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Abstract: The objective of this project is to create a new implementation of a deep learning model 
that uses digital elevation data to detect shipwrecks automatically and rapidly over a large geo-
graphic area. This work is intended to apply a new methodology to the field of underwater archae-
ology. Shipwrecks represent a major resource to understand maritime human activity over millen-
nia, but underwater archaeology is expensive, misappropriated, and hazardous. An automated tool 
to rapidly detect and map shipwrecks can therefore be used to create more accurate maps of natural 
and archaeological features to aid management objectives, study patterns across the landscape, and 
find new features. Additionally, more comprehensive and accurate shipwreck maps can help to 
prioritize site selection and plan excavation. The model is based on open source topo-bathymetric 
data and shipwreck data for the United States available from NOAA. The model uses transfer learn-
ing to compensate for a relatively small sample size and addresses a recurring problem that associ-
ated work has had with false positives by training the model both on shipwrecks and background 
topography. Results of statistical analyses conducted—ANOVAs and box and whisker plots—indi-
cate that there are substantial differences between the morphologic characteristics that define ship-
wrecks vs. background topography, supporting this approach to addressing false positives. The 
model uses a YOLOv3 architecture and produced an F1 score of 0.92 and a precision score of 0.90, 
indicating that the approach taken herein to address false positives was successful.  

Keywords: deep learning; machine learning; lidar; sonar; shipwrecks; archaeology; remotely sensed 
imagery 
 

1. Introduction 
1.1. Objective and Broader Importance 

This project’s objective is to determine whether deep learning and open source high-
resolution bathymetric data could be used to accurately predict the locations of ship-
wrecks over a large geographic area. This work is intended to introduce a new methodol-
ogy to the field of underwater archaeology that can be used in conjunction with existing 
methodologies. Maritime shipwrecks represent a major resource to understand the hu-
man past over thousands of years, but underwater archaeology is expensive, misappro-
priated, and hazardous [1–4]. Therefore, a methodology to automatically map all potential 
shipwrecks over a large geographic area accurately and rapidly can help archaeologists 
prioritize site selection and plan excavation [5]. The model implementation presented 
here accurately detects shipwrecks in remotely sensed imagery collected from large areas 
of the coast of the continental United States, Alaska, and Puerto Rico. The methodological 
approach can easily be replicated in other locations around the world.  

Machine learning applications in archaeology have made significant progress in pre-
dictive accuracy and utility in the last decade [6–10], with work over the last four years 
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focused on the application of a specific type of machine learning algorithm called deep 
learning [11–15]. Deep learning is a type of machine learning that can identify features of 
interest in remotely sensed imagery by recognizing the unique visual patterns by which 
they are represented [16]. It is particularly powerful for detecting archaeological features 
because of its ability to identify many different morphologies and orientations of the same 
features. Applications of deep learning to underwater archaeology are very limited 
[12,17,18] because of the paucity of high-resolution bathymetric data [19] as compared to 
land-based elevation data. The new model implementation presented here uses high res-
olution open source bathymetric data accessed through the National Oceanic and Atmos-
pheric Administration’s (NOAA) Office of Coastal Management Data Access Viewer [20], 
as well as the GPS locations of confirmed shipwrecks from NOAA’s Office of Coast Sur-
vey’s Automated Wreck and Obstruction Information System (AWOIS) database [21]. 
Part of NOAA’s mission is to document the seafloor to ensure natural resources are pro-
tected and waterways are navigable for mariners. This includes a database of more than 
10,000 shipwrecks and underwater obstructions. This model will be used by the Navy’s 
Underwater Archaeology Branch to find unmapped or unknown naval shipwrecks to aid 
management objectives by creating more accurate and complete maps of shipwreck loca-
tions and by studying shipwreck patterns across the underwater landscape. This work 
seeks to make machine learning methods applicable and relevant to archaeologists and 
others interested in studying, managing, and conserving the maritime landscape. 

