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Abstract: Geophysical logs can be used not only for qualitative interpretation such as strata correlation
but also for geotechnical assessment through quantitative data analysis. In an emerging digital
mining age, such a use of geophysical logs helps to establish reliable geological and geotechnical
models, which reduces safety and financial risks due to geological and geotechnical uncertainty
for new and existing coal mining projects. This paper presents some examples of geological and
geotechnical characterizations from geophysical logs at various coal mines in Australia and India. The
applications include rock strength and coal quality estimations, automated lithological/geotechnical
interpretation and geophysical strata rating, all based on geophysical logs. These derived parameters
could provide input to modelling, control, even ‘digital twin’ generation in a form of geological
and geotechnical models as part of the future digital mining. The outcomes can be visualized in
3D space and used for identifying the key geotechnical strata units that are responsible for caving
behaviors during longwall mining. This could assist site geologists and planning and production
engineers predict and manage mining conditions on an ongoing basis. Both conventional logs such
as density, natural gamma and sonic and less common logging data, such as full waveform sonic,
televiewer and SIROLOG spectrometric natural gamma logging data are examined for their potential
applications. The geotechnical strata classification and rock strengths predicted from the geophysical
logs match the laboratory tests, drill core geotechnical strata classification, core photos and the mining
condition/behavior observed. These illustrate the usefulness and effectiveness of using geophysical
logs for geological and geotechnical characterizations.
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1. Introduction

Geophysical borehole logging can play an important role in the digital mining age as it can help
to establish reliable geological and geotechnical models required for safe and productive mining
operations. Unexpected geological and geotechnical mining conditions have resulted in significant
loss of production in some mines in Australia and other countries. In general, geotechnical data are
obtained by analyzing drill cores and cuttings from boreholes. However, coring is expensive and
in many cases the core cannot be fully recovered. In such cases, geophysical logging could be an
alternative way to provide the required information from non-cored boreholes. This provides for either
the substitution of diamond drilling or the extension of drilling programs within the same budget,
based on the fact that non-cored holes are cheaper to drill.

Geophysical borehole logging, which consists of measuring various in-situ petrophysical
parameters such as the acoustic, radiometric and electric properties of the rocks down boreholes,
is carried out routinely at coal mines. The logs provide a rich source of rock property information
and can be used for qualitative interpretation such as picking coal seams from density log and strata
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correlation [1–3], in addition to litho-stratigraphic interpretation [4,5], orebody delineation and grade
estimation [6,7] and geotechnical and rock mass characterization [8–15].

In this paper, we will demonstrate various applications of geophysical logs such as the estimation
of the strength of intact rock or the unconfined (or uniaxial) compressive strength (UCS), geophysical
strata rating and coal quality parameters. These derived parameters could provide input to modelling,
control, even ‘digital twin’ generation in a form of geological and geotechnical models as part of the
future digital mining. Both conventional logs such as density, natural gamma and sonic and less
common logging data such as full waveform sonic, televiewer and the SIROLOG spectrometric natural
gamma logging data are examined for different applications. The examples used in this paper are
derived directly from research conducted in Australia and India by the authors and their collaborators.

2. Geotechnical Characterization from Geophysical Logs

Geotechnical assessments such as rock strength estimation and rock mass characterization are
the most attractive applications of geophysical logs as it is critically important to have a proper
understanding and accurate estimation of the strength and characteristics of the various rock types
present for coal mine design and production. Rock strength properties are often affected by, for example,
porosity, mineral bonding type, quality of the solid particles, the internal structure of the rock skeleton
and water content [16]. The complexity of rock strength influences and dependencies makes the
estimation of rock strength difficult. Rock strength can be determined in various ways but most
approaches require an understanding of the properties of the intact rock and of the defects within
it. Geophysical logs can be used to estimate both of these properties, which will be illustrated in
this section.

2.1. Sonic Log and Uniaxial Compressive Strength

2.1.1. UCS Estimation from Acoustic Logs–the McNally Method

Uniaxial Compressive Strength (UCS) is one of the very important parameters for ground control
design in longwall mining. It has long been recognised that seismic velocity has a relationship with rock
strength UCS [16]—a linear regression equation; a polynomial equation or a logarithmic relationship.
For this rock strength estimation, sonic logs are more useful parameters than neutron, gamma ray and
density logs [8]. McNally [8] proposed an exponential relationship between the UCS and the sonic
log. The McNally method for UCS estimation from the sonic log is widely accepted as a conventional
approach in the Australian coal industry. The general expression for UCS in the coal measures of the
Sydney and Bowen basins, derived by McNally [8] is:

UCS = 1000e−0.035∆t, (1)

where ∆t is the sonic transit time (P-wave) measured in microseconds per foot (µs/ft) and the UCS is in
mega Pascals (MPa). This relationship was established on the basis of UCS test results on 1004 core
samples from 40 boreholes.

