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Abstract: The present study aims to discriminate four semi-arid grassland habitats in a Mediterranean
Natura 2000 site, Southern Italy, involving 6210/E1.263, 62A0/E1.55, 6220/E1.434 and X/E1.61-
E1.C2-E1.C4 (according to Annex I of the European Habitat Directive/EUropean Nature Information
System (EUNIS) taxonomies). For this purpose, an intra-annual time-series of 30 Sentinel-2 images,
embedding phenology information, were investigated for 2018. The methodology adopted was based
on a two-stage workflow employing a Support Vector Machine classifier. In the first stage only four
Sentinel-2 multi-season images were analyzed, to provide an updated land cover map from where
the grassland layer was extracted. The layer obtained was then used for masking the input features
to the second stage. The latter stage discriminated the four grassland habitats by analyzing several
input features configurations. These included multiple spectral indices selected from the time-series
and the Digital Terrain Model. The results obtained from the different input configurations selected
were compared to evaluate if the phenology information from time-series could improve grassland
habitats discrimination. The highest F1 values (95.25% and 80.27%) were achieved for 6210/E1.263
and 6220/E1.434, respectively, whereas the results remained stable (97,33%) for 62A0/E1.55 and
quite low (75,97%) for X/E1.61-E1.C2-E1.C4. However, since for all the four habitats analyzed no
single configuration resulted effective, a Majority Vote algorithm was applied to achieve a reduction
in classification uncertainty.

Keywords: grassland; habitat mapping; Natura 2000; Sentinel-2; spectral index; time-series

1. Introduction

Natural and semi-natural grassland ecosystems represent one of the largest landscape
units in the terrestrial system and, as such, they are essential contributors to global biodiver-
sity [1]. Evidence has been reported that the biodiversity of grasslands can be linked with
productivity [2,3]. Semi-natural grasslands of the Western Palearctic region are considered
among the most species-rich habitats in the world [4]. However, in the last few decades,
widespread proof has been reported about the impoverishment of grassland biodiversity
and related ecosystem services. This has been mainly due to land use change, agricultural
intensification, land abandonment and urbanization [5–7]. In addition, the change of
climate occurring to the globe can threaten grassland behavior [8]. Hence there is a need for
earth observation monitoring to support both ecological and economic decision making.
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The Habitat Directive [9] and the Birds Directive [10] represent the legal tool to
respond to the United Nations (UN) Convention on Biological Biodiversity [11] within
the European Union (EU). To address biodiversity conservation, the main policy strategy
posed by the Natura 2000 network includes an ecological system of protected sites for
long-term conservation of threatened or rare natural habitats, species of flora and fauna [12].
Regulations on the Natura 2000 network require habitat mapping to be carried out every
six-years. There cannot be a defined protocol for more than 27,000 sites. Multiple approach
solutions are requested [1]. Such solutions may depend both on the ecosystem investigated
(e.g., dry grassland, wetland, boreal forest, peat bog) and on the spatial scale considered
(e.g., continental, local, at species level) [13].

In the Mediterranean area, the mapping of different grassland habitats still remains a
challenge due to: (a) the small spatial extent of such habitats; (b) the high spatial, structural
and temporal diversity of the vegetation composition; (c) their spectral similarity [14–19]. In
addition, Mediterranean grasslands are characterized by both the dominance of short-lived
grasses and the emergence of geophytes in short temporal range resulting in a pronounced
seasonality of emerging phenology.

The grassland habitats are usually mapped by expert botanists through in-field inspec-
tions, thus little literature exists on their automatic recognition by remote sensed data. To
the best of our knowledge, our study may represent the first effort to map Mediterranean
grassland habitats in Southern Italy, using satellite data. To this purpose, the present study
will compare the use of intra-annual Sentinel-2 time-series of spectral indices and four
multi-seasonal image bands to discriminate four grassland habitats in the “Murgia Alta”
protected site. The four target types of habitats are mainly defined and characterized by
their plant communities and attributed to two phytosociological alliances (type_1 and
type_2), one phytosociological class (type_3) and unclassified communities dominated by
certain ruderal plant species (type_4). In particular, we investigate the following habitat
types: type_1—Semi-natural and natural dry grasslands and scrubland facies on calcareous
substrates (Festuco-Brometalia); type_2—Eastern sub-mediterranean dry grasslands (Scorzoner-
atalia villosae); type_3—Pseudo-steppe with grasses and annuals of the Thero-Brachypodietea and
type_4—Mediterranean subnitrophilous grass communities, thistle fields and giant fennel (Ferula)
stands. The EU codes for these habitats are provided, in Table 1 (Section 2), according to
both the Annex I to the European Habitat Directive and the EUropean Nature Information
System (EUNIS) taxonomies.

Actually, Remote Sensed (RS) data have already been applied successfully in biodi-
versity monitoring [20–23]. However, to the best of our knowledge, few authors have
published about the automatic mapping of grassland habitats.

Specifically, High or Very High spatial Resolutions (VHR) satellite data have been
used to approach the issues mentioned in (a) and (b) even though VHR data include only
bands of the VISible (VIS)/Near Infra-Red (NIR) spectral range [19,24]. Corbane et al.
(2013) [25] have used two RapidEye (5 m) images for mapping seven habitats including
three habitats of European interest in a French Mediterranean region. The first of the
three habitats coincides with our type_1 habitat. By using the Sparse Partial Least Square
Discriminant Analysis (SPLSDA), the same authors reported an Overall Accuracy (OA)
value equal to 71% and User’s Accuracy (UA) values equal to 91.97%, 88.38% and 65.98%
for the habitats considered.

Buck et al. (2015) [13] have also analyzed three multi-temporal RapidEye images for
mapping three Natura 2000 grassland habitats, including type_1 habitat, an “intensive
grasslands” class and two additional crop classes in Germany. They have compared
the results from a Maximum Likelihood (ML) classifier with the ones from a Support
Vector Machine (SVM). The ML classifier was trained by using only spectral features,
thus obtaining a UA value equal to 78.8% for type_1 habitat. The SVM classifier adopted,
instead, ecological expert knowledge integrating multi-spectral information with additional
features, such as linear structures, slope orientations, soil moisture. The UA, thus, obtained
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for type_1 resulted always lower than 53%, independent of the specific combination of
input features used.

Zlinszky et al. (2014) [26] have used LIght Detection And Ranging (LIDAR) data
from two different aerial campaigns for mapping grassland habitats in Hungary, including
type_1 habitat and lowland hay meadows by adopting the Random Forest classifier. For
type_1 habitat, they obtained an OA equal to 75% and UA and PA values equal to 66.4%
and 78.6%, respectively.

To address issue (c), i.e., grassland habitats’ spectral similarity, airborne hyperspectral
images have been used for the mapping of plants species [1], flower types [27] and species
richness [28–30]. Marcinkowska-Ochtyra et al. (2019) [31] have analyzed three multi-
temporal hyperspectral images combined with Digital Terrain Model (DTM) information
for mapping three grassland habitats, including type_1 habitat, in Poland. By applying
a Random Forest classifier, the best results were obtained when hyperspectral data were
integrated with five topographic indices (bottom flatness, ridge top flatness, topographic
position, wetness index, modified catchment area) from an available DTM. They have
obtained the F1-measure of 84.5% for type_1. However due to the high costs of airborne
hyperspectral data their availability has remained limited.

For mapping grassland habitats, another useful approach has used the acquisition of
intra-annual time-series of satellite data acquired at high temporal, spatial and spectral
resolutions. Such data can take advantage of the high temporal frequency of acquisition to
detect phenological differences in vegetation classes useful for their discrimination.

Generally, rather than using the entire available set of spectral bands, spectral indices
have been extracted from the time-series. For example, Wen et al. (2010) [32] have analyzed
the single spectral index Enhanced Vegetation Index (EVI) from a MODerate-resolution
Imaging Spectroradiometer (MODIS) time-series for mapping six grassland types in China.
They have obtained an OA value equal to 68% by using an ISODATA procedure to identify
homogenous regions followed by a decision tree classifier. Schuster et al. (2015) [1]
have used three different vegetation indices from a one-year time-series obtained by
considering 21 RapidEye images acquired over three years (2009–2011) for discriminating
seven grassland habitats in Germany. The results obtained from the optical time-series,
with single or multiple indices, were compared with those from a TerraSAR-X time-series.
The authors applied the SVM classifier reporting the highest OA value (91.7%) when three
indices were considered: Normalized Difference Vegetation Index (NDVI), NDVI-RE-R
(where the NIR band is substituted by the Red-Edge band in the NDVI formula) and NDVI-
NIR-RE (where the red band is replaced by the Red-Edge band in the NDVI formula) [1].
Marginal differ-ences were reported with the results (91%) obtained from TerraSAR-X data,
with slight differences in specific habitat accuracy values.