1.2. Background and Related Literature 
Machine learning here refers to the process of teaching a computer to seek and iden-

tify features that a human would otherwise have to locate and classify visually [22]. Deep 
learning is a type of machine learning that uses multiple layers of data to learn the patterns 
associated with the features of interest with little to no human guidance or associated bias. 
This enables deep learning models to essentially assess images in the same way that a 
human would: humans can look at pictures of a cat and a dog, for example, and immedi-
ately know which animal they are looking at because of physical features such as ear 
shape, snout shape, and coloration. Deep learning models create and then iterate through 
hundreds or thousands of layers of an image to automatically determine which combina-
tion of patterns are most likely to define the content of the image [16]. 

There are very few published studies that combine deep learning with remotely 
sensed imagery to detect shipwrecks over a large area, though there are several studies 
that use remotely sensed imagery to visually identify shipwrecks. Remotely sensed im-
agery can include imagery collected by satellite, airplane, unmanned aerial vehicle (UAV), 
ship, or autonomous underwater vehicle (AUV), and includes many types of elevation 
(e.g., lidar, sonar, synthetic aperture radar) and spectral (e.g., multispectral, hyperspec-
tral) imagery sensors. The majority of published studies focused on shipwreck detection 
also rely on sonar imagery collected by AUV which restricts the size of the study area to 
what is immediately near the AUV, whereas the new work presented by the authors is 
based on a mosaic of airborne lidar and shipborne sonar collected over much larger areas 
(i.e., nearly the entire coast of the continental US, Alaska, and Puerto Rico). There is also 
a small corpus of work focused on using remotely sensed imagery to identify aircraft 
wrecks, which are sometimes located underwater. A brief chronologic review of related 
work follows that includes a variety of manual and machine learning methods applied to 
identifying submerged features in remotely sensed imagery. 

 In 2011 Plets et al. [23] assessed whether 2-4 m spatial resolution multibeam sonar 
could be used to manually detect possible wrecks on the seafloor. This appears to be the 
first study in the literature that attempts to use remotely sensed imagery to detect ship-
wrecks, and the authors note that this study was only possible because of the availability 
of relatively high-resolution imagery. In fact, this imagery is quite high resolution for the 
time. Nonetheless, the results of the study conclude that the spatial resolution of the im-
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agery limited the identification of smaller, older vessels and that higher resolution—prob-
ably 1 m—is therefore required for a phase two of the project. This finding is aligned with 
the new work presented in this paper. In 2013 Shih et al. [24] used airborne bathymetric 
lidar data with a spatial resolution of 3.5 m to manually detect four shipwrecks around a 
coral reef located in the South China Sea. Similar to Plets et al. [23], the authors found that 
the spatial resolution of the lidar limited their ability to detect smaller wrecks. Nonethe-
less, Shih et al.’s study shows that airborne bathymetric lidar is effective in shipwreck 
identification. Since 2017, Pasquet et al. [12] and Drap et al. [5] have been working together 
on a project to develop a deep learning approach for the detection and recognition of ob-
jects of interest using orthomosaics, with a focus on amphorae. Using transfer learning to 
help address their small training dataset size (transfer learning is the process of using as 
a model base layer the output of another model that has been pretrained on many thou-
sands of images of other features), they test their approach to detect amphorae at a single 
shipwreck site located in 44m of water. They find that their model can detect about 90% 
of amphorae once noise is removed but does produce several false positives with a preci-
sion value ranging from 60 to 80%. This study highlights the more general utility of a deep 
learning approach to underwater feature detection and is at the forefront of other related 
projects. 