The McNally method is an empirical first order estimate of rock UCS. It often has a broad data
scatter and a high uncertainty in derived relationships due to the fundamental difference between
static (UCS) and dynamic (sonic log or the seismic velocity) [12,16]. At many mines, it has been found
that a local relationship is required to enable UCS to be estimated with sufficient accuracy or as an
alternative approach, a UCS/sonic transit time correlation based on lithological variations should be
used [17]. For example, the German Creek Mine in Queensland, Australia, derived their own local
formula [18]

UCS = 333e−0.0499∆t, (2)

where the UCS is in MPa while the sonic log transit time ∆t is measured in µs/ft. We computed the
UCS from the sonic log using this formula and compared the results with those from laboratory UCS
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tests (Figure 1) for two boreholes DD412 and DD0403 at Southern Colliery, a mine next to the German
Creek Mine. Borehole DD0412 is located in the strong roof area with UCS values generally > 50 MPa,
while DD0403 is in the soft area where the UCS is generally < 40 MPa. It is evident that the UCSs
derived from the sonic transit times generally match the laboratory tests although there is some scatter
in the data and the estimated UCS values are slightly higher than the measured ones. We therefore
have confidence in using the sonic-derived UCSs for mine design. The UCS estimated from sonic logs
is one of the most widely utilized geotechnical parameters in the Australian coal mining industry,
typically for evaluating the roadway roof support requirements and longwall caving behavior [19–22].
The experiences and benefits gained by the Australian coal mining industry have been adopted in
other coal basins of the world to make mining safer and more productive [23,24].
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amplitude measures the contrast of the acoustic impedance (the product of velocity and density) 
between the drilling mud and borehole wall and indicates the variation of the rock strength and rock 
unit boundaries. In addition, the low-amplitudes are normally associated with fractures. The 
usefulness of the acoustic scanner data can be easily demonstrated by the scanner amplitude image 
from Kakatiya Khani Coal Mine (India) borehole KTK736 in Figure 2. From this plot, we can 
qualitatively identify the strong (yellow), moderately strong (light brown), weak (dark-brown) and 
very weak (dark blue) rock units. From this, we can easily interpret the major bedding planes. We 
also recognize fractures and joints in the coal seams. Note that the coal has relatively high strength, 
similar to the weak rock units, which is consistent with the actual lab tests. 

Figure 1. Comparison of the sonic log derived unconfined compressive strength (UCS) and the
laboratory measured UCS for borehole DD0412 (a) and DD403 (b) at Southern Colliery, Australia.
Plots (c) and (d) are the cross correlations of the sonic and the laboratory UCSs for DD0412 and
DD403, respectively.

2.1.2. Rock Strength Evaluation from Acoustic Scanner Logs

In addition to the conventional sonic logs, both full waveform sonic (FWS) and acoustic televiewer
scanner images provide rich information regarding the rock strength. Acoustic teleview scanner data
measure two parameters—the two-way interval transit time from the transducer to the borehole wall;
and the reflected amplitude of the signal from the borehole wall. The recorded scanner amplitude
measures the contrast of the acoustic impedance (the product of velocity and density) between the
drilling mud and borehole wall and indicates the variation of the rock strength and rock unit boundaries.
In addition, the low-amplitudes are normally associated with fractures. The usefulness of the acoustic
scanner data can be easily demonstrated by the scanner amplitude image from Kakatiya Khani Coal
Mine (India) borehole KTK736 in Figure 2. From this plot, we can qualitatively identify the strong
(yellow), moderately strong (light brown), weak (dark-brown) and very weak (dark blue) rock units.
From this, we can easily interpret the major bedding planes. We also recognize fractures and joints in
the coal seams. Note that the coal has relatively high strength, similar to the weak rock units, which is
consistent with the actual lab tests.
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Figure 2. The acoustic scanner amplitude image from Kakatiya (India) borehole KTK736 plotted along
with the raw density counts (red), gamma ray (green) and average amplitude (blue). The color of the
image indicates the rock strength: dark color for weak strata and light color for strong strata.