For grasslands mapping, recent studies have investigated Sentinel-2 time-series by
the EU Copernicus and European Space Agency (ESA) programs [33,34]. These data are
characterized by both high spatial resolution (10 m for bands 2, 3, 4 and 8; 20 m for bands
5, 6, 7, 8a, B11 and B12; 60 m for bands 1, 9 and 10) and high revisiting time (less than 5
days in tandem acquisition). Fauvel et al. (2020) [35] have combined time-series of NDVI
index from Sentinel-2 with polarization data from Sentinel-1 SAR time-series for mapping
grassland plant diversity in France. Rapinel et al. (2019) [36], instead, have compared
the results obtained from the spectral bands of an intra-annual Sentinel-2 time-series (12
images) with the ones from single-date and single-band datasets. These data were used
to map seven floodplain grassland plant communities. In order to reduce the original
feature dimensionality (120 bands), the authors adopted a recursive feature elimination
(RFE) algorithm for retaining the most discriminating bands (26) as input to the classifier.
The SVM finding, thus, obtained (78%) was better than both the ones from a single date
Sentinel-2 image (67%) and from a single band of the same image (70%). Both Fauvel et al.
(2020) and Rapinel et al. (2019) have analyzed only pixels of the Sentinel-2 time-series
belonging to the grasslands layer. This layer has been obtained from ancillary data used
for the masking of Sentinel-2 images. However, the ancillary data (e.g., the agricultural
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Land Parcel Information System) generally are neither regularly updated nor have been
made available at the same scale of the satellite data used for habitat mapping.

In this study, the spectral indices will be selected to ensure the coverage of the full
spectral range offered by Sentinel-2 data, as proposed by Große-Stoltenberg et al. (2016) [37]
for mapping the four selected habitat classes. By investigating the detection of invasive
species from field-spectra, these authors have suggested the selection of an appropriate set
of spectral indices able to cover the full spectral range of the sensor used. In so doing, they
obtained results comparable with those from the whole set of spectral bands but were able
to reduce the features number.

The approach proposed in our study will be based on a two-stage procedure for
habitat mapping. A supervised data-driven SVM classifier will be used in both the first and
second stage [38–40]. The SVM classifier will be preferred to deep learning algorithms since
the latter require relatively large datasets to work well, and an adequate infrastructure to be
trained in reasonable time. With respect to Random Forest (RF), Grabska et al. (2020) [41]
have argued that RF may struggle with as well as less-common classes and corresponding
imbalanced training data [42], while SVM may perform better in this case.

The first stage of the system will provide an updated Land Cover (LC) map obtained
from four multi-season Sentinel-2 images. The output, thus, obtained will be then used for
the masking of an intra-annual Sentinel-2 time-series. Only the pixels of the time-series
belonging to the grasslands class will be used as input to the second classification stage.
As a result, the grassland layer will be extracted at the same date and spatial resolution of
the final habitat map.

The second stage will be used to discriminate the four grassland habitats. Several
classification configurations will be investigated within this stage by changing the input
features, including also the available Digital Terrain Model (DTM). The results obtained
from the different input configurations will be compared to evaluate if the phenology
information from time-series can improve grassland habitats discrimination.

A Majority Vote algorithm will be applied to combine the results from all the configu-
rations and reduce classification uncertainty.

The findings reported could encourage regular automatic mapping of grassland
habitats for conservation and restoration purposes.

2. Materials and Methods
2.1. Study Area and Grassland Habitats Characterization

Our study area is located in the Mediterranean basin within the Apulia region, South-
ern Italy. The area covers nearly 800 km2 within the Natura 2000 “Murgia Alta” protected
area (IT9120007) (Figure 1). This is a Site of Community Importance (SCI) and in addition a
Special Protection Area (SPA) which has included a National Park since 2004.
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The altitude of the area is from 285 to 680 m above the sea level and its climate is
mesomediterranean oceanic subcontinental pluviseasonal with dry to sub-humid om-
brotype [43]. The site is characterized by a typical Mediterranean agro-pastoral landscape
with millennial land-use history mainly occupied by semi-natural rocky dry grasslands,
traditionally used as extensive pastures, while forest vegetation consists only of residual
patches of downy oak (Quercus pubescens s.l.) woodlands and Aleppo pine (Pinus halepensis)
plantations [44]. In “Murgia Alta” the same semi-natural grassland ecosystem hosts nu-
merous regionally endemic and generally rare species, but also many with trans-Adriatic
distribution [43]. This area is considered of crucial importance for the conservation of
wildlife and priority species [10].

During the last three decades, this unique ecosystem has been exposed to tremendous
impacts and accelerated processes of habitat degradation, fragmentation and biotic con-
tamination (i.e., woody encroachment), both within and next to its borders. As a result of
the combined pressures, ecosystems are threatened or even in danger of destruction [45].
The pressures related to degradation range from:

• the Common Agricultural Policy (CAP) which has driven the transformation of grass-
land pastures into agricultural (cereal crops intensification) areas by stone (rock)
graining (clearance) that has induced soil erosion and sediment deposition in the
aquifer system;

• the illegal waste and toxic mud dumping on transformed areas has caused heavy
metal contamination of soils and aquifers;

• the increasing of traditional legal and illegal mining activities, wind farms infrastruc-
tures and arson [46,47];

• the below long-term average rainfall as a result of climate change;
• the spreading of invasive species [44,45,48].

According to the list of habitats reported in Annex I of the European Habitat Direc-
tive [9] and in EUNIS habitat taxonomies [49], the four grassland habitat types considered
in “Murgia Alta” are listed in Table 1.The target habitats’ detailed description is provided
in the text reported hereafter. In the text, the nomenclature of species and sintaxa follow
Bartolucci et al. (2018) [50] and Biondi and Blasi (2015) [51], respectively.

Table 1. Annex I and specific EUNIS codes for grassland habitat types in “Murgia Alta” site. Biomass Peak (BP) period
is reported.

Types Description Code in Annex I to the Habitat
Directive and (/) Eunis Taxonomies

type_1

Semi-natural and natural dry grasslands and scrubland facies on
calcareous substrates (Festuco-Brometalia). In Murgia Alta, this habitat
type is represented by Brachypodium rupestre communities which

are attributable both to the Brometalia erecti order and to the Festuco
valesiacae-Brometea erecti class. This habitat has been reduced to little
patches that can be located in areas found at higher quotas, where

agriculture and pasture have been abandoned.
BP_1 between late May and first half of June.

6210 (*)/E1.263
where (*) means

(important orchid sites)

type_2

Eastern sub-mediterranean dry grasslands (Scorzoneratalia villosae). This
habitat is the most widespread and dominant habitat in the study

area and characterized by the endemic feather grass Stipa
austroitalica, which constitutes perennial prairies with a rocky
nature and relates to the alliance Hippocrepido glaucae-Stipion

austroitalicae.
BP_2 in May.

62A0/E1.55
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Table 1. Cont.

Types Description Code in Annex I to the Habitat
Directive and (/) Eunis Taxonomies

type_3

Pseudo-steppe with grasses and annuals of the Thero-Brachypodietea. In
Murgia Alta, this habitat consists of different types of grasslands,

both annual and perennial. Among the annual grasslands are
Brachypodium distachyon and Stipellula capensis communities, both

referable to the order Brachypodietalia distachyae. Other annual
communities resulting aggregated in small patches less than 10 m

are not considered in the present study. Among the perennial
grasslands are Hyparrhenia hirta and some Ferula communis
communities, referable also to the class Lygeo sparti-Stipetea

tenacissimae and to the order Hyparrhenietalia hirtae.
BP_3 between the second half of April and the beginning of May.

6220*/E1.434
where * means

endemic habitat

type_4

Mediterranean subnitrophilous grass communities, thistle fields and
giant fennel (Ferula) stands. In the study area, such grassland type

consists of both annual and perennial communities. The annual
ones are represented mainly Dasypyrum villosum or Triticum vagans
(order Thero-Brometalia; class Stellarietea mediae). The perennial ones,
which are both referable to the class Artemisietea vulgaris [52], are

represented by Silybum marianum communities (thistle fields) found
on overgrazed soils and by Ferula communis communities (giant

fennel stands) mostly nitrophilous. These grassland communities
can be generally found in lower quota areas. Since these areas are

easier to access, they have been cultivated and used for sheep
grazing. The listed grassland communities include EUNIS

taxonomy codes: E1.61-E1.C2-E1.C4, respectively.
BP_4 in the first half of April.

No code in Annex I
X/E1.61-E1.C2-E1.C4

2.2. Data Availability
2.2.1. Ground Truth Data

A set of reference polygons related to 9 LC classes was analyzed in the first stage of
the workflow. The polygons were collected through, both, in-field campaigns and through
visual interpretation of available orthophotos (2016–2018). For each class (i.e., stratum), a
“stratified” sampling was adopted to ensure a minimum number of polygons–samples [53].