Since 2018 there have been nearly as many publications as the previous decade. Most 
of these studies use side scan sonar and deep learning to detect wrecks. Ye et al. [25] cre-
ated a deep learning model based on side scan sonar imagery that used transfer learning 
to detect shipwrecks and aircraft wrecks, reaching a classification accuracy rate of 87%. 
Nayak et al. [17] created a deep learning model to detect shipwrecks using side scan sonar 
and a small number of training sites combined with image augmentation (to increase the 
training dataset size). Their model was tested on two datasets: the model produced recall 
values between 80 and 97% and precision values between 29 and 33%. As is evidenced by 
the low precision values, the authors had problems with false positives similar to Pasquet 
et al. [12] and Drap et al. [5]. Xu et al. [26] used a neural network to detect shipwrecks in 
sonar imagery with a very small training dataset. They tested model performance both 
with and without transfer learning and found that transfer learning improved the model 
significantly: the model produced mean average precision values of 73% and 81% without 
transfer learning and with transfer learning, respectively. Zhu et al. [18] used a similar 
approach that included side scan sonar and transfer learning, but instead of deep learning 
they tested a variety of shallow learning approaches. The results of the various models 
ranged from correct recognition rates of 90 - 97%; the study does not include discussion 
of precision or false positives. The authors also suggest that model performance may be 
improved by implementing a deep learning approach. These studies all indicate that high 
resolution imagery and deep learning are successful approaches to identification of un-
derwater wrecks. Additionally, they show that transfer learning is a successful way to 
address a small training dataset. All models presented in these studies have difficulty with 
false positives; an approach that can be used to address false positives is to include back-
ground topography examples in model training, something that none of these papers 
tested but that the new work presented here will include. 

In a particularly relevant study published in 2020, Davis et al. [27] manually assessed 
the utility of NOAA’s open access 1 and 3 m resolution coastal bathymetric data for ship-
wreck identification. Manual identification was based on morphologic characteristics, in-
cluding shape, elevation profile, and size of the anomaly. They focused on three study 
areas that had different water clarity and available imagery resolutions. They were able 
to manually detect 44% of wrecks in the Mississippi Delta study area off the coast of New 
Orleans. The area has an average water clarity of less than 1 m and the imagery they used 
had a spatial resolution of 3 m. The authors had more success in their other two study 
areas: they were able to detect 63% of wrecks in their study area off the coast of Long 
Island, New York and 61% in their study area off the coast of Massachusetts. Visibility in 
the Long Island Sound ranges from 0 to 3 m and there is 1m spatial resolution imagery 
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available for this area. Visibility in the Boston Harbor usually averages 2.5 m. Imagery 
available for this study area includes both 1 and 3 m spatial resolution. The authors also 
tested the performance of an inverse detection analysis (IDA) algorithm with a 20km2 sec-
tion of the Long Island data to determine whether automated methods might have utility 
in wreck detection. IDA is a method of flipping the topographic surface inside-out such 
that sinks are represented as morphologically distinct anomalous mounds, or in this case 
as shipwrecks. Their model produces a true positive rate of 71% and a false negative rate 
of 28.67%, indicating that automated methods may have utility in shipwreck detection. In 
addition to lending support to the objective of the new work presented here to determine 
whether deep learning could be used to detect shipwrecks, Davis et al.’s work also helped 
the authors to rapidly identify training data for deep learning modeling. 

2. Materials and Methods 
2.1. Deep Learning Model 

We completed all modeling in Python programming language and geospatial anal-
yses in ArcGIS Pro. The deep learning model was run in Keras with a TensorFlow backend 
using a NVIDIA 1080 GEFORCE GTX GPU.  

Training data consisted of GPS points of confirmed shipwrecks and associated bath-
ymetric data. To create our training dataset of known shipwrecks, we explored bathymet-
ric data for the entire US coastline, from Maine to Florida, from Florida to Louisiana, from 
California to Washington and to Alaska (excluding Hawaii), and all along the coast of 
Puerto Rico. Davis et al. [27] included maps and GPS coordinates for shipwrecks, which 
we used to rapidly identify areas that were likely to contain shipwrecks. The bathymetric 
data were acquired through NOAA’s Data Access Viewer [20] and the shipwreck GPS 
coordinates were acquired through NOAA’s AWOIS [21]. The bathymetric data used in 
modeling were derived from 1 m resolution lidar and multibeam sonar. The shipwreck 
training data used in the model consisted of 163 shipwrecks that were visible as some sort 
of anomalous morphology in the bathymetric data. These were augmented through 
stretching and orientation adjustments to produce an additional 247 varied shipwreck im-
ages. The total training dataset consisted of 410 shipwrecks. The training data also in-
cluded 410 background topography tiles to help ensure that the model was able to differ-
entiate between shipwrecks and topography. The test dataset consisted of 40 additional 
shipwrecks and 40 background topography tiles; no data augmentation was used in the 
test data. 