Another application of the acoustic scanner data is the determination of breakouts and in-situ
stress (direction and magnitude). The principle of stress determination from borehole breakouts can be
found in references [25,26]. The breakouts occur due to overstressing of the borehole wall. Borehole
breakout, depending on the in-situ stress magnitude, rock strength, drilling mud weight and pore
pressure, is a shear failure in the direction of the minimum horizontal (minor) stress and can be used
as a high-quality indicator of stress direction. In addition, we can also estimate the stress magnitude
using the Kirsch solution based on the rock strength, breakout angle and depth, pore pressure and
drilling mud pressure.

Figure 3 shows an example of breakout identification from the acoustic scanner data taken from
a borehole at Adriyala Mine, India. The scanner data has suffered from cycle skip issues. This may
compromise our confidence to use them for interpreting the breakouts as the shapes of the breakouts in
Figure 3 are unnatural, even after the application of median filter (for removing spikes). Nevertheless,
15 consistent patterns of such breakouts, oriented in the direction of N110–120◦, are identified. This is
the minor horizontal stress direction and that is perpendicular to the orientation of major horizontal
stress. The independent hydro-fracturing stress tests carried out at Adriyala confirmed this prediction,
as shown in Figure 4.
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Figure 3. Acoustic scanner data indicate the breakout at the depth 283.2–283.9 m (a) along N110◦ and
caving of clay at the depth 284.37–285.55 m of the Barren Measures from Adriyala borehole 1199. The
middle part of clay shows a NW-SE trend at 284.9 m from Cross Section plot and the zoomed 3-D views
of portions-a & b are shown on the right.
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Figure 4. A comparison of the minor and major stress directions determined from the acoustic scanner
breakout analysis and the in-situ hydrofracturing stress tests, respectively. These two independently
determined directions are orthogonal, which supports each other independently. The hydrofracturing
tests were performed at Adriyala Mine, India.

2.1.3. Rock Integrity Assessment from Full-Waveform Sonic Data

A fully cored hole from the Illawarra area, New South Wales, Australia, along with comprehensive
geophysical logs, has provided a unique opportunity for the assessment of FWS data. A core photograph
and corresponding acoustic scanner and FWS data are shown in Figure 5. The logs in this case were
obtained by a single receiver at a separation of 4 feet (1.22 m) from the source.
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The striking features of this part of the FWS log are the decline in P-wave energy between 173.2 m
and 175.8 m and the loss of Stoneley wave energy between 173.5 m and 175.2 m. No S-wave is
evident in this log but it is probable that interference from the tail of the P-wave event from 400 to
800 microseconds is masking the S-wave arrival.

The core photograph and the scanner image show that the zone of P-wave and Stoneley wave
attenuation encompass a zone of fractured rock (sandstone) containing strong vertical fractures. Their
vertical orientation presumably explains why there is no significant decline in P-wave velocity through
the zone but the losses in the Stoneley-wave and S-wave are clear indicators of the presence of significant
permeable fractures. Note also that neither the horizontal fracture at 175.9 m nor the dipping fracture
between 176.1 m and 176.6 m, which are evident in the core and scanner image, produce attenuation
anomalies on the FWS log. Similarly there is no FWS anomaly for the fracture seen on the scanner
image between 172.1 m and 172.8 m.

Based on the above observation, a fracture indicator can be derived from the total energy of
the FWS as shown in Figure 6 (shaded in magenta). In general, fractures are associated with the
Stoneley wave energy loss and diffraction patterns as shown in Figures 5 and 7. Based on the amount
of energy loss and the diffraction patterns, one may classify the possible fractures as open fractures
(Loss most of the Stoneley wave energy); closed fractures (there no much Stoneley wave energy loss
but the diffraction patterns can be observed); and the tight fractures (between the open and close
fractures), as illustrated in Figure 7. However, energy loss can be caused by permeable strata such as
coal seam and the diffractions can also be caused by strata interfaces. Without further information to
support, the fracture interpretation from the FWS data can only considered as a fracture indicator or
more accurately, it should be considered as a permeability indicator. Table 1 presents the fractures
interpreted from the FWS data in Figure 6.
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Table 1. Interpreted fractures from full waveform sonic data.

