building
target, the importance of the building target positioning algorithm is verified. The error between the
true position of the target (TR

E =
[

xr yr zr
]
) and the positioning result (TD

E =
[

xd yd zd
]
) can

be calculated using the spatial two-point distance formula, as shown in Equation (23).

d =

√
(xr − xd)

2 + (yr − yd)
2 + (zr − zd)

2 (23)

∆y = f (x + ∆x1, x2 + ∆x2, ..., xn + ∆xn) − f (x1, x2, ..., xn) (24)

The spatial distance formula is only suitable for calculating a single positioning error. To simulate
the positioning algorithm, a suitable random number should be selected to replace the random error in
the actual positioning process. In this study, an error model is established based on the Monte Carlo
method, as shown in Equation (24). In the equation, ∆y is the positioning error, and the result of
∆y is equivalent to the error value calculated by the spatial distance formula in a single simulation.
The measured value of each parameter required by the geo-location algorithm is x1, x2, ..., xn, and ∆xn

is the increment according to the standard normal distribution, which represents random errors caused
by sensor measurements. The parameters used in the simulation process are presented in Table 1.

According to the positioning error values obtained by the simulation analysis, various evaluation
criteria can be used for the positioning accuracy, such as the average positioning error, positioning
standard deviation, and circle probability error. The average positioning error refers to the average of all
positioning errors in a simulation experiment. The positioning standard deviation refers to the standard
deviation of the sequence consisting of multiple positioning error data, calculated using the standard
deviation formula. The circular error probability (CEP) refers to the radius of a circle containing half of
the positioning results centered on the true position of the target in multiple simulations. The lower
the value of the three evaluation criteria, the higher is the accuracy of the positioning algorithm.
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Table 1. Simulation experiment parameters.

Data Unit Real Value Error Value

Camera Latitude ϕA/(◦) 35 0.0001
Camera Longitude λA/(◦) 110 0.0001
Camera Altitude hA/m 10,000 10

Camera Attitude(Yaw) ψ/(◦) 0 0.06
Camera Attitude(Pitch) θ/(◦) 3 0.02
Camera Attitude(Roll) ϕ/(◦) 0 0.02
Gimbal Angel(Outer) θroll/(◦) 40–80 0.006
Gimbal Angel(Inner) θpitch/(◦) −1.5 0.006

Pixel Number N/A 3000*4000 N/A
Focal Length f /(m) 1.5 N/A

Pixel Size a/(nm) 8 N/A

Figure 12 shows a comparison of the calculation results of the three error evaluation criteria
when the simulation positioning target is located on a building with the height of 70 m. The specific
simulation parameters are presented in Table 1. The horizontal axis of the image is the change in
the imaging angle, and the vertical axis is the error value. The figure shows that, as the imaging
angle increases, the three error types exponentially increase. The larger the imaging inclination,
the greater is the positioning error caused by the height of the building. When the imaging angle is
75◦, the average positioning error is close to 150 m. Additionally, although the overall change of CEP
shows an increasing trend, CEP does not increase regularly with the increase in the imaging angle.
This is caused by the calculation principle of CEP. The building target positioning errors include large
height errors, and CEP ignores such errors. CEP is usually aimed at 2D plane errors and treats all
positioning results as the same plane; thus, CEP is not suitable for error analysis of targets on buildings.
Therefore, the analysis of positioning error in this study mainly uses the average positioning error.
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Figure 13 shows a schematic diagram of the error change of the building target height ranging
from 10 m to 100 m. The horizontal and vertical axes represent the target height of the building and
average positioning error, respectively. The positioning results in the figure are also obtained in the
simulation environment using the traditional target positioning algorithm. Evidently, the target height
and imaging angle are directly related to the positioning error. When using traditional algorithms
to locate the target on a building, even if the height of the building is only 10 m, a total positioning
error of 63 m will occur when the imaging angle is 65◦. Under the same imaging conditions, if the
target point is on the ground, the positioning error is approximately 47 m. The positioning accuracy of
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traditional algorithms has decreased by nearly 33%. When the inclination angle reaches 70◦, the error
value increases by nearly 90 m, and the positioning error is as high as 126 m when the target height
is 80 m.
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Figure 14 shows a schematic diagram of the distribution of positioning results in 10,000 simulation
experiments. The experimental parameters were a building with the height of 70 m and an imaging
angle of 60◦. The remaining parameters are listed in Table 1. Clearly, when the target has a building
elevation error, the positioning results of the traditional positioning algorithm are comprehensively
affected. In addition to the extreme height error, the positioning accuracy of the target point’s latitude
and longitude also decreases. When a traditional geo-location algorithm is used to position the ground
target, the average positioning error of the latitude is 2.8738 × 10−6◦, and the that of the longitude
is 2.3203 × 10−6◦. When the target is on the top floor of the building, the average latitude error
of the positioning result increases to 9.0545 × 10−4◦, and the average longitude error increases to
1.5867× 10−4◦.
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From the simulation analysis results in this section, we can conclude that the traditional positioning
algorithm applied directly to the target on the building causes a great positioning error. Therefore,
the positioning algorithm and positioning ability of building targets should be enhanced.
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4.2. Actual Remote-Sensing Image Test Results