We used ArcGIS Pro to derive hillshades from elevation data and then to export the 
hillshade tiles containing shipwrecks in png format, which were labeled using Microsoft’s 
Visual Object Tagging Tool [28].  

The model architecture was based on Joseph Redmon’s convolutional neural net-
work one-shot detector model YOLOv3 [29], and this specific implementation was devel-
oped based on two GitHub repositories: qqwweee’s keras-yolo3 [30] and AntonMu’s 
TrainYourOwnYOLO [31]. YOLOv3 was used for this work because of its high detection 
accuracy and very fast speed [29]. A basic explanation of the YOLOv3 framework follows. 
The YOLOv3 network framework can be divided into two components: a feature extractor 
and a detector (Figure 1). Each input image is automatically resized to a width and height 
of 416 x 416 pixels before entering the feature extractor. YOLOv3 uses Darknet53 which 
outputs feature maps at three different scales. These feature maps are then provided as 
input into the detector which initially predicts three bounding boxes. The most suitable 
bounding box out of the three is output by the detector, represented as the predicted 
bounding box center point, width and height, confidence, and class label. The model uses 
transfer learning, and weights were pretrained on the ImageNet1000 dataset [32]. 
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Figure 1. High-level schematic of YOLOv3. 

For each test image, the output of the model was each input test image with bounding 
boxes drawn around predicted shipwrecks along with a confidence score representing 
how confident the model was in its prediction (Figure 2). These data are also output in a 
spreadsheet format. 

 
Figure 2. Example of model output. Each of these is a sonar or lidar hillshade image that was pro-
vided to the model as input. The model outputs these same images with bounding boxes indicat-
ing the locations of predicted shipwrecks and an associated confidence score for the prediction. 

We assessed model performance using a new set of test data and calculated several 
accuracy metrics, including area under curve receiver operating characteristic curve 
(AUC-ROC), precision–recall curve, overall accuracy, recall, precision, and F1 score 
[33,34]. 

A ROC curve shows the false positive rate on the x-axis compared to the true positive 
rate on the y-axis for different thresholds between 0 and 1 (Fig. 3). Smaller values on the 
x-axis indicate a lower number of false positives and a higher number of true negatives. 
Larger values on the y-axis indicate higher true positives and lower false negatives. This 
metric enables model comparison either in general or for different thresholds. The AUC 
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can also be used as a summary of the model’s predictive ability, or skill. A no-skill classi-
fier cannot differentiate between the classes and is represented by a straight line that runs 
through the point (0.5, 0.5); the AUC of this curve is equal to 0. A model with perfect skill 
is represented by a line at a point (0,1); this line moves up from the bottom left of the plot 
to the top left of the plot and then moves horizontally across the plot to the top right. The 
AUC of this curve is equal to 1. Generally, an AUC-ROC score between 0.7 and 0.8 is 
acceptable, above 0.8 is excellent, and more than 0.9 is outstanding [35,36]. A precision–
recall curve is a plot of the precision vs. the recall for different thresholds. A no-skill clas-
sifier, as with the AUC-ROC curve, is one that cannot differentiate between the classes. A 
model with perfect skill is represented by a point at (1,1) and a skillful model is repre-
sented by a curve above and bending toward the no-skill line. Since both AUC-ROC and 
precision–recall curves show model skill at many different thresholds, these metrics can 
be used to determine appropriate thresholds for the threshold-dependent metrics (accu-
racy, recall, precision, F1 score). 

Overall accuracy is the number of overall correctly classified shipwrecks and back-
ground topography tiles as compared to the entire number of samples and is the only 
metric that considers true negatives (TN). Recall represents the prediction accuracy when 
considering only the true positives (TP) as compared to the total number of positives in-
cluding false negatives (FN)—here this is equivalent to how many shipwrecks were cor-
rectly classified as shipwrecks. Precision minimizes the occurrence of false positives (FP), 
which in this case means that it decreases the model’s likelihood of mistaking background 
topography for a shipwreck. The flip side of this is that it may also cause the model to 
mislabel shipwrecks as background topography. Different accuracy metrics are more ap-
propriate to use depending on the objective of the model. 