Depth from Depth to Fracture Description

250.5 253.6 Closed fractures
257 258 Open fractures
273 274.5 Open fractures

288.16 289 Tight fractures
289.9 292.5 Tight fractures in Siltstone
304 305.6 Closed fractures
312 312.8 Closed fractures

316.9 317.9 Closed fractures
323.6 324.8 Closed Fractures
326.3 328.4 Closed Fractures
337.3 339.7 Closed Fractures
350.6 355 Closed Fractures

372.45 373.5 Tight fractures
393.45 395.75 Closed fractures
411.2 413.7 Tight fractures
416.3 417.3 Closed fractures
419.4 420.1 Closed fractures
421.9 423.2 Closed fractures
424.4 428.5 Closed fractures

As demonstrated, if the rock is highly fractured, the wave energy will be dissipated and attenuated
by the highly permeable fractures. If the fractures are tight, strong diffraction energies can be observed
from these fractures, as shown in Figure 8. These diffraction patterns are very good indicators that
there are fractures at the locations of the diffraction apexes and can be enhanced by filtering those
direct arrivals.
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Figure 8. Full-waveform sonic data showing P-wave, S-wave, Stoneley wave and scattering. The
left plot is the original data from receiver 1 from Kakatiya borehole KK736 while the right plot is
the enhanced scattering waves after filtering out the P-, S- and Stoneley waves by a 7-point vertical
averaging filter.

2.2. Geophysical Strata Rating

Although UCS is an important geotechnical parameter, it only applies to the intact rocks that do
not have defects. To overcome this limitation, Hatherly et al. [27,28] have developed a new scheme
designed specifically for clastic rocks - the geophysical strata rating (GSR). This scheme combines
separate ratings for the intact rock mass and defects. GSR values are similar to those obtained
through the Coal Mine Roof Rating (CMRR) [29], a scheme that is similar to the Rock Mass Rating
(RMR) [30]. It generally delivers values between 10 and 100 depending on the overall quality of the
strata. To calculate the GSR, a quantitative analysis of geophysical logs is undertaken to determine the
porosity (from density or neutron logs), the clay content or shaliness (from gamma ray, neutron or
resistivity logs) and the effective stress. The P-wave velocity provides a strength score that underpins
the GSR. Adjustments are then made to this according to the porosity, the shaliness, the amount of bed
cohesion and inferred defects (fractures and bed boundaries). The details of the GSR computation can
be found in Hatherly et al. [31].

For illustrative purpose, we applied the GSR scheme to the three boreholes KTK769, KTK766 and
KTK763 from Kakatiya Khani Coal Mine, India. Figure 9 shows an example of the porosity and clay
determinations for the three boreholes. The porosities were calculated from the long spaced density
(LSD) log with a matrix density of about 2.66 g/cc and the clay contents were computed from the
natural gamma (NGAM) ray log with the sand gamma ray of 20–30 cps and the clay gamma ray of
300–320 cps. We also computed the clay contents from the short normal resistivity (SNR) log with
the shale resistivity of 125 and the sand resistivity of 180 ohmm and water resistivity of 20–30 ohmm.
The results are presented in Figure 10. For easy comparison and correlation, these logs are plotted
relative to the seam marked by the red arrow in the lower part of the figures. The estimated sonic
velocities based on the porosities and clay contents in Figures 9 and 10, along with the measured sonic
log, are shown in Figure 11. It is clear that the estimated velocities are well matched with measured
sonic velocities. This demonstrates the validity of the estimation of the porosities and clay contents.
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Figure 9. The estimated porosity (light blue) from density and clay (maroon) from natural gamma logs
for the KTK boreholes 769, 766 and 763. The black bands are coal seams. The arrow indicates the same
seam lined up. The blue bands indicate dense material (density > matrix density) while the green
bands are volcanic tuff bands.
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The estimated GSR based on the porosities and clay contents in Figure 10 and the measured sonic
velocities for the three boreholes are given in Figure 12. It is clear that the GSR is quite uniform with an
average value of about 60 for all three boreholes, although there are some thin bands with low GSR.
Therefore, we can conclude that the rock at KTK longwall block is very strong and competent. The
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estimated GSR data allows geotechnical engineers to better assess roadway stability and longwall
caving behaviour and improve design ground support for longwall mining.
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Figure 11. Comparison of the calculated sonic velocities (brown and maroon) from estimated porosity
and clay content in Figures 9 and 10 with the measured sonic velocities (blue) for the KTK boreholes
769, 766 and 763. The blue bands indicate dense materials such as siderite and basalts while the green
bands are volcanic tuff bands.
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Figure 12. The estimated geophysical strata rating (GSR) for the KTK boreholes 769, 766 and 763. The
blue bands indicate dense materials such as siderite and basalts while the green bands are volcanic
tuff bands.
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2.3. 2D/3D Modelling of Geophysical Logs for Strata Geotechnical Characterization

