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Abstract: This study explores the performance of Sentinel-2A Multispectral Instrument (MSI) imagery
for extracting urban impervious surface using a modified linear spectral mixture analysis (MLSMA)
method. Sentinel-2A MSI provided 10 m red, green, blue, and near-infrared spectral bands, and 20 m
shortwave infrared spectral bands, which were used to extract impervious surfaces. We aimed
to extract urban impervious surfaces at a spatial resolution of 10 m in the main urban area of
Guangzhou, China. In MLSMA, a built-up image was first extracted from the normalized difference
built-up index (NDBI) using the Otsu’s method; the high-albedo, low-albedo, vegetation, and soil
fractions were then estimated using conventional linear spectral mixture analysis (LSMA). The LSMA
results were post-processed to extract high-precision impervious surface, vegetation, and soil
fractions by integrating the built-up image and the normalized difference vegetation index (NDVI).
The performance of MLSMA was evaluated using Landsat 8 Operational Land Imager (OLI) imagery.
Experimental results revealed that MLSMA can extract the high-precision impervious surface fraction
at 10 m with Sentinel-2A imagery. The 10 m impervious surface map of Sentinel-2A is capable of
recovering more detail than the 30 m map of Landsat 8. In the Sentinel-2A impervious surface map,
continuous roads and the boundaries of buildings in urban environments were clearly identified.

Keywords: Sentinel-2; modified linear spectral mixture analysis; normalized difference built-up
index; normalized difference vegetation index; urban impervious surface

1. Introduction

With rapid urbanization, urban impervious surfaces have been greatly expanded, which has
led to a decrease in the area of pervious surfaces, including forests, green spaces, bare soils,
and wetlands [1]. Urban impervious surfaces mainly include roads, streets, highways, rooftops,
and sidewalks, which restrict precipitation from directly infiltrating into the ground. This may result
in a high risk of urban rainstorm waterlogging from uncontained surface runoff, as well as increase
the urban heat island effect [1–3]. Therefore, urban impervious surfaces have become an important
indicator of urban rainstorm waterlogging, solar energy balance, and non-point-source water pollution
in both environmental and socioeconomic studies, focused on measuring, urban growth, and estimating
population distributions [4–7].
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In recent years, images at many different spatial resolutions from satellite-based sensors
have been evaluated and applied to estimate impervious surfaces, including Landsat Thematic
Mapper/Enhanced Thematic Mapper Plus (TM/ETM+) [8–11], Landsat 8 Operational Land Imager
(OLI) [1,12,13], Moderate Resolution Imaging Spectroradiometer (MODIS) [14], IKONOS [15,16],
QuickBird [17], Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) [18,19],
GaoFen-1 (GF-1) [20], Synthetic Aperture Radar (SAR) data [21–23], and nighttime light data [24].
Furthermore, numerous studies have also been conducted with applications fusing multi-source
remote sensing imageries to estimate impervious surfaces, containing the fusion of SAR/InSAR and
optical data, Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS)
data and MODIS/Landsat data, LiDAR, and high-resolution digital aerial orthoimages [25–30].

Depending upon the research objectives, many methods have been proposed to extract impervious
surfaces using different remote sensing images [31–34]. These methods are mainly divided into
pixel- and subpixel-scale methods [26,35–38]. Due to its rich spatial detail for impervious surface
mapping, pixel-scale methods have often been applied to high spatial resolution images to map urban
impervious surfaces [16,17,39]. However, mapping impervious surfaces is influenced by shadows
from high spatial resolution urban images [38], such that it is difficult to clearly distinguish impervious
surfaces from vegetation. Additionally, many mixed pixels, containing both impervious surface
and vegetation information, may still be found in the high spatial resolution images because tree
canopies, especially along roads, can be completely occlusive [17]. Therefore, pixel-scale methods may
underestimate impervious surface areas in urban areas [40].

In comparison with traditional pixel-scale methods, some subpixel scale methods,
commonly linear spectral mixture analysis (LSMA), have been shown to be superior at mapping
impervious surfaces. Linear spectral mixture analysis (LSMA) [18,36,41,42] has been widely applied
in low to medium resolution and hyperspectral remote sensing images to quantitatively extract the
impervious surface fractions in mixed pixels at a subpixel scale. However, the LSMA may still have
difficulty in extracting high-precision impervious surfaces, because of the similar spectral reflectance
among different land cover types. Thus, modified LSMA (MLSMA) methods have been proposed
to improve the accuracy of impervious surface extractions [43–46]. Xu et al. [1] proposed a MLSMA
method by integrating a normalized difference built-up index (NDBI) and normalized difference
vegetation index (NDVI). The MLSMA has been used to extract 30 m urban impervious surface
fractions in the city of Guangzhou, China, with the Landsat 8 OLI images from 18 October 2015.
The experimental results showed that the MLSMA could extract high-precision impervious surface
fraction. However, the modified LSMA has not been applied to higher spatial resolution remote sensing
images for extracting impervious surfaces in urban areas at a finer scale. For example, the newly
launched Sentinel-2 satellites can provide 10 m and 20 m remote sensing images, which have received
little attention in investigations of urban impervious surfaces.