For ground data collection, an open source mobile application (App) was used during
our in-field campaigns. This mobile App was developed within the framework of the Hori-
zon 2020 ECOPOTENTIAL Project (www.ecopotential-project.eu). This App can gather
ground truth according to Food and Agriculture Organization-Land Cover Classification
System 2 (FAO-LCCS2) land cover class taxonomy [54–56]. By integrating additional ancil-
lary data (e.g., lithology, soil aspects, soil surfaces), the FAO-LCCS2 taxonomy can provide
a framework which may be useful to translate any LC class into different habitats [56–62].

For the second stage of the workflow, georeferenced surveys of the vegetation were car-
ried out using the phytosociological method of the Sigmatista School in Zurich–
Montpellier [63,64]. This method uses a floristic–statistical method based on the survey of
the complete floristic composition for the plant community investigated. This approach
is recognized at EU level [65,66] since it allows a precise diagnosis for many habitats of
the Directive and in particular for grassland habitats. For our work, the sampling was
first stratified, i.e., the relevés were carried out randomly in areas previously identified
on the basis of their physiognomic and structural homogeneity. Then, all the surveys
were subjected to a multivariate numerical classification by using the coverage values
transformed according to the scale proposed by van der Maarel, 1979 [67]. Following this
hierarchical classification, the average linkage method (UPGMA) [68] was used on the basis
of the dissimilarity matrix. The latter was calculated with the reciprocal of the similarity
ratio function for coverage data [64]. The clusters, thus, obtained were then attributed to
the different phytosociological syntaxa on the basis of the characteristic species combina-

www.ecopotential-project.eu
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tion. The different plant community types, thus identified and defined, were consequently
attributed to the habitats of both the EU Directive on the basis of the “Interpretation Man-
ual of European Union habitats” [68] and the “Manuale Italiano di Interpretazione degli
Habitats” [51,66,69]. Thereafter, a polygon related to a homogenous area around each
relevés was identified by a visual interpretation of the available orthophoto (2018). Due to
the high time-consuming process involved in the recognition and collection of the ground
data, the number of reference polygons resulted to be rather small.

The data reported on Table 1 are related to four different habitat grasslands classes
which correspond to the same LC class of semi-natural grasslands. In addition, a habitat
map obtained by in-field campaigns and visual interpretation of a 2018 orthophoto has
been recently released (2020) for the whole region by Apulia authorities.

Figure 2 shows some close-ups of ground truth polygons overlaid on an orthophoto
(2m spatial resolution), for the different habitat classes investigated.
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2.2.2. Satellite Data

For the whole year 2018, an intra-annual time-series of Sentinel-2A/2B images was
freely downloaded from the United States Geological Survey (USGS) EarthExplorer por-
tal [70]. Only the images with less than 10% cloud cover on the full tile were investigated
while the ones which showed further residual clouds in the study area were discarded. As a
result, 30 clouds free images were collected, thus, no clouds/clouds shadows masking was
needed. Figure 3 shows the distribution, per month, of the 30 images examined. Only in
March were there no clouds free images. The dates of each image are reported in Table A1
of Appendix A.
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The entire study area was covered by the tile 33TXF from the two orbits R036 and
R079. Since not all images selected were available as L2A products, level-1C products were
downloaded. Hence, the images in the time series to be analyzed were already geometri-
cally orthorectified, co-registered and in at Top Of Atmosphere (TOA) reflectance. For each
image, the Level-2A surface reflectance product was generated, from level-1C, by using the
standalone version of the Sen2Cor processor, as suggested in [71] for atmospheric correc-
tion.

Sentinel-2 images include four spectral bands at 10 m spatial resolution in blue (B2:
458 nm–523 nm), green (B3: 543 nm–578 nm), red (B4: 650 nm–680 nm) and NIR (B8:
785 nm–899 nm) spectra. They also contain six bands at 20 m spatial resolution in red-edge
(B5: 698 nm–713 nm; B6: 733 nm–748 nm; B7: 773 nm–793 nm), NIR (narrow) (B8A: 855 nm–
875 nm) and Short Wave Infra-Red (SWIR) (B11: 1565 nm–1655 nm; B12: 2100 nm–2280 nm)
spectra. Thus, in our work 10 spectral bands, per each image, were investigated. The
three atmospheric bands (B1, B9 and B10) at 60m spatial resolution were excluded from
the analysis.

To better discriminate habitats type_1 and type_4, a DTM with 8 m spatial resolution
was downloaded from the Apulia Region portal [72]. The elevation information was, thus,
obtained from this source.

2.2.3. Satellite Data Pre-Processing

A chain for the time-series pre-processing was implemented in the RStudio open
source environment. For each image, the workflow consisted of the following steps:

1. cropping according to the area of interest;
2. spectral index extraction at the native spatial bands resolution;
3. bilinear resampling to 10 m, when necessary. Indeed, 10 m was the final resolution

adopted in our work. Different resampling approaches were tested. The bilinear
one resulted the right compromise between minimization of artifacts and distortions
introduced in the image as well as in the computational complexity.

Each of the spectral indices were stacked as a data-cube of intra-annual time-series in
a raster file format. Table 2 shows the spectral vegetation indices analyzed singularly or
in combination.

Table 2. List of spectral indices analyzed. R stands for the Reflectance signal. The Sentinel-2 bands
are reported in brackets.

Name Formula Reference

GNDVI
Green Normalized Difference

Vegetation Index
(RNIR(B8) − Rgreen(B3))/(RNIR(B8) + Rgreen(B3)) [73,74]

MSAVI
Modified Soil Adjusted

Vegetation Index

(2RNIR(B8) + 1 −
√

(2RNIR(B8) + 1)2 −
8(RNIR(B8) − Rred(B4)))/2

[74,75]

NBR
Normalized Burn Ratio

(RNIRnarrow(B8A) −
RSWIR(B12))/(RNIRnarrow(B8A) + RSWIR(B12))

[76–79]

NDRE
Normalized Difference

Red-Edge

(RNIR(B8A) − Rred-edge1(B5))/(RNIR(B8A) +
Rred-edge1(B5))

[80]

REP
Red-Edge Position

705 + 35(((Rred(B4) + Rred-edge3(B7))/2) − Rred
− edge1(B5))/(Rred-edge2(B6) + Rred-edge1(B5))

[81]

The choice of these indices is based on the need to analyze the whole spectral range,
from VIS to NIR, of the Sentinel-2 data. With reference to the spectral response of a
vegetation pattern, we tried to take into account the information associated with the
presence of a high reflectance peak in the NIR and other lower peaks in the green and
SWIR. In so doing, Green Normalized Difference Vegetation Index (GNDVI) was selected
to analyze the reflectance vegetation peak in the VIS spectrum region. This index is related
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to the photosynthetic activity and determines water and nitrogen plant uptake into the
crop canopy [73,74]. As is well known, Modified Soil Adjusted Vegetation Index (MSAVI)
is related to the highest peak of the vegetation reflectance in the NIR spectrum. Such an
index can maximize the reduction in soil effects on the vegetation signature [74,75]. Thus,
MSAVI was preferred to the widely used NDVI [48,51]. By considering Normalized Burn
Ratio (NBR), the SWIR spectral information was also included. This index is correlated to
water, carbon and nitrogen content as well as to vegetation health [76–79].

Further indices related to the red-edge portion of the Sentinel-2 spectrum were also
introduced. The Normalized Difference Red-Edge (NDRE) [80] and Red-Edge Position
(REP) [81] time-series spectral indices were extracted. All these indices were used as input
to the second stage both singularly and in combinations. Only those indices providing a
significant contribution to the habitat discrimination were used in combination. The results
of different input configurations discussed in the present paper are reported in Table 3.

Table 3. Different input configurations discussed in the paper.

N◦ Input Features
Description Spectral Index Configuration Acronym

1

Stack of 4 multi-season
scenes (40 layers):

30 January (biomass
pre-peak), 20 April
(peak), 19 July (dry

season) and 27 October
(post-peak), 2018

“4_scenes”

2
Single spectral index
time-series (30 layers)

a.MSAVI “MSAVI”
b.GNDVI “GNDVI”

c.NBR “NBR”
d.NDRE “NDRE”

e.REP “REP”

3
Two spectral indices
time-series (60 layers)

a.MSAVI and NBR “MSAVI+NBR”
b.GNDVI and MSAVI “GNDVI+MSAVI”

4 Three spectral indices
time-series (90 layers)

GNDVI, MSAVI and
NBR “GNDVI+MSAVI+NBR”

5
Three spectral indices

time-series
with DTM (91 layers)

GNDVI, MSAVI and
NBR with DTM “GNDVI+MSAVI+NBR+DTM”

6

Stack of 4 multi-season
scenes and Single

spectral index time-series
(70 layers)

Stack of 4
multi-season scenes

and MSAVI
“4_scenes+MSAVI”

7

Stack of 4 multi-season
scenes and Single

spectral index time-series
with DTM
(71 layers)

Stack of 4
multi-season scenes

and MSAVI with
DTM

“4_scenes+MSAVI+DTM”

2.3. Two-Stage Algorithm for Habitat Mapping

To discriminate the four grassland habitats listed in Table 1, a two-stage classification
approach was developed. Figure 4 shows the two-stage algorithm workflow designed
for the grassland habitats mapping. The first stage was intended to extract the grassland
layer used as a pre-filter for the input features to the second stage. Two different classifiers
were fed as input with a multi-season Sentinel-2 dataset. One classifier was trained for a
binary (grasslands/no grasslands) classification problem and the other one for a multi-class
problem. The two grassland maps obtained were compared.
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The second stage focuses on the discrimination of grassland habitats. These habitats
were searched within the grassland pixels recognized in the first stage LC map. For the
two stages, the SVM classifier, implemented in ENVI 4.8, was used [82].