Geophysical logs and their derived parameters can provide input to geological and geotechnical
models as part of digital mine, which can be used for mine design, control and management. As
demonstrated above, sonic logs have a strong correlation with UCS—the higher the velocity, the
stronger the rock. Therefore, we can use the sonic velocity as an indicator for the relative rock strength
when there is no reliable sonic-UCS correlation formula available. To appreciate the usefulness of the
geophysical logs such as the sonic log or the derived GSR data, it is desirable to form interpolated 2D and
3D models from the logs between boreholes. From these models, sections and plans showing vertical
and lateral variations can be constructed, which could provide a new way of representing geotechnical
data for further geotechnical evaluation. Figure 13 shows a cross-section of sonic velocities along
the tailgate, which is extracted from the 3D velocity model established using GeoInterp, a program
developed through an ACARP (Australian Coal Association Research Program) project [32]. GeoInterp
uses coal seams as interpolation constraints/control surfaces to compensate for the poor correlation of
the logging data between holes when the borehole spacing is too large (i.e., where it has been under
sampled compared with the geological variations). The control surfaces are established by performing
a separate set of interpolations between boreholes while the final models can be created in either 2D or
3D with linear or inverse distance interpolation methods. From this plot, one can easily recognize the
distribution of strong sandy units with high velocity (in yellow to red) in relation to the coal seams
(blue units). There is a rider seam within the GM seam at the lower right edge of the plot and the
associated seam split. There is also a split evident in the overlying P seam, which is associated with
the development of the sandstone channel between the PL and PU splits. The presence of the rider
seam, with overlying, thick, strong sandstones, above the GM seam, is responsible for a roof-fall that
occurred at the southern end of longwall LW105.
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Figure 13. Sonic velocity distribution (right) along the tailgate (the red line on the left plot). The cross
section was cut out from the 3D sonic velocity model; interpolated using coal seams (GM, PL, PU and
GU) constrained interpolation of sonic logs from 12 boreholes along the maingate and tailgate at the
Moranbah Mine. The strong sandy units correlate with high velocity.

2.4. Automated Lithology Interpretation: Identification of Sugar Sands

The strength of the rock is usually related to the rock type—well cemented sandstones are stronger
than mudstones, claystone and siltstone. Therefore, lithological interpretation of geophysical logs
and its spatial distribution of lithologies will greatly improve our understanding of the effects of
overburden sediments in relation to the coal mining activities. The prediction of lithology from
conventional geophysical logs is well established and automatic geophysical interpretation programs
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such as LogTrans have been developed [5]. This is an effective tool for lithological classification [33].
At Callide Mine, Queensland, Australia, rock type mapping is very important before blast planning,
especially for that of the poorly cemented sandstone. This is a rock layer locally referred to as sugar
sands, which are largely quartz sand that are very strong when dry but behave like sand if wet. To
enable mapping these sugar sands, Callide has collected various geophysical logs including SIROLOG
spectrometric natural gamma logging data. From this, the natural (total) gamma, the density, the
components of total natural gamma and thorium (Th), potassium (K) and uranium (U) content can
be derived. These parameters have strong correlations with the rock type and would be valuable
for lithology prediction. To evaluate the potential of SIROLOG data for identification of sugar sand
presence, we carried out a preliminary study with limited data from a borehole using LogTrans. The
results were very encouraging and the SIROLOG interpreted rock classes including the sugar sands
were well matched with the original geological logs as shown in Figure 14. It is clear that SIROLOG
data can assist with recognition of sugar sands at Callide.
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Figure 14. LogTrans interpretation of a control borehole. Shown in order from the left to the right:
the original geological core log, reconciled geological log, LogTrans prediction of the rock classes and
SIROLOG derived parameters used in the interpretation (natural gamma ray, density, K, U and TH).
The key rock types including the sugar sands have been largely identified from the SIROLOG data.