Sentinel-2 is an Earth observation mission developed by the European Space Agency (ESA) for
fine spatial resolution global monitoring, including forest monitoring, detecting changes in land
cover, and natural disaster management [47–50]. Sentinel-2 consists of two identical satellites,
namely Sentinel-2A and Sentinel-2B, which were launched in June of 2015 and 7 March 2017,
respectively. The Sentinel-2 Multispectral Imager (MSI) provides 13 spectral bands in the visible,
near infrared and shortwave infrared parts of the spectrum [47] (Table 1). Sentinel-2A and -2B can
together revisit the same region every 5 days. The Sentinel-2 data have been successfully applied
to vegetation monitoring, the mapping of water bodies and cropland, and the monitoring of urban
areas [51–54]. However, the Sentinel-2 data have not been used to extract urban impervious surface
fraction. Great effort should be made in extracting urban impervious surface fractions at higher spatial
resolutions (e.g., at the subpixel scale) to improve our understanding of the effects of impervious
materials on urban environments. In this study, MLSMA was applied to a high-resolution Sentinel-2A
image to extract the impervious surface, vegetation, and soil fractions in the main region of Guangzhou.
We aimed to improve the extraction accuracy of urban impervious surface fractions at a finer scale.
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The study area and Sentinel-2A image data are introduced in Section 2. Section 3 gives a detailed
description of the automatic extraction of built-up and MLSMA methods. Section 4 presents the
experimental results and an accuracy assessment. A discussion and concluding remarks are presented
in Sections 5 and 6.

Table 1. Central wavelengths and spatial resolutions of all 13 Sentinel-2A and -2B bands.

Bands Central Wavelength (mm) Spatial Resolution (m)

Band 1—Coastal aerosol 0.443 60
Band 2—Blue 0.490 10
Band 3—Green 0.560 10
Band 4—Red 0.665 10
Band 5—Vegetation Red Edge 0.705 20
Band 6—Vegetation Red Edge 0.740 20
Band 7—Vegetation Red Edge 0.783 20
Band 8a—Vegetation Red Edge 0.865 20
Band 8b—NIR 0.842 10
Band 9—Water vapor 0.945 60
Band 10—SWIR/Cirrus 1.375 60
Band 11—SWIR 1.610 20
Band 12—SWIR 2.190 20

2. Study Area and Data

2.1. Study Area

The city of Guangzhou (22◦26′ N–23◦56′ N, 112◦57′ E–114◦30′ E), which is located in south-central
Guangdong in southern China, is the political, economic, and cultural center of the province of
Guangdong. Guangzhou contains nine administrative districts and two county-level cities. The central
area of Guangzhou was selected as the study area, and includes the districts of Liwan, Yuexiu, Haizhu,
Tianhe, and Huangpu (Figure 1). The study area has a subtropical monsoon climate, with a mean
temperature of 20–22 ◦C and abundant rainfall. The annual rainfall reaches 1720 mm, most of which
occurs from April to June due to the East Asian Monsoon [1]. Due to the high impervious areas,
the study area may be affected by rainstorm waterlogging.
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2.2. Sentinel-2A Image

The Sentinel-2A Level-1C (L1C) product was used in this study, which was produced by
radiometric and geometric corrections. The L1C product provides the top of atmosphere (TOA)
reflectance. One scene of the Sentinel-2A L1C image with cloud cover of 0% acquired on
1 November 2017 was downloaded from Sentinels Scientific Data Hub (https://scihub.copernicus.eu/).
The Level-2A (L2A) surface reflectance was derived through the Sen2Cor Atmospheric Correction
Processor, which was integrated into the Sentinel Application Platform (SNAP) version 5.0. The L2A
reflectance products were geometrically rectified to the Universal Transverse Mercator (UTM)
projection system (zone 49 N). The L2A images of bands 11 and 12 with a resolution of 20 m were
resampled to 10 m using the nearest neighbor interpolation. Six bands of Sentinel-2A L2A reflectance
products (Table 1, Bands 2, 3, 4, 8b, 11 and 12) were used for extracting impervious surface fractions.

3. Methods

The extraction process for impervious surface fraction based on the Sentinel-2A L2A reflectance
product contained three major steps: (1) extracting the built-up pixels automatically via Otsu’s
method; (2) extracting fraction maps of high-albedo, low-albedo, vegetation, and soil using LSMA;
and (3) modifying the fractions of impervious surface, vegetation, and soil by combining the built-up
image and NDVI. The detailed process of impervious surface extraction is shown in Figure 2.
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3.1. Automatic Extraction of Built-Up