SVM is a non-linear supervised classifier aimed at finding the optimal separating
hyperplane that can divide the input dataset into the predefined number of classes [83,84].
SVM classifiers are particularly well-suited when small training data sets are available with
no underlying assumptions of statistical distribution [84–86]. Thus, SVM was adopted
for our study due to the small number of training samples available. Following the
recommendations reported in [87], in our study a radial basis function was selected as
kernel type while the penalty parameter chosen was taken as 100. The gamma in kernel
function was chosen as the inverse of the band numbers used in the data input [88,89]. Such
choices were in agreement with previous research conducted by Othman and Gloaguen [90]
and Yang [89].

2.3.1. First Stage

The first stage was based on a multi-class, data-driven, pixel-based, classification
whose aim was to detect the grassland layer on the scene. The SVM classifier was trained
with ground references from 9 LC classes, including natural grassland, labeled according to
FAO-LCCS2 taxonomy [57–62]. For training the SVM classifier and subsequent validation of
the output map, the available reference polygons were divided into training and validation
datasets randomly per each LC class. As a result, 70% of each LC class sample was used for
training and 30% for the validation, corresponding to 157,245 and 65,548 pixels, respectively.
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The reference polygons were distributed in the scene according to the real presence of each
class on the ground. A percentage of almost 50% for natural grassland reference polygons
was considered, both in the training and validation sets, since this was the dominant LC
in the scene. The cultivated herbaceous vegetation was represented by almost 23% of
reference polygons since this was the second major class in the scene. The remaining area
was covered by both natural needle-leaved evergreen and no-herbaceous cultivated classes.

First, the classifier was fed with the input features from the stack of four multi-season
images (10 bands for each image: 40 layers). Then, from the LC map obtained, the nat-
ural grassland layer was extracted to be used for the masking of the second stage input
features. The pixels of the grassland layer were coded as “Natural Terrestrial Vegeta-
tion/Herbaceous”, according to LCCS2 taxonomy [62].

2.3.2. Second Stage

The second stage was employed for detecting the four different grassland habitat
classes through a further data-driven, pixel-based SVM classification. Only the pixels
belonging to the grassland layer found in the first stage were analyzed. For each class,
the available habitat reference pixels were randomly divided into 75% and 25% to train
and validate the classifier, respectively. In Table 3, the first column describes the set of
input configurations adopted in the second stage. For each configuration, the second and
third columns of the same table report the acronyms and the specific input features used,
respectively. The output of the “4_scenes” configuration, which combines the pre-peak,
peak, and post-peak of biomass with dry-season values, was compared with the ones
obtained from different spectral index time-series. The latter allowed the evaluation of
their inherent phenology information to improve habitat discrimination.

Since MSAVI can represent the contribution of the highest peak of the reflectance
vegetation in the NIR spectrum region, the intra-annual time series of such an index was
used in the first classification. For comparison purposes, GNDVI and NBR single-spectral
index configurations were also analyzed. However, the findings obtained singularly are
not reported in this paper since they always resulted lower than the ones from MSAVI.
Nevertheless, the latter indices were successively stacked with MSAVI and used as input
features to the classifier in order to enlarge the spectral coverage understudy (third and
fourth configurations in Table 3). An additional configuration, which included the three
spectral indices (GNDVI, MSAVI and NBR) and the DTM available, was analyzed. The
fifth configuration clearly involved a computational cost related to 90 spectral layers
(from the three indices) plus the DTM data used. To further reduce computational costs,
the input features of the first configuration, “4_scenes”, were combined with those of
only one single spectral index, i.e., MSAVI. The choice allowed the combination of the
phenology (from a single-spectral index time-series) with four multi-seasonal information.
The seventh configuration included the DTM layer for possible improvements related to
quota information. All the analyses were carried out in a QGIS open source environment
using R open source language.

2.4. Accuracy Asssessment

The protocol described in [91,92] and implemented in [93] was adopted for the clas-
sification accuracy assessment. This protocol uses the information obtained from the
traditional Confusion Matrix [94] to estimate the corrected mapped area for each class and
to construct confidence intervals reflecting the uncertainty of the estimates obtained.

In this framework, the sample error matrix is reported in terms of: (a) the unbiased
stratified estimator of the proportion of area (pij) in each cell i,j of the matrix; (b) OA, UA
and Producer’s Accuracy (PA), with standard errors estimates [91]. In addition, the F1-
measure was computed as the harmonic mean of producer and user accuracies [95–98].

According to [91,92], when map categories are reported as rows (i) and the reference
categories are shown as columns (j), Atot represents the total mapped area of the scene,
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Amapped,i is the mapped area (hectares, ha) of category i in the map and Wi = Amapped,i/Atot
is the proportion of the mapped area as category i, pij is then:

pij = Wi nij/ni, (1)

where nij corresponds to sample count. The unbiased stratified estimator of the area of
category j can be obtained as:

Acorrected,j = Atot p.j = Atot·∑iWi nij/ni, (2)

where Acorrected,j can be viewed as an “error-adjusted” estimator of area because it includes
the area of omission error of category j and leaves out the area of commission error.

The estimated standard error of the estimated proportion of area is:

S(p.j) =
√

(∑i = 1..qWi
2((nij/ni·)(1 − (nij/ni·))/(ni· − 1)), (3)

Finally, the standard error of the stratified area estimate can be expressed as:

S(Acorrected,j) = Atot S(p.j), (4)

and an approximate 95% confidence interval for Acorrected,j is:

Acorrected,j ± 2S(Acorrected,j), (5)

For each class, the measure of stratified area estimator (Acorrected) is based on the
assumption that the reference validation data used for the computation of the confusion
matrix can represent a proportion of the whole area [91,92].

3. Results

The investigation has been carried out to evaluate the effectiveness of an intra-annual
Sentinel-2 time-series of spectral indices to improve the mapping of four Mediterranean
grassland habitats in the “Murgia Alta” site. The findings, obtained from each of the
configurations reported in Table 3, are presented separately below.

3.1. First Stage: Grassland Layer Extraction

In order to provide the grassland layer from the multi-seasonal input images, both
a binary (grassland/no grassland) and a multi-class classification were carried out. The
findings are shown in Table 4.

Table 4. Overall Accuracy (OA)%, User’s Accuracy (UA)%, Producer’s Accuracy (PA)% values and
coverage (km2) of the grassland layer obtained through binary and multi-class classification approach.

SVM OA% UAGRASSLAND% PAGRASSLAND% Extension (km2)

Binary 98.16 ± 0.12 96.11 ± 0.14 98.99 ± 0.07 233
Multi-class 97.79 ± 0.11 98.29 ± 0.04 99.65 ± 0.03 223

The multi-class SVM UA value was higher than the one obtained from the binary
classifier: 98.29% and 96.11%, respectively. The mapping from the binary SVM classifier
provided a grassland layer extension greater than the one obtained from the multi-class:
233 km2 and 223 km2, respectively. From visual interpretation of the orthophoto available,
some overestimation areas appeared as misclassifications of grassland instead of crops in
Figure 5.
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Figure 5. (a) Orthophoto close up on a cultivated area. Circles highlight the grassland patches.
Overlaid on the orthophoto: (b) the grassland layer (yellow) from: multi-class Land Cover (LC);
(c) same layer from the binary LC map.

The multi-class LC map (Figure 6) was thus used to extract the grassland layer to be
fed as input to the second stage.
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Table 5 shows the nine LC classes mapped and their legend according to the FAO-
LCCS2 taxonomy along with the percentage values of UA and PA. Such values can be
considered quite high. Instead, misclassifications of small “Artificial Surfaces/BuiltUp”
objects (i.e., sheds for depositing agriculture tools and narrow not asphalted roads) with
barren land patches produced a lower UA value (61.51%).

Table 5. LC classes legend according to FAO-LCCS2 taxonomy considered in the first stage of the workflow. UA(%) and
PA(%) values are reported for each class.