2.5. Automated Geological and Geotechnical Interpretation

In addition to the lithological interpretation, we can predict geotechnical strata units directly
from geophysical logs. This can be illustrated using an example from Southern Colliery, Queensland,
Australia, where the main purpose of the study was to understand and predict the caving behaviour
caused by longwall mining in the area. In this study, we classified the rocks as geotechnical strata units
in terms of coal, strong (sandstones), moderately strong (sandstones and siltstones) and weak strata
(siltstones and mudstones). The type of geotechnical strata was derived from density, gamma ray and
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UCS (from the sonic log) logs by using LogTrans software. Figure 15 presents the LogTrans result
for the drill hole DD0412 from Southern Colliery. LogTrans successfully interpreted the geotechnical
strata units with an overall success rate of 85%. The comparison of the interpretation with the core
photographs on the right of Figure 15 is very favourable. These geophysically-derived geotechnical
units can be used as input to digital mine to generate a 3D geotechnical block model for mine design
purposes [9].
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Figure 15. Strata interpretation for borehole DD0412. The first column is the geotechnical strata
classification determined from core photos. The second column is the LogTrans interpretation from
the geophysical logs presented in the other columns. The left plot shows the comparison of LogTrans
interpretation with core photographs for part of the hole.

3. Coal Quality Estimation from Geophysical Logs

Knowledge of the accurate spatial distribution of coal quality parameters is fundamental to
planning, design, extraction and beneficiation, through to utilisation. Traditionally, coal quality
parameters such as relative density, ash content and volatile matter are obtained through laboratory
measurements and analysis of cores to an accuracy and precision required by mining staff to plan
and develop coal mines in the most economic manner. However, borehole coring and core tests are
expensive and time-consuming. Therefore, such tests are usually carried out on a limited number
of coal samples. Obtaining estimates of these coal quality parameters from non-cored holes would
complement this information and thus improve the estimate of the resource, which can be fed into a
digital mine to obtain better mine resource model.

As illustrated above, geophysical borehole logging measurements can be used for coal seam
identification and correlation and geotechnical rock mass characterisation. They can also be used for
specific coal-quality assessment [6,7,34–39]. Zhou and Esterle [37] also investigated ways to improve
the coal density and quality estimation from geophysical logs.

There are many ways to derive coal quality parameters from geophysical logs. A common
method is to establish the relationships between laboratory derived proximate analysis and multiple
geophysical logging parameters so that future coal parameters can be directly estimated from the
geophysical logging measurements through established relationships. However, the relationships
between coal quality parameters and geophysical logs are not always best represented by simple
equations (straight lines) and may instead form curved lines generated by complex equations. This
suggests that instead of using a simple correlation approach, a multi-variable analysis (MVA) approach
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would better deal with the complexity of coal quality parameter estimation and thus will improve the
estimation accuracy of these parameters.

The merits of coal quality parameter estimations using multiple geophysical logs have been
demonstrated by Zhou and Esterle [37] and Zhou and O’Brien [7]. Here we will use another example
from a mine in New South Wales, Australia, to illustrate the method’s performance. Both geophysical
logging and laboratory coal quality proximate analysis data were provided by the mine. There
are 1316 coal samples from 39 boreholes. The coal samples are from different seams with variable
thickness. The 39 boreholes are distributed from an area of about 5 km × 6.5 km (as shown in
Figure 16). The key coal quality parameters provided are air-dry basis relative density RDad, ash
content ASHad, fixed carbon FCad, inherent moisture Imad, crucible swelling number CSN, specific
energy SEad and volatile matters VMad. The key geophysical logs are GRDE, DENB, DENL, DEPO,
MC2F, MC4F, RPOR and GRNP. In these logs, GRDE and GRNP are gamma ray logs from density
and neutron loggings, respectively, reflecting the lithology of the coal; DENB and DENL are short-
and long-spaced density logs, which have strong correlation with coal ash content; DEPO and RPOR
are sandstone-calibrated porosities derived from density and neutron logs; and MC2F and MC4F are
20 cm-spaced and 40 cm-spaced sonic logs, signifying the integrity and the strength of the coal samples.
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Figure 16. The borehole (red crosses) spatial distribution of coal quality and geophysical logging data
from a mine site in New South Wales.

Based on our analysis of the provided data, the laboratory coal quality measurements exhibit the
expected trends and are in good quality. However, the geophysical logs have very poor correlations
with the coal quality parameters. The estimated ash from geophysical logs GRDE, DENB and DENL
are also poorly correlated the laboratory measurement ASHad. The poor correlations are caused by
the reasons investigated by Esterle [37]—many thin samples (<20 cm) that do not match with the
geophysical resolution (>15 cm); depth mis-matching between samples and geophysical logs; coal
samples taken from thin seams; coal samples taken from boundaries; and borehole cavings. These
issues were identified and rectified to ensure the input data to coal quality parameter estimation are of
good quality.