2.2. Pattern and Statistical Analyses 
We created box and whisker plots and histograms and ran one-way ANOVAs to look 

for patterns and significance in shipwreck locations and morphology. Parameters were 
calculated for areas immediately surrounding shipwrecks and were compared to back-
ground topography values used in model training. Parameters include slope, curvature 
(describes the overall shape of the slope), curvature-profile (parallel to direction of maxi-
mum slope), curvature-planar (perpendicular to direction of maximum slope), wreck 
area, wreck rectangularity, wreck distance from coast, wreck depth, nearest state to wreck, 
and water clarity above wreck.  

Shipwreck values were compared to those of background topography for slope (de-
grees) and all curvatures. Shipwrecks values were not compared to background topogra-
phy for all other parameters (wreck area, wreck rectangularity, wreck distance from coast, 
wreck depth, nearest state to wreck, and water clarity above wreck) because these param-
eters are wreck specific. For slope and all curvatures, minimum, mean, and maximum 
values were calculated; the maximum values consistently showed the most differentiation 
between the values for shipwrecks and the values for background topography. Empiri-
cally, this makes sense because the morphological parameters are capturing the man-
made shape of the shipwrecks that includes more straight edges than are found in nature. 

3. Results 
3.1. Deep Learning Model 

The AUC-ROC score of the final model for this project is 0.945 (Table 1; Figure 3). 
The AUC-Precision-Recall score of the final model for this project is 0.901 (Table 1; Figure 
4). Additional accuracy metrics are shown in Table 1, as well. 
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Figure 3. AUC-ROC plot. 

 
Figure 4. AUC-Precision-Recall plot. 

Table 1. Accuracy metric formulas and results for model. 

 Accuracy Metric Formula Score 
AUC-ROC - 0.945 

AUC-Precision-Recall - 0.901 
Accuracy (TP/TN)/(TP+TN+FP+FN) 0.937 

Recall TP/(TP+FN) 0.946 
Precision TP/(TP+FP) 0.897 

F1 (2⋅Recall⋅Precision)/(Recall+Precision) 0.921 

3.2. Pattern and Statistical Analyses 
We found that shipwrecks have significantly higher slope values and curvature val-

ues (Figure 5) than those of background topography. The F ratios and p-values (Table 2) 
indicate that all parameters are significant, meaning that each of these parameters tend to 
share a distinct range of values for shipwrecks as compared to background topography. 
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Figure 5. Box and whisker plots comparing the a) maximum slope, b) curvature, c) curvature-pro-
file, and d) curvature-planar of the shipwrecks to that of the background topography. 

Table 2. F ratios and p-values for all shipwreck vs. background topography parameters (alpha = 
0.05). 

 Parameter F Ratio p-Value 
Max Slope 71.323 1.24E-15 

Max Curvature 32.743 2.51E-08 

Max Curvature-Profile 
 

3.872 
4.554E-06 

Max Curvature-Planar 29.559 1.11E-07 
On average, the total ground area occupied by an individual wreck was 1470 m2 (Fig-

ure 6). We hypothesized that on average wrecks would have a more rectangular than cir-
cular shape. To test this hypothesis, we created a rectangularity metric by subtracting the 
wreck area from the area of its minimum bounding rectangle and then normalizing the 
results so that everything fell between 0 and 1. Zero represents a perfect rectangle and the 
larger the number the less rectangular the shipwreck. The majority of wrecks used in this 
study were fairly rectangular in shape (Figure 7). We also hypothesized that the visibility 
of wrecks may correspond to a shipwreck’s state of preservation, with more decomposed 
wrecks appearing less rectangular. This hypothesis requires ground-verification, and 
many factors would contribute to preservation including age and environmental condi-
tions such as anoxia and turbulence. The wrecks used in this study were all located in 
shallow water (<80 m), with low slope gradients, and relatively nearshore (<14 km; Figure 
8). We also hypothesized that wreck visibility might be affected by water clarity. To em-
pirically test this hypothesis, we created a water clarity scale and assessed water clarity at 
each shipwreck location using spectral satellite imagery provided as the ArcGIS base map 
(Figure 9). With over 90% of the wrecks occurring in opaque waters, this hypothesis does 
not seem to hold true (Table 3). 
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Figure 6. Box and whisker plot showing wreck area in square meters (four extreme outliers have 
been removed to avoid skewing of data). 