N◦ Description FAO-LCCS Code UA(%) PA(%)
1 Cultivated Terrestrial Vegetation/(Trees/Shrubs)Broadleaved.Evergreen A11/A7.A9 89.37 84.50
2 Cultivated Terrestrial Vegetation/(Trees/Shrubs)Broadleaved.Deciduous A11/A7.A10 97.86 89.46
3 Cultivated Terrestrial Vegetation/Herbaceous A11/A3 98.54 96.37
4 C Natural Terrestrial Vegetation/(Trees/Shrubs)Broadleaved.Deciduous A12/D1.E2 88.03 100
5 Natural Terrestrial Vegetation/(Trees/Shrubs)Needleleaved.Evergreen A12/D2.E1 99.98 99.91
6 Natural Terrestrial Vegetation/Herbaceous (NATURAL GRASSLANDS) A12/A2 98.29 99.65
7 Artificial Surfaces/BuiltUp B15/A1 61.51 93.37
8 Artificial Surfaces/NonBuiltUp.ExtractionSites B15/A2.A6 96.95 100
9 Artificial or Natural Waterbodies/Water B27-B28/A1.A5 100 100
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The specific UA and PA values of the grassland class (Figure 7a) resulted to 98.29% ±
0.04% and 99.65% ± 0.03%, respectively.

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 29 
 

 

objects (i.e., sheds for depositing agriculture tools and narrow not asphalted roads) with 
barren land patches produced a lower UA value (61.51%). 

Table 5. LC classes legend according to FAO-LCCS2 taxonomy considered in the first stage of the workflow. UA(%) and PA(%) 
values are reported for each class. 

N°   Description 
FAO-LCCS 

Code UA(%) PA(%) 

1  Cultivated Terrestrial Vegetation/(Trees/Shrubs)Broadleaved.Evergreen A11/A7.A9 89.37 84.50 
2  Cultivated Terrestrial Vegetation/(Trees/Shrubs)Broadleaved.Deciduous A11/A7.A10 97.86 89.46 
3  Cultivated Terrestrial Vegetation/Herbaceous A11/A3 98.54 96.37 
4 C Natural Terrestrial Vegetation/(Trees/Shrubs)Broadleaved.Deciduous A12/D1.E2 88.03 100 
5  Natural Terrestrial Vegetation/(Trees/Shrubs)Needleleaved.Evergreen A12/D2.E1 99.98 99.91 
6  Natural Terrestrial Vegetation/Herbaceous (NATURAL GRASSLANDS) A12/A2 98.29 99.65 
7  Artificial Surfaces/BuiltUp B15/A1 61.51 93.37 
8  Artificial Surfaces/NonBuiltUp.ExtractionSites B15/A2.A6 96.95 100 
9  Artificial or Natural Waterbodies/Water B27-B28/A1.A5 100 100 

The specific UA and PA values of the grassland class (Figure 7a) resulted to 
98.29%±0.04% and 99.65%±0.03%, respectively. 

 
Figure 7. Natural grasslands layer from: (a) LC by first stage; (b) Corine Land Cover (CLC) 2018; (c) Copernicus 2018. 

For comparison purpose, the grassland layer obtained from the Corine Land Cover 
(CLC, 100 m) map and the Copernicus High Resolution (10 m) grassland layer, both dated 
2018, were analyzed and are shown in Figure 7b,c, respectively. As is well known, CLC is 
based on a different taxonomy (than the one used in our map, i.e., FAO-LCCS2). Thus, 
both 231 “Pastures” and 321 “Natural Grasslands” classes were combined to represent the 
CLC grassland layer. This combination resulted in a CLC layer covering 210 km2. Instead, 
the grassland layer from Copernicus 2018 covers an area of 250 km2. The latter product 
features the same resolution (10 m) as our map. The results obtained evidenced a slight 
overestimation by Copernicus with respect to our product (223 km2). 

The accuracy of both CLC and Copernicus grassland layers was evaluated by using 
the same grassland validation set. The results are reported in Table 6. 

Table 6. OA%, UA%, PA% and coverage (km2) for grassland layers obtained by the first stage clas-
sifier, Corine Land Cover (CLC) and Copernicus. 

Source OA% UAGRASSLAND% PAGRASSLAND% Extension (km2) 
Grassland by SVM 98.94 ± 0.08 98.31 ± 0.07 99.60 ± 0.03 223 
Grassland by CLC 85.86 ± 2.32 87.11 ± 1.70 82.44 ± 1.64 210 

Grassland by Copernicus 90.59 ± 0.22 92.42 ± 0.15 88.50 ± 0.16 250 
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For comparison purpose, the grassland layer obtained from the Corine Land Cover
(CLC, 100 m) map and the Copernicus High Resolution (10 m) grassland layer, both dated
2018, were analyzed and are shown in Figure 7b,c, respectively. As is well known, CLC
is based on a different taxonomy (than the one used in our map, i.e., FAO-LCCS2). Thus,
both 231 “Pastures” and 321 “Natural Grasslands” classes were combined to represent the
CLC grassland layer. This combination resulted in a CLC layer covering 210 km2. Instead,
the grassland layer from Copernicus 2018 covers an area of 250 km2. The latter product
features the same resolution (10 m) as our map. The results obtained evidenced a slight
overestimation by Copernicus with respect to our product (223 km2).

The accuracy of both CLC and Copernicus grassland layers was evaluated by using
the same grassland validation set. The results are reported in Table 6.

Table 6. OA%, UA%, PA% and coverage (km2) for grassland layers obtained by the first stage
classifier, Corine Land Cover (CLC) and Copernicus.

Source OA% UAGRASSLAND% PAGRASSLAND% Extension (km2)

Grassland by SVM 98.94 ± 0.08 98.31 ± 0.07 99.60 ± 0.03 223
Grassland by CLC 85.86 ± 2.32 87.11 ± 1.70 82.44 ± 1.64 210

Grassland by
Copernicus 90.59 ± 0.22 92.42 ± 0.15 88.50 ± 0.16 250

Finally, the natural grassland layer, from the first stage, was used for the masking of
the second stage input features.

3.2. Second Stage: Habitat Discrimination

The findings obtained in terms of OA, UA, PA, F1-measure, Amapped and Acorrected are
reported in Table 7 according to the different input configurations listed in Table 3. Instead,
Figure 8 compares the different F1-values obtained in the form of a histogram.
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Table 7. Second stage configurations and results as UA, PA and F1 percentage values. For Areamapped vs. Areacorrected

over/under-estimation in brackets.

Configurations Habitat UA% PA% F1% Areamapped (ha) Areacorrected (ha)