Figure 17 shows the cross-correlations of the coal quality parameters relative density (a), ash (b),
specific energy (c), fixed carbon (d), volatile matters (e) and inherent moisture (f) with the geophysical
density log DENB. Based on the correlation relationships shown in Figure 17, we used the density log
ADEN to estimate the coal quality parameters in Figure 18 and Table 2. In addition to this, we also used
multiple geophysical logs to estimate the coal quality parameters. Based on our tests, the optimum
geophysical logs for coal quality parameter estimation for this data set are FROM, GRDE, DENB, DEPO
and RPOR. In these logs, FROM is the coal sample start depth used as a parameter to differentiate the
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coal samples from each different seam. The estimated coal quality parameters from these geophysical
logs using the leave-one-out cross-validation approach are shown in Figure 19 while the statistics of
the estimations are listed in Table 3.
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Figure 17. Cross-correlations of coal quality parameters with the geophysical log DENB: (a) relative
density, (b) ash, (c) specific energy, (d) fixed carbon, (e) volatile matters and (f) inherent moisture. The
R2 in each plot represents the cross-correlation coefficient of the estimated parameters with respect to
the corresponding laboratory measured parameter.Resources 2020, 9, x FOR PEER REVIEW 16 of 19 
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Table 2. Statistics of the estimated coal quality parameters from geophysical density log DENB.

Average
Value

Min.
Error

Max.
Error

Average
Error

Average
Error in %

Correlation
R

RD (g/cc) 1.33 0.00 0.33 0.03 2.23 0.87
Ash (%) 6.56 0.00 21.54 3.03 71.21 0.88

Specific Energy (MJ/kg) 30.54 0.00 7.67 1.13 4.73 0.86
Fixed carbon (%) 52.90 0.00 20.18 4.85 10.41 0.56

Volatile Matter (%) 36.19 0.01 11.62 3.01 8.59 0.64
Inherent Moisture (%) 4.35 0.00 3.27 0.64 14.74 0.26
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Table 3. Statistics of the estimated coal quality parameters from multi geophysical logs: FROM, GRDE,
DENB, DEPO & RPOR.

Average
Value

Min.
Error

Max.
Error

Average
Error

Average
Error (%)

Correlation
R

RD (g/cc) 1.33 0.00 0.27 0.03 2.16 0.92
Ash (%) 6.56 0.00 18.48 2.48 52.20 0.95

Specific Energy (MJ/kg) 30.54 0.00 7.01 1.04 4.42 0.89
Fixed carbon (%) 52.90 0.01 19.33 2.29 7.09 0.71

Volatile Matter (%) 36.19 0.01 9.50 2.54 7.32 0.74
Inherent Moisture (%) 4.35 0.00 3.09 0.56 13.00 0.51

Compared to the estimation results (Table 2) from the single density log DENB, it is clear that the
estimated parameters from multiple geophysical logs have smaller average errors (Table 3) in general
with comparable correlation coefficients. Significant estimation improvement can be observed for the
parameter fixed carbon—the average error is decreased from 10.41% to 7.09% while the correlation
coefficient R is increased from 0.56 to 0.71. The correlation of the inherent moisture has also been
improved from 0.25 to 0.51. It clearly demonstrates that the importance of multi geophysical logs in
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coal quality parameter estimation. This is consistent with our previous results shown in Zhou and
O’Brien [7] in spite of the fact that incremental improvements here are relatively small.

Please note that the relative error of the ash estimation from the multi geophysical logs is 52.2%
despite the average absolute error being only 2.48%. The reason is that the majority of the coal samples
are from 1–20% (low ash) and the average ash value is only 6.56%. This makes the relative error of the
ash estimation high. To verify the above statements, we produced a cross-correlation of the laboratory
ASHad and RDad data (Figure 20a) to estimate the ASHad, which is the best correlation for ASHad
that can be derived. The estimated ash from RDad are presented in Figure 20b. The estimated relative
average error is 59.97% even with a correlation coefficient of 0.95. This suggests that a high relative
estimated error for ash is inherited from the low ash contents at this mine.

Resources 2020, 9, x FOR PEER REVIEW 17 of 19 

 

Table 3. Statistics of the estimated coal quality parameters from multi geophysical logs: FROM, 
GRDE, DENB, DEPO & RPOR. 