 
Figure 7. Histogram showing wreck rectangularity where rectangularity is on the x-axis (0 is per-
fect rectangle, larger numbers are less rectangular) and count is on the y-axis (four extreme outli-
ers have been removed to avoid skewing of data). 
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Figure 8. Box and whisker plot and histograms showing wreck distance from coast in kilometers 
and wreck depth in meters. 

 
Figure 9. Examples of water clarity. a) is above water, b) is transparent, c) is translucent, d) is 
opaque. 
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Table 3. Observed water clarity at each wreck site. 

Water Clarity Wreck Count 
Transparent 6 
Translucent 5 

Opaque 149 
Above water 3 

4. Discussion 
NOAA’s bathymetric data includes a range of spatial resolutions, but we found that 

a 1 m resolution was ideal for detecting shipwrecks. Wrecks were occasionally detectable 
in 3 m resolution imagery, so this imagery could potentially be used in future modeling. 
This finding is aligned with manual shipwreck identification conducted by Plets et al. [26], 
from which the authors conclude that the required imagery resolution for shipwreck iden-
tification is less than 2 m. Fewer than 10 shipwrecks that we detected were easily discern-
ible (Figure 10), while most wrecks appeared simply as anomalous topography (Figure 
11). In addition to the spatial resolution of bathymetric data, wreck detection was affected 
by water depth and clarity. The largest number of wrecks detected were in the Long Island 
Sound (90 wrecks: Table 4) and the Puget Sound (50 wrecks: Table 4). A smaller number 
of wrecks were also detected in Boston Harbor, Delaware Bay, in the Florida Keys, and 
off the coast of Puerto Rico (Table 4). Wrecks were not detected in the sediment-laden Gulf 
of Mexico. The detectability and general profusion, or lack thereof, of wrecks is likely tied 
to such factors as water clarity and depth, imagery spatial resolution, and wreck preser-
vation, as well as historic, commercial, and naval factors not discussed in this paper. The 
performance of new model implementations therefore is likely to vary based on the dif-
fering influence of these factors across geographic locations.   

Table 4. Table of the nearest state to where the model identified shipwrecks. The Long Island 
Sound off the coast of Connecticut and the Puget Sound off the coast of Washington had by far the 
largest number of highly visible wrecks, containing 59% and 31% of wrecks, respectively. 

State Wreck Count 
CT/NY 90 

WA 50 
FL 10 
RI 6 

MA 5 
PR 1 
DE 1 

Total 163 

 
Figure 10. Obvious shipwrecks off the coast of Puerto Rico (a) and Washington (b) at a depth of 3 and 25 m, respectively. 
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Figure 11. Less obvious shipwrecks with arrows above were more common than the type shown 
in Figure 9. These shipwrecks in (a) and (b) occur off the coast of Washington and in (c) off the 
coast of Connecticut/New York, at a water depth of 29 (a), 60 (b), and 45 (c) m, respectively. 

The work presented in Davis et al. [30] is the most similar study to date to the project 
presented here. Davis et al. used IDA to identify wrecks in a small section of the Long 
Island Sound, achieving a recall of 71%. The YOLOv3 model implementation used for this 
study achieved a recall of 95%. However, these two models did not use identical datasets, 
therefore a direct comparison is not possible. 