(1) “4_scenes”: OA
= 94.80% ± 0.56%

type_1 85.46 ± 5.28 93.08 ± 3.72 89.11 2070.89 (+169.43) 1901.46 ± 136.33

type_2 95.68 ± 0.29 98.95 ± 0.15 97.29 19,522.17 (+646.4) 18,875.77 ± 63.94

type_3 99.28 ± 1.40 57.49 ± 3.76 72.82 289.90 (−210.76) 500.66 ± 24.39

type_4 96.72 ± 1.76 41.23 ± 0.01 57.81 449.57 (−605.06) 1054.63 ± 51.49

(2) “MSAVI”: OA =
94.08% ± 0.48%

type_1 79.50 ± 5.61 90.39 ± 4.01 84.60 1418.27 (+170.9) 1247.37 ± 141.29

type_2 95.13 ± 0.31 98.14 ± 0.20 96.61 19,808.83 (+608.10) 19,200.73 ± 67.35

type_3 94.12 ± 11.53 53.65 ± 6.40 68.34 294.76 (−222.35) 517.11 ± 76.07

type_4 93.92 ± 2.26 55.66 ± 1.48 69.90 809.66 (−556.65) 1366.31 ± 71.48

(3) “MSAVI +
NBR”: OA = 93.55%

± 0.56%

type_1 77.12 ± 5.37 94.02 ± 3.19 84.74 1893.10 (+340.27) 1552.83 ± 153.91

type_2 96.14 ± 0.28 96.17 ± 0.27 96.16 18,682.38 (+5.12) 18,677.26 ± 58.41

type_3 84.85 ± 7.10 69.73 ± 5.72 76.55 429.30 (−93.1) 522.40 ± 103.23

type_4 83.17 ± 2.29 69.77 ± 2.36 75.88 1313.55 (−252.29) 1565.84 ± 110.23

(4)“GNDVI +
MSAVI + NBR”:
OA = 93.97% ±

0.56%

type_1 78.60 ± 5.17 95.17 ± 2.85 86.09 2012.46 (+350.32) 1662.14 ± 152.27

type_2 96.72 ± 0.26 95.98 ± 0.28 97.84 18,358.27 (−142.46) 18,500.73 ± 54.03

type_3 86.11 ± 6.55 71.20 ± 5.51 77.95 422.23 (−88.45) 510.68 ± 97.79

type_4 83.43 ± 2.73 77.42 ± 2.33 80.31 1539.24 (−119.41) 1658.65 ± 109.28

(5)“GNDVI +
MSAVI + NBR +

DTM”: OA =
94.46% ± 0.53%

type_1 86.09 ± 4.48 96.15 ± 2.54 90.84 2085.72 (+218.25) 1867.46 ± 131.50

type_2 96.76 ± 0.26 96.41 ± 0.27 96.58 18,092.50 (−65.64) 18,158.14 ± 53.79

type_3 80.41 ± 7.94 66.88 ± 5.84 73.02 402.60 (−81.43) 484.03 ± 110.77

type_4 83.88 ± 2.68 80.61 ±2.31 82.21 1751.57 (−71.19) 1822.76 ± 108.86

(6)“4_scenes +
MSAVI”: OA =
95.29% ± 0.54%

type_1 91.62 ± 3.94 95.93 ± 2.76 93.73 2481.36 (+111.39) 2369.97 ± 118.17

type_2 96.04 ± 0.29 98.53 ± 0.18 97.27 18,514.11 (+467.83) 18,046.28 ± 60.75

type_3 100 ± 0.01 66.63 ± 4.68 79.97 323.33 (−161.93) 485.26 ± 0.01

type_4 89.18 ± 2.73 63.17 ± 2.09 73.95 1013.73 (−417.28) 1431.01 ± 88.80

(7)“4_scenes +
MSAVI + DTM”:
OA = 95.45% ±

0.40%

type_1 95.21 ± 3.06 95.30 ± 2.88 95.25 1995.18 (+1.89) 1993.29 ± 78.22

type_2 96.31 ± 0.28 98.38 ± 0.18 97.33 18,673.33 (+393.93) 18,279.40 ± 58.22

type_3 95.93 ± 3.50 69.02 ± 4.92 80.27 350.02 (−136.48) 486.50 ± 55.61

type_4 83.47 ± 2.98 69.71 ± 2.36 75.97 1314.00 (−259.37) 1573.37 ± 109.27Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 29 
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As evidenced in Table 7, the F1-measure values obtained for type_1 and type_2
habitats resulted quite high (89.17% and 97.29%, respectively) for the “4_scenes” config-
uration. Instead, the F1 value for type_4 habitat resulted rather low (57.81%) due to a
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PA of 41.23%±0.01%. This habitat was misclassified as type_2. For the latter habitat, the
Areamapped was overestimated of +646.4 ha with respect to the estimated corrected one
(18875.77 ha ± 63.94 ha). Thus, discriminating type_4 would have required improvements.
In fact, both PA (57.49% ± 3.76%) and F1-values (72.82%) were found to be rather low for
habitat type_3. The area of this habitat resulted in an underestimation of 210.76 ha with
respect to the estimated corrected value (500.66 ± 24.39). This underestimation appears to
be due to misclassifications of both type_1 and type_2, thus also requiring improvements.

The configurations based on single-spectral index intra-annual time-series, i.e., “GNDVI”,
“MSAVI”, “NBR”, “NDRE” and “REP” were then considered for the required improve-
ments. These time-series provide the contribution of phenology information.

For each habitat class, better PA and UA values were obtained from “MSAVI” config-
uration with respect to the other ones (i.e., “GNDVI”, “NBR”, “NDRE”, “REP”). Hence,
only the findings from “MSAVI” are reported in Table 7. When compared to “4_scenes”,
the MSAVI intra-annual time-series provided an improvement of the F1-measure from
57.81% to 69.90% for type_4 habitat. Instead, the F1-measure resulted slightly reduced for
two classes, i.e., from 89.11% to 84.60% for type_1 and from 72.82% to 68.34% for type_3.
For type_2, the F1-measure remained quite stable (about 97%). This trend remained stable
throughout the experiments carried out.

Pairs of spectral indices time-series were then combined to enlarge the spectrum
portion analyzed. The MSAVI time-series with either GNDVI or NBR performed better
than the one from single-spectral index configurations for habitats type_3 and type_4.
With respect to the reference “4_scenes” results, the “MSAVI+NBR” configuration (Table 7)
provided an increase in F1-measure for type_3, from 72.82% to 76.55%, and for type_4, from
57.81% to 75.88% (Table 7). This configuration performed better than “MSAVI+GNDVI”.
The addition of NDRE or REP spectral indices yielded no improvement in accuracy of
habitat classification, thus they were not exploited in combination with other indices.

The time-series of the three-spectral indices, “GNDVI+MSAVI+NBR”, covering the
whole spectral region, were subsequently analyzed. With respect to the previous two-
spectral indices configurations, slight improvements in the F1-measure were achieved for
all the habitat classes. Whereas, compared to the “4_scenes” results, a significant increase
in the F1-measure was achieved for habitat type_3, from 72.82% to 77.95%, and for habitat
type_4, from 57.81% to 80.31%. A slight decrease was obtained, instead, for habitat type_1,
from 89.11% to 86.09%.

By adding the elevation information from the DTM layer to the three “GNDVI+MSAVI
+NBR” indices, some increase was achieved for habitats type_1 and type_4. With respect to
the “4_scenes” configuration, a slight improvement of F1-measure was obtained for type_1
from 89.11% to 90.84%, whereas a more significant was achieved, from 57.81% to 82.21%
for type_4.

Thereafter, the integration of “4_scenes” with “MSAVI” input features was tested to
evaluate the advantage of combining dense temporal information, from an intra-annual
single-index time-series, with the spectral bands of the four multi-season images. By
reducing the input dimensionality from 90 (30 images per each of the three indices) to 70
(10 bands per each of the four images, plus 30 MSAVI values), the computation complexity
decreased. With respect to the “4_scenes” configuration, the F1-measure improved from
89.11% to 93.73%, from 72.82% to 79.97% and from 57.81% to 73.95%, respectively, for
three habitats, i.e., type_1, type_3 and type_4. Whereas, the F1 value remained stable for
class type_2.

Finally, the DTM layer was added to the previous configuration (“4_scenes + MSAVI”).
The OA value obtained remained almost the same (95.45% ± 0.30%), whereas the F1-
measure was the highest among the whole set of configurations for type_1 and type_3,
as reported in Table 7. Compared to the “4_scenes” results, the F1 values improved
from 89.11% to 95.25%, from 72.82% to 80.27% and from 57.81% to 75.97%, respectively,
for type_1, type_3 and type_4. However, the F1 value remained stable for class type_2
(Table 7).
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Figure 9 shows some close-ups of the output maps obtained from the seven configura-
tions analyzed for habitats type_1, type_3 and type_4.
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Figure 9 shows examples of output grassland habitats varying with the input features
of the classifier. For habitat type_1, the addition of the DTM to both “GNDVI+MSAVI+NBR”
and “4_scenes + MSAVI” improved the recognition of the patch (Figure 9a). For habitat
type_3, the best result appeared the one from “4_scenes + MSAVI” (Figure 9b). For habitat
type_4 (Figure 9c) the best discrimination occurred with “GNDVI+MSAVI+NBR+DTM”.

In order to provide quantitative evaluations of the whole scene classification, the
corrected stratified area estimator (per each class) and its standard error within 95% confi-
dence interval values are also reported in Table 7. The values found allowed quantification
of habitat over/under-estimations over the whole area mapped. Several problems of
over/underestimation are evidenced in this Table. For type_1 habitat, the Areamapped was
overestimated with respect to the Areacorrected in all the configurations (“plus” sign in
brackets, Table 7). The Areamapped reported the lowest value (1418.27 ha) when “MSAVI”
configuration was analyzed, while the highest value (2481.36 ha) was obtained from
“4_scenes + MSAVI”configuration.

Habitat type_2 is the dominant class in the scene and thus the most represented in
the training samples. For this habitat, the highest Areamapped and overestimation values
(19,808.83 ha and + 608.10 ha) were obtained from the “MSAVI”, whereas the lowest values
(18,092.50 ha and + 467.83) were achieved from the “GNDVI + MSAVI + NBR + DTM”
configuration.

Habitats type_3 and type_4 were underestimated in all the configurations (“minus”
sign in brackets, Table 7). These habitats were misclassified not only with the dominant
class type_2 but also with the type_1. For type_3 the highest Areamapped value (429.30 ha)
was obtained from “MSAVI+NBR” while the lowest (289.90 ha) value was achieved from
“4_scenes”. For type_4 the highest (1751.57 ha) and the lowest (449.57 ha) Areamapped
values resulted from “GNDVI + MSAVI + NBR + DTM” and “4_scenes” configurations,
respectively. For all the configurations explored, the findings reported required an improve-
ment to reduce the over/underestimations described. For this purpose, a combination of
the classifiers outputs was carried out through a majority vote (MV) technique [99].

Combination of Different Configurations

For each pixel, the MV algorithm can read the label obtained from the seven con-
figurations and then may assign the pixel analyzed to the most frequent class found. In
the present study, we chose as the most frequent class the label assigned by at least four
classifiers out of seven. The OA obtained was 95.72% ± 0.29%. The criteria of the most
frequent class were unsatisfactory for only 0.9% of the pixels classified. To each pixel an
uncertainty value was assigned. This value was defined as the number of classifiers in
disagreement with the final MV output class.