 Average 
Value 

Min. 
Error 

Max. 
Error 

Average 
Error 

Average Error 
(%) 

Correlation 
R 

RD (g/cc) 1.33 0.00 0.27 0.03 2.16 0.92 
Ash (%) 6.56 0.00 18.48 2.48 52.20 0.95 

Specific Energy (MJ/kg) 30.54 0.00 7.01 1.04 4.42 0.89 
Fixed carbon (%) 52.90 0.01 19.33 2.29 7.09 0.71 

Volatile Matter (%) 36.19 0.01 9.50 2.54 7.32 0.74 
Inherent Moisture (%) 4.35 0.00 3.09 0.56 13.00 0.51 

 
Figure 20. Estimation of ash contents from RDad. (a) The cross-correlation of ASHad and RDad; (b) 
The cross-correlation of the estimated ASHad from RDad with the true ASHad. 

4. Conclusions 

This paper presents various ways to use geophysical borehole logs and their derived parameters 
as input to digital mine to generate better geological and geotechnical models for safe, productive 
and beneficial mining operation. It demonstrates the benefits, from reliable geotechnical strata 
characterization and modelling in coal mines, through to greater utilization of existing and new drill 
hole geophysical data. The geotechnical strata units and rock strengths predicted from the 
geophysical logs match with the laboratory tests, drill core strata classification, core photos and the 
mining condition/behavior. This clearly illustrates the usefulness and effectiveness of geophysical 
logs for geotechnical characterization. In addition, we have also illustrated the feasibility for 
improving the accuracy of coal quality parameter estimation using multiple geophysical logs. 

It should be noted that automated log interpretation, UCS estimation, rock mass characterization 
through GSR and coal quality estimation are quantitative analysis of geophysical borehole logging 
data. Such analyses and interpretations require the geophysical logging data to be of high quality. A 
pre-requisite for any form of quantitative analysis is the consistency of the borehole logs, from hole 
to hole, from year to year and from one service provider to another, while absolute accuracy of the 
log itself is, in general, less important. Logging data quality improvement and control can be achieved 
by establishing calibration boreholes for checking the logging equipment and developing log quality 
control procedures and criteria for newly-acquired data. This will ensure fewer misleading 
interpretations based on erroneous data, improve mine models incorporating quantitative 
information from borehole logging data and hence enhance productivity and reduce risks. 

In addition, to ensure the demonstrated applications are used by the industry, geologists and 
geotechnical engineers in the coal mining industry need taking a proactive approach to study the 
methods described here and begin to put them into practice. The collective understanding and 
experiences of these applications can only help fuel the drive to take the benefits of geophysical 
logging to greater levels. 

Figure 20. Estimation of ash contents from RDad. (a) The cross-correlation of ASHad and RDad;
(b) The cross-correlation of the estimated ASHad from RDad with the true ASHad.

4. Conclusions

This paper presents various ways to use geophysical borehole logs and their derived parameters
as input to digital mine to generate better geological and geotechnical models for safe, productive
and beneficial mining operation. It demonstrates the benefits, from reliable geotechnical strata
characterization and modelling in coal mines, through to greater utilization of existing and new
drill hole geophysical data. The geotechnical strata units and rock strengths predicted from the
geophysical logs match with the laboratory tests, drill core strata classification, core photos and the
mining condition/behavior. This clearly illustrates the usefulness and effectiveness of geophysical logs
for geotechnical characterization. In addition, we have also illustrated the feasibility for improving the
accuracy of coal quality parameter estimation using multiple geophysical logs.

It should be noted that automated log interpretation, UCS estimation, rock mass characterization
through GSR and coal quality estimation are quantitative analysis of geophysical borehole logging
data. Such analyses and interpretations require the geophysical logging data to be of high quality.
A pre-requisite for any form of quantitative analysis is the consistency of the borehole logs, from
hole to hole, from year to year and from one service provider to another, while absolute accuracy of
the log itself is, in general, less important. Logging data quality improvement and control can be
achieved by establishing calibration boreholes for checking the logging equipment and developing log
quality control procedures and criteria for newly-acquired data. This will ensure fewer misleading
interpretations based on erroneous data, improve mine models incorporating quantitative information
from borehole logging data and hence enhance productivity and reduce risks.

In addition, to ensure the demonstrated applications are used by the industry, geologists and
geotechnical engineers in the coal mining industry need taking a proactive approach to study the
methods described here and begin to put them into practice. The collective understanding and
experiences of these applications can only help fuel the drive to take the benefits of geophysical logging
to greater levels.
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