All other published related work focuses either on a very small study area that in-
cludes fewer than four shipwrecks [5,12,24] or used privately available side scan sonar 
[17,18,25,26]. While some of these projects produce shipwreck detection results compara-
ble with the new work presented here, the work presented here differs in three significant 
ways: 1) the study area is very large, which enables rapid mapping of huge areas all at 
once; 2) the imagery is open source, which means this methodology could be replicated 
for additional study areas; 3) the imagery used includes a substantial amount of airborne 
lidar which means that imagery can be efficiently collected over a much larger area than 
with a shipborne or unmanned platform. Additionally, excluding Nayak et al. [17], the 
projects that use side scan sonar are not focused on developing methodologies for under-
water archaeology. Nayak et al. use side scan sonar collected by AUV, which limits the 
geographic extent of the project. Additionally, their model produces many false positives, 
as do the models introduced by Pasquet et al. [12] and Drap et al. [5]. The new model 
implementation presented here addresses false positives by integrating background to-
pography in model training, achieving the highest precision value (90%) among these 
works by a large margin. Precision values of other works range from 29–33% [17] to 60–
80% [5,12]. 

This work demonstrates the utility of deep learning methods to detect shipwrecks in 
high resolution bathymetric imagery, thus providing a new methodologic approach for 
underwater archaeology projects. Future work to further improve model performance 
and generalizability includes gathering a larger and more diverse training dataset. This 
could include integrating a larger number of less readily discernable wrecks from 
NOAA’s wreck database, searching for other in-country sources of data, and looking for 
some international data sources. Different approaches to digital elevation data visualiza-
tion may also improve model performance. For this project we used hillshade, but we 
would also like to test model performance using other visualizations such as Local Relief 
Model (LRM), Red Relief Image Map (RRIM), and topographic openness. Lastly, we plan 
to test several different types of deep learning model architectures including a two-shot 
detector (two-shot detectors are significantly slower and more computationally intensive 
than one-shot detectors like YOLOv3, but they also can be more accurate) such as the 
Faster R-CNN [37], as well as shallow learning models based on shipwreck morphology, 
such as a random forest or gradient boosting. Given that there are strong morphological 
patterns that characterize both the shipwrecks and their locations on the seafloor, shallow 
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learning could also offer a successful approach to predictive modeling. Future work as 
part of running this model implementation on a larger dataset that may produce many 
more false negatives also includes determining morphologic thresholds for slope and cur-
vature, and potentially other parameters, that may define whether the model is able to 
detect a shipwreck. Future work could also use this rich database and approach to im-
prove our knowledge of the causes and trends of historical shipwrecks such as tropical 
cyclones [38]. 

5. Conclusions 
This paper presents a new highly accurate archaeological implementation of a deep 

learning model that uses digital elevation data derived from airborne lidar and shipborne 
sonar to automatically detect shipwrecks over a large geographic area. The model 
achieved a F1 score of 0.92, which means that the model is effectively able to detect ship-
wrecks in the test dataset used for this work. Additionally, the model achieved a precision 
value of 0.90, demonstrating that the incorporation of background topography into model 
training helps to resolve issues that previous models have had with false positives. Fur-
thermore, statistical analyses show that there are substantial differences between the mor-
phologic values for shipwrecks as compared to background topography, supporting our 
background topography-inclusive approach. This open source data-based approach facil-
itates research in underwater archaeology, providing a new methodology that can be used 
in conjunction with existing methodologies. 

This model could enable marine archaeologists to quickly and efficiently detect po-
tential unknown or unmapped shipwrecks, promoting conservation and management ob-
jectives. The model is now ready to ingest new, never-before-seen data and predict poten-
tial unmapped or unknown shipwreck locations. This could save the Navy’s Underwater 
Archaeology Branch person-hours or even days of visually searching data for features. 
Additionally, the methodology developed for this project could easily be modified to ac-
cept other types of images, such as multispectral imagery. It could also be altered to focus 
on other types of features, such as aircraft wrecks, naval mines, land-based archaeological 
features, or even geological features. 

This work helps to bridge the gap between the field of machine learning pursued by 
computer scientists and the types of applied projects of interest to archaeologists, envi-
ronmental scientists and others who seek to improve management and conservation prac-
tices. This project helps to make the cutting-edge research being done by computer scien-
tists applicable and relevant to land and resource conservation and management work. 
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