In this section, the actual working effect of the established building target geo-location algorithm is
tested. The test data include the oblique aerial remote sensing image captured by the airborne camera.
The building target geo-location algorithm and traditional positioning algorithm proposed in this
study are used to locate the target simultaneously. The effectiveness of the building target positioning
algorithm was verified by comparing the positioning results of the two algorithms. The standard
latitude and longitude information of the target is measured by a single-station handheld differential
global position system (DGPS), and the precise elevation information of the building is measured by
an electronic total station. The accuracy of the DGPS used in the experiment is within 0.5 m, which is
sufficient to meet the requirements as a standard reference value. To prove the wide applicability of
the algorithm, two experimental pictures were obtained from two different aerial photographs. In the
figure, the top layer of some buildings was randomly selected as the target point, and the positioning
results of the different algorithms were compared. During the positioning process, the building
detection algorithm was used to detect the remote sensing image. The results are shown in Figures 15
and 16. Figure 15 mainly includes shorter buildings (<10 floors), and Figure 16 includes taller buildings
(>10 floors). The parameters of the aircraft and camera during image acquisition are presented
in Table 2.
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Table 2. Parameters of the camera and aircraft.

Camera Parameters Figure 13 Figure 14

Camera Latitude/◦ 106.2981 106.3874
Camera Longitude/◦ 26.2294 26.2665
Camera Altitude/m 16582 17654

Aircraft Yaw/◦ 0.3901 0.3906
Aircraft Pitch/◦ 0.02 0.0207
Aircraft Roll/◦ −0.0001 0.000427
Gimbal Roll/◦ 70.024 69.7302
Gimbal Pitch/◦ −2 −2

Altitude of Target Area/m 1410 1363

The building in Figure 15 is located in an urban community. The image was captured at
23.21◦ N–23.22◦ N and 105.85◦ E–105.87◦ E, and the height of buildings in the picture is between
10 and 25 m. The target points are randomly distributed on the top layer of the building, and the
target is located using the traditional positioning algorithm and building target positioning algorithm,
respectively. Table 3 presents the specific positioning results of the experiment. In the table, R represents
the real position of the target, and T and B represent the target position calculated by the traditional
geo-location algorithm and building target geo-location algorithm, respectively. Experimental results
show that the geo-location error of the target using traditional positioning algorithms is between
64.05 and 97.74 m. The building target positioning algorithm established in this study can reduce the
positioning error to 44.29–68.37 m, and the positioning accuracy is significantly improved.

Table 3. Positioning results of Figure 15.

