Honokiol Modulates GABA_A Receptors Subunit Specifically

I. BABURIN¹, B. TAFERNER¹, K. WIESNER¹, M. HAMBURGER², W. SCHÜHLY³, S. HERING¹

¹Department of Pharmacology, University of Vienna, Althanstr. 14, 1190 Wien, Österreich

²Institute of Pharmaceutical Biology, University of Basel, Klingelbergstraße 50, 4056, Basel, Switzerland

³Department of Pharmacognosy, University of Graz, Universitätsplatz 4, 8010 Graz, Austria

E-mail: barbara.taferner@univie.ac.at (B. Taferner)

Honokiol, a neolignan compound isolated from <i>Magnolia</i> species has been suggested to interact with GABA_A receptors. Evidence comes from honokiol-induced enhanced [³H]muscimol binding [1] and anxiolytic action in behavioural studies [2]. The molecular mechanism and possible subunit-specific effects of honokiol on GABA_A receptors are currently unknown. In the present study we investigated the action of honokiol on GABA_A receptors of 7 different subunit compositions (α₁β₂γ₂s, α₁β₂, α₁β₁, α₁β₃, α₂β₂, α₃β₂ and α₅β₂) that were expressed in <i>Xenopus</i> oocytes. The modulation of chloride currents (I_{GABA}) was studied with two-microelectrode voltage-clamp technique by means of a fast perfusion system [3]. Honokiol dose-dependently and subunit-specifically enhanced I_{GABA} with EC₅₀ values ranging from 23 (α₅β₂) to 60 µM (α₁β₃). The strongest I_{GABA} potentiation was observed for receptors containing α₃ subunits (e.g. 2410% for α₁β₂γ₂s). The action of honokiol (at GABA concentrations eliciting 5–10% of the maximal response) on receptors containing different α subunits is shown below.

Potentiation of I_{GABA} through α₁β₁ receptors (260%) was substantially smaller than for α₁β₂ receptors (1034%) or α₁β₃ receptors (878%). I_{GABA} potentiation was reduced by a mutation known to inhibit loreclezole action α₁β₂-N265S (410%) and enhanced for α₁β₁-S290N (966%) receptors. I_{GABA} modulation by diazepam was additive and honokiol action was not blocked by flumazenil (1 µM) indicating that this compound does not interact with the benzodiazepine-binding site. In summary, honokiol was identified as a highly efficient and subunit specific modulator of GABA_A receptors. Our data indicate a possible interaction with the loreclezole binding determinants.