Table 8 reports the OA obtained by the validation pixels which can satisfy each
uncertainty value. As can be noted, to a decrease in the uncertainty corresponds an increase
in the OA value. As a result, the overestimation of habitat type_1 was reduced. For each
class, Table 9 compares the habitat coverage obtained by MV with the one from the best
single configuration found, i.e., “4_scenes + MSAVI + DTM”.

Table 8. Majority vote results with uncertainty and OA values.

N◦ Classifiers
Considered Uncertainty N◦ Validation Pixels OA%

≤3 ≥4 12 -
4 3 304 47.70
5 2 264 59.85
6 1 353 77.05
7 0 18,007 97.43
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Table 9. Habitat coverage obtained from majority vote (MV) compared with
“4_scenes+MSAVI+DTM” configuration.

Area (ha)

Type_1 Type_2 Type_3 Type_4

MV 1718.76 19185.56 322.27 902.06
“4_scenes+MSAVI+DTM” 1995.18 18673.33 350.02 1314.00

Figures 10 and 11 report some close-ups which evidence the reduction in habitat type_1
overestimation through the MV. Specifically, Figure 10 shows the reduction in type_1 pixels
performed by the MV. As can be noted, the MV confirms type_1 patches classified by more
than four classifiers but cleans up the remaining type_1 pixels in favor of habitat type_2.
The MV impact is also evident in Figure 11. In this figure, pixels misclassified as type_4
by the “4_scenes+MSAVI+DTM” configuration were mostly correctly assigned as type_2
(Figure 11b). The related uncertainty values are shown in Figure 11c.
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Remote Sens. 2021, 13, x FOR PEER REVIEW 20 of 29 
 

 

 
Figure 11. Close-ups from classified maps obtained by: (a) the best classifier configuration 
(“4_scenes + MSAVI + DTM”); (b) the MV; (c) uncertainty map with blue polygons evidencing 
reference habitat type_2 patches on the ground. 

Figure 12 reports an example of a habitat type_4 patch. For this patch, the classifier, 
“4_scenes+MSAVI+DTM” provides a better habitat classification than MV. The latter clas-
sifier increased the pixels belonging to type_2 habitat. 

 
Figure 12. Close-ups from classified maps obtained by: (a) the classifier configuration (“4_scenes + 
MSAVI + DTM”); (b) the MV; (c) uncertainty map. Dark polygons show the reference type_4 habi-
tat patch on the ground. 

The MV behavior found in the last case evidenced the failure to solve misclassifica-
tions associated to a specific class, as also evidenced in [100,101]. In our study, the failure 
concerning habitat type_4 may be due to several issues: first, a non-adequate reference 
training collection; second, the semantic habitat description adopted for habitat discrimi-
nation. Thus, these issues may have influenced the performance of all classifiers. 

4. Discussion 
The present work aimed at mapping four semi-natural dry grassland habitats in the 

“Murgia Alta” Natura 2000 site (i.e., 6210/E1.263, 62A0/E1.55, 6220/E1.434 and X/E1.61-
E1.C2-E1.C4 as described in Table 1) by means of Sentinel-2 data intra-annual time-series. 
A time-series of only 30 clouds-free images was used over a total number of 132 images 
regularly acquired in 2018 by Sentinel-2. 

In previous papers, the grassland layer was obtained by ancillary data which were 
not always either updated or available at the same spatial scale [13,32,35,36]. Thus, in such 
studies, the grassland layer accuracies reported could have affected the quality of the 

Figure 11. Close-ups from classified maps obtained by: (a) the best classifier configuration (“4_scenes
+ MSAVI + DTM”); (b) the MV; (c) uncertainty map with blue polygons evidencing reference habitat
type_2 patches on the ground.
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Figure 12 reports an example of a habitat type_4 patch. For this patch, the classi-
fier, “4_scenes+MSAVI+DTM” provides a better habitat classification than MV. The latter
classifier increased the pixels belonging to type_2 habitat.
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The MV behavior found in the last case evidenced the failure to solve misclassifications
associated to a specific class, as also evidenced in [100,101]. In our study, the failure con-
cerning habitat type_4 may be due to several issues: first, a non-adequate reference training
collection; second, the semantic habitat description adopted for habitat discrimination.
Thus, these issues may have influenced the performance of all classifiers.

4. Discussion

The present work aimed at mapping four semi-natural dry grassland habitats in the
“Murgia Alta” Natura 2000 site (i.e., 6210/E1.263, 62A0/E1.55, 6220/E1.434 and X/E1.61-
E1.C2-E1.C4 as described in Table 1) by means of Sentinel-2 data intra-annual time-series.
A time-series of only 30 clouds-free images was used over a total number of 132 images
regularly acquired in 2018 by Sentinel-2.

In previous papers, the grassland layer was obtained by ancillary data which were
not always either updated or available at the same spatial scale [13,32,35,36]. Thus, in
such studies, the grassland layer accuracies reported could have affected the quality of
the habitat mapping. In this paper, instead, the first stage of the classification system was
employed to provide a grassland layer and a habitat map obtained at the same date.

In the first stage of the proposed system, a binary (grassland/non-grassland) and a
multi-class approach were first tested and compared for the extraction of the grassland
layer. The findings revealed slight differences between the two approaches with higher
accuracy and lower misclassifications obtained by the multi-class classifier. Specifically, the
multi-class classification produced a grassland layer with high OA, UA and PA of 98.94%,
98.31% and 99.60%, respectively. This layer was extracted from the same images used for
habitat mapping in the second stage.

The grassland layer can also be extracted from a CLC map. An additional opportunity
is offered by the recent availability of the Copernicus grassland service. However, these
grassland products are not yearly updated. The CLC inventory was initiated in 1985
(reference year 1990). Updates have been produced in 2000, 2006, 2012, and 2018. Available
Copernicus grassland layers are dated 2015 and 2018.

To evaluate the available grassland services, the layer obtained from our first stage
was thus compared with the grassland layer extracted by the existing CLC map and the
high resolution Copernicus grassland one (10 m), both available for 2018. The quantitative
comparison results (Table 6) have evidenced that the best grasslands OA was achieved by
the SVM (98.94 ± 0.08) classifier of our first stage system with four multi-season images as



Remote Sens. 2021, 13, 277 21 of 29

input. A qualitative analysis of specific areas in the three outputs compared can evidence
some important misclassifications found in both the CLC and the Copernicus layers. For
example, Figure 13a shows a woodland patch surrounded by grasslands in an orthophoto.
Figure 13b–d show the grasslands pixels as obtained by the three products compared: our
first stage output, the CLC and the Copernicus grasslands layers, respectively. As can be
observed, both our first stage classifier (Figure 13b) and the Copernicus service (Figure 13d)
do correctly identify the grasslands pixels, whereas the CLC (Figure 13c) overestimated
such pixels also covering the woodland area.
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Figure 13. (a) Close-up of a wood patch from an orthophoto; (b) grasslands pixels from our first
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An additional example is provided in Figure 13e–h. Specifically, Figure 13e shows
an agricultural area in the orthophoto. As can be noted in Figure 13f, our first stage
classifier misclassified only a few (natural) grasslands pixels (label A12/A2 in Table 5) in
the cultivated area. Figure 13g shows correctly, that the CLC did not detect any grassland
pixels in the same area. This is due to the inclusion of land use information in CLC map
as well as to its lower resolution with respect to our product (10 m). Figure 13h, instead,
evidences a misclassification of grasslands in the Copernicus layer (20 m). Such a result is
due to the fact that the Copernicus service can provide only LC information.

For the first-stage output of the system, the findings have confirmed both the useful-
ness of high resolution (10 m) data and the multi-class analysis adopted, with respect to
the binary approach. Thus, the proposed first-stage setting has adequately extracted the
grassland layer to be used in the second stage for habitat mapping. In addition, this layer
can be updated whenever a new habitat map is required, at the same spatial and temporal
image resolution.

For the second stage of the system, the introduction of times-series of spectral indices
improved habitat discrimination. The results obtained were better than the ones by an-
alyzing only the four multi-season data sets (first configuration, Table 7) including the
biomass pre-peak (30 January), peak (20 April), post-peak (27 October) and the dry season
(19 July) for grasslands. The hypothesis justifying these findings can be the fact that plant
communities composing the habitats under study may not contemporarily reach these
phases, as also reported by Rapinel et al. (2019). For example, the therophytic communities,
including type_3 and part of type_4, are composed by different species with different times
of biomass peak. Some of them can reach the peak in April, others toward the end of May
(Table 1).

By adding the MSAVI time series to the “4_scenes” configuration, we intensified
phenology information. The choice to add MSAVI time series was due to the better results
achieved with respect to GNDVI and NBR, evaluated singularly (Section 3.2). In addition,
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MSAVI can represent the contribution of the reflectance vegetation highest peak in the NIR
spectrum region.