Target Number 1 2 3 4 5

Target Latitude (R)/◦ 23.218790 29.219244 26.219365 26.219027 26.219778
Target Longitude (R)/◦ 105.865451 105.865336 105.866081 105.866182 105.866106
Target Altitude (R)/m 1432.7 1425.8 1433.7 1425.2 1427

Latitude of Positioning
Results (T)/◦ 26.219077 26.219340 26.219558 26.218932 26.219849

Longitude of Positioning
Results (T)/◦ 105.864553 105.864558 105.865464 105.865640 105.865491

Altitude of Positioning
Results (T)/◦ 1410.02 1410.03 1410.01 1410.01 1410.02

Latitude of Positioning
results (B)/◦ 26.218536 26.218935 26.219049 26.218656 26.219483

Longitude of Positioning
Results (B)/◦ 105.864811 105.864791 105.865741 105.865909 105.865743

Altitude of Positioning
Results (B)/m 1431.56 1425.63 1433.53 1425.08 1426.68

Error of Traditional
Algorithm (T)/m 97.7419 78.9521 84.4955 64.0555 67.876

Error of New
Algorithm (B)/m 68.3784 62.932 47.86 44.29 45.263

Variation of Error/m 29.3635 16.0201 36.6355 19.7655 22.613
Accuracy Improvement (%) 0.3004 0.2029 0.4336 0.3086 0.3332

Figure 16 shows an aerial remote sensing image of some office buildings. In this image, most of
the buildings have the height between 60 and 100 m (target numbers 7–9), while some are relatively
short buildings (target numbers 6 and 10). The standard geo-location of the target is obtained through
DGPS and the electronic total station. The specific positioning information and related errors are listed
in Table 4. The positioning error of the traditional algorithm is between 85.39 and 122.23 m, and that of
the building target positioning algorithm is between 61.13 and 68.72 m. Because of the higher target
height, compared to that of the first experiment (Figure 13), the building target positioning algorithm
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improves the positioning accuracy more evidently. For higher buildings, the positioning accuracy can
increase by 43%–48%.

Table 4. Positioning results of Figure 16.

Target Number 1 2 3 4 5

Target Latitude (R)/◦ 26.248419◦ 26.248654◦ 26.249106◦ 26.249548◦ 26.249231◦

Target Longitude (R)/◦ 105.956412◦ 105.956628◦ 105.956392◦ 105.956033◦ 105.956563◦

Target Altitude (R)/m 1385.3 1425 1426.5 1428.2 1376.2
Error of Traditional

Algorithm (T)/m 93.2859 109.7042 122.228 113.9909 85.3932

Error of New
Algorithm (B)/m 61.6784 56.5252 68.7251 61.8253 61.1385

Variation of Error/m 31.6075 53.5042 53.5029 52.1656 24.2547
Accuracy Improvement (%) 0.3388 0.4847 0.4377 0.4576 0.284

5. Discussion

The above analysis is based on the overall error of the positioning result, which indicates the spatial
distance between the positioning result and standard reference position of the target point. To clearly
prove that the proposed algorithm can calculate the elevation information more effectively, the overall
positioning error is decomposed into the horizontal position error (error of latitude and longitude)
and height error. Moreover, the accuracy of the algorithm is evaluated separately, as presented in
Table 5. In the table, the ground error is the latitude and longitude error between the position results
and the standard reference value, which is a 2D distance error. The results show that the height error
of the algorithm established in this study is within 2 m. However, the traditional algorithm regards the
target in the image as being located on the same horizontal plane, and the height error is essentially
equal to the height of the building. Compared to the traditional position algorithm, the algorithm
proposed in this study also reduces the latitude and longitude positioning error of the building target.
The algorithm’s ability to position the target’s latitude and longitude is related to the accuracy of the
image parameter information. This is because the image parameters contain certain errors, such as
those of carrier attitude angle and camera imaging angle. The positioning error caused by the image
information is called the image inherent error in the table.

Table 5. Results of decomposition error.

Target Number 1 2 3 4 5

Ground Error (T)/m 94.71 77.14 80.97 61.98 65.42
Altitude Error (T)/m 22.68 15.77 23.69 15.19 19.98
Ground Error (B)/m 68.37 62.93 47.86 44.29 45.26
Altitude Error (B)/m 1.14 0.17 0.17 0.12 0.32

Inherent Error/m 67.49 61.74 46.27 43.15 42.47

Target Number 6 7 8 9 10

Ground Error (T)/m 90.20 87.56 101.77 90.34 84.22
Altitude Error (T)/m 22.31 61.96 63.48 65.2 13.21
Ground Error (B)/m 61.67 56.49 68.74 61.79 61.13
Altitude Error (B)/m 0.07 2.03 1.48 1.80 0.44

Inherent Error/m 60.24 56.2 66.48 60.45 50.85

A comparison of the positioning results of the two algorithms is shown intuitively in Figure 17.
Situations 1 and 2 in the figure are the positioning results of the target using traditional positioning
algorithms and the proposed building target positioning algorithm, respectively. The order of the
target points in the figure is arranged according to the actual height of the target (i.e., from low to
high). As shown in the figure, regardless of whether the target is on a high-rise or low-rise building,



Remote Sens. 2020, 12, 2427 18 of 20

the traditional positioning algorithm causes a large positioning error. Conversely, the proposed
building target positioning algorithm improves the positioning accuracy by 20–48%. In summary,
the algorithm proposed in this study can calculate the elevation of the building target effectively and
can correct the latitude and longitude to a certain extent. This is widely applicable to various oblique
aerial remote sensing images.
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6. Conclusions

This study proposes a geo-location algorithm for targets in buildings. The algorithm uses deep
learning to achieve automatic detection of building targets when acquiring images. Moreover, it provides
a building height estimation model based on the location of the prediction box to achieve high-accuracy
positioning of building targets. With the development of aeronautical photoelectric loads, oblique aerial
remote sensing images are widely applied, and the requirements for image positioning capabilities
are increasing. However, when the traditional positioning algorithm locates the building target in
a single image, a large positioning error is generated. The positioning error of the building target
has two main reasons. First, most of the existing long-distance positioning algorithms to locate the
target are based on the collinear equation. The positioning result is the projection of the target on the
ground rather than its real position. Second, the remote sensing image is essentially a 2D image that
does not directly provide the height information of the target. Conversely, the algorithm proposed
in this study remarkably improves the positioning accuracy of building targets and can be widely
used in oblique aerial remote sensing images. The algorithm can also be used with various existing
high-precision ground target positioning algorithms to improve its positioning effect on building
targets. The limitation of the proposed method is that the detection algorithm can only output a
rectangular prediction box, which may cause the prediction box to include other features apart from
buildings. If the roof of a building is at a 45◦ angle, the prediction box can still completely cover the
building. However, there must be a situation where the ground image is also covered in the prediction
box. If a positioning target exists in the image at this time, it will inevitably lead to positioning errors
during the automatic calculation by the algorithm. This problem can be solved by manually confirming
the building target in the image. However, it should be noted that in real aerial remote sensing city
images, no positioning target near the roof of the building usually exists. Owing to the large range of
oblique imaging, the image of the near-roof building in an urban remote sensing image is usually other
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buildings in the distance. Compared to the entire image, the prediction box of low-rise buildings is
small. The non-building area in the prediction box may only be 10 × 10 pixels and will not include
ground positioning targets.

Experiments show that the proposed algorithm proposed can detect and estimate the height of
buildings in an image. The algorithm can improve the accuracy by approximately 40% when the
imaging angle is 70◦ and target height is 60 m. For buildings with a height of 20 m, the accuracy can
be increased by approximately 25%. This algorithm can improve the accuracy of positioning, but the
improvement effect is not fixed at 25–40%. This is because, in addition to the error caused by the
target height, the positioning algorithm is also affected by other factors. For example, the positioning
algorithm based on angle information will be affected by the accuracy of the angle measurement,
and that based on laser distance measurement will be affected by the accuracy of the distance
measurement. The higher the accuracy of the angle and distance measurements, the smaller is the
error of the positioning algorithm and the greater is the relative weight of the influence of the building
height error on the positioning result. Therefore, with the improvement of the accuracy of various
angle and distance measuring sensors, the building target positioning algorithm established in this
paper will be more effective for the optimization of traditional positioning algorithms and has greater
practical significance.
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