Following the suggestion by Groβe-Stoltenbeg et al. [37], a three-indice time series (i.e.,
GNDVI+MSAVI+NBR) covering the whole Sentinel-2 spectral range from VIS to NIR, was
analyzed. The results achieved were quite comparable in terms of F1 measurements with
the ones obtained from our “4_scenes+MSAVI” configuration. The OA value reported from
these two configurations (93.97% and 95.29%, respectively) were better than the one (91%)
obtained by Schuster et al. (2015) [1]. These authors extracted three spectral indices (NDVI,
NDVI-RE-R, NDVI-NIR-RE) from a one-year Rapid-Eye time-series obtained spanning
over three vegetation periods from April 2009 to September 2011 to achieve a rather dense
and relatively homogenous intra-annual time series. However, the spectral indices chosen
by these authors and the satellite data used were different from ours.

As evidenced by Favel et al. (2019), DTM can yield management information useful for
the discrimination of habitats characterized by similar phenology and spectral features. In
particular, in our study area, lower quotas are more accessible for pastures. Thus, they are
subjected to sheep grazing. Such living stock feeding can advantage or inhibit the presence
of plant species, which characterize specific habitats. Thus, when DTM information was
added to configurations selected a further improvement was achieved for OA values and
in particular for F1 findings (Table 7). Specifically, F1 values for classes type_1 and type_3
obtained from “4_scenes + MSAVI + DTM” (70 input layers) were 95.25% and 80.27%,
respectively. These values were better than the ones resulting from “GNDVI + MSAVI +
NBR + DTM” (90 input layers), i.e., 90.84% and 73.02%, respectively. These results may be
due to the well-known over-fitting phenomena which occurs when the dimension of input
configuration is rather high with respect to the small size of the available training set [101].

With respect to habitat type_1, our results are in agreement with the ones obtained
by Marcinkowska-Ochtyra (2019) through the integration of DTM with hyperspectral
data. In terms of UA and PA, our findings (86.09% and 96.15%), are better than the ones
reported by Zlinszky et al. (2014) (66.4% and 78.6%), obtained by using Lidar data from
two different campaigns.

For each input pixel, the “4_scenes + MSAVI + DTM” configuration involved 71 values,
i.e., 10 bands for each of the four images analyzed, plus 30 MSAVI values from the time
series and the specific pixel elevation value. Instead, the “GNDVI+MSAVI+NBR+DTM”,
involved 91 values, i.e., three index values per 30 images and elevation. Thus, the former
configuration resulted in a reduction in computational costs. This reduction did not require
the application of a pre-processing phase for feature extraction as done by Rapinel et al.
(2019). These authors analyzed the phenology information embedded in the whole set
of spectral bands of a Sentinel-2 time-series (12 images) instead of spectral indices. By
reducing the input bands from 120 to 26, they mapped seven grassland plant communities,
thus reporting an OA of 78%. This result is lower than the one obtained from both
our “GNDVI + MSAVI + NBR + DTM” and “4_scenes + MSAVI + DTM” configurations
(Table 7).

Thus, phenology information from Sentinel-2 time series can better discriminate
grassland habitats with different times of increase and decrease speed of photosynthesis,
start/end of growing season, duration of photosynthetic activity [102,103]. Such metrics,
which are generally collected through in-field campaigns, appear embedded in the time
series indices.

This finding suggests that neither four multi-season images nor phenology informa-
tion extracted from a single spectral index alone may be sufficient to discriminate the
grassland habitats under study. Instead, the combined use of phenology and spectral bands
of four multi-season images (last configuration) can guarantee the achievement of rather
high F1-measures values for most of the habitat classes considered (Table 7). The highest
F1-measures accuracies could be obtained for type_1 and type_3 (95.25% and 80.27%,
respectively) whereas the accuracy for type_2, that was already very high with the first
“4_scenes” configuration (F1-measure equal to 97.29%), remained stable in all the experi-



Remote Sens. 2021, 13, 277 23 of 29

ments. For type_4 habitat the F1-measure was the lowest (75,97%) of the configurations
analyzed. This might be due to the fact that species reach Biomass Peak in the first half of
April, occasionally in late March. However, no cloud free images were available in March
(Table A1, Appendix A) to extract MSAVI spectral index values in that month. Moreover,
only two images were available from the first half of April (8 and 13 April). Actually, a
rather denser intra-annual spectral index time-series would have helped in discriminating
this habitat from the others in the Biomass Peak period. To this aim, gap filling techniques
of clouded images should be applied in future work [78,104].

The application of the MV reduced the misclassifications of type_1. Thus, a slight
improvement of the OA (up to 2%) with respect to the OA of each specific configuration was
obtained by combining the outputs of all the configurations. These findings, together with
the difficulty of identifying the optimal classifier for all four of the habitats, make the MV
approach attractive for mapping. Equally evidenced by Foody et al., (2007) [105], although
not yielding the most accurate classification, the MV can provide useful information on
classification uncertainties. These values can be used for post-classification fieldwork
aimed to collect additional training/validation reference samples and reduce in-field costs
in future campaigns.

Figure 14 shows a close-up of a woodland area where an attempt at reforestation
must have failed. Overlaid on the orthophoto, the following maps are shown: Figure 14a,
the regional map evidencing type_2 pixels located only in the surrounding woodland
area; Figure 14b, the “GNDVI + MSAVI + NBR + DTM” map showing both type_2 and
type_4 habitat pixels within the woody patch; Figure 14c, “4_scenes + MSAVI + DTM” map
reporting, within the woody patch, type_2 pixels, but showing less type_4 pixels than in
Figure 14b; Figure 14d, the MV map based on the convergence of ≥4 classifiers; such a
map appears similar to the one in Figure 14c; Figure 14e, the uncertainty map of the area
evidencing higher values for pixels assigned to type_4 habitat.
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Besides the quantitative results reported above, the qualitative comparison carried
out in Figure 14 evidences that the automatic two-stage mapping proposed in our study
can recognize the presence of type_2 and type_4 in the area analyzed. In this area, in-
field campaigns had not been carried out by the local expert involved in the regional
mapping. In fact, to reduce in-field campaigns costs, the expert ecologists generally use
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visual interpretation of available orthophotos. However, such orthophotos generally cover
only single season information. Thus, the approach proposed in our work can provide
updated habitat maps and related uncertainty values on a large scale. In turn, these values
may represent a valuable support for specific in-field investigations.

5. Conclusions

The aim of the present study was to investigate the improvements that can be obtained
by exploiting phenology information extracted from intra-annual indices time-series of
Sentinel-2 data for mapping grassland habitats in “Murgia Alta”. Based on multi-seasonal
information from four Sentinel-2 images, the first classification stage provided an updated
grassland layer. At the local scale, this layer showed less misclassified pixels than the ones
from CLC and Copernicus services. In the second stage, the combination of four multi-
seasonal spectral band images with both the phenology embedded in the MSAVI spectral
index time-series and DTM, provided more reliable habitats discrimination. Nevertheless,
the Majority Vote ensemble of the different second-stage input configurations used offered
uncertainty measures useful for addressing in-field campaigns for validation purposes. In
a future study, to improve the discrimination of the habitats, gap filling techniques will be
implemented for obtaining more dense time-series.

The habitat mapping of a Natura 2000 sites must be updated every 6 years, according
to the European Habitat Directive. For large areas, this task may be achieved by developing
cost/time-efficient automatic tools such as the ones proposed in the present study. The
two-stage classification system proposed, which is based on the use of machine learning
algorithms, could contribute to speeding up the design of both urgent conservation policies
and sustainable regeneration actions of natural ecosystems. This would address both the
drastic biodiversity loss and the ongoing climatic changes.

The availability of habitat maps updated both at high temporal and spatial resolutions
is very important for decision making at local levels. Therefore, updated habitats maps
could be useful variables for monitoring the achievement of Sustainable Development Goal
15 (SDG 15) aimed towards halting biodiversity loss (https://sdgs.un.org/goals/goal15).
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Appendix A

Table A1. Date of acquisition for the 30 images in the time-series. The symbol ◦ indicates those dates
used in the first stage. Double lines point out each month.

Acquisition Date Sensor

2018-01-03 S2A
2018-01-05 S2B
2018-01-18 S2B
2018-01-25 S2B
2018-01-30◦ S2A

2018-02-12 S2A
2018-02-14 S2B

No cloud free images in March

2018-04-08 S2B
2018-04-13 S2A
2018-04-20◦ S2A
2018-04-23 S2A
2018-04-30 S2A

2018-05-25 S2B

2018-06-12 S2A

2018-07-02 S2A
2018-07-09 S2A
2018-07-12 S2A
2018-07-14 S2B
2018-07-19◦ S2A
2018-07-22 S2A

2018-08-01 S2A
2018-08-28 S2A

2018-09-12 S2B
2018-09-22 S2B

2018-10-20 S2A
2018-10-25 S2B
2018-10-27◦ S2A

2018-11-09 S2A

2018-12-04 S2B
2018-12-09 S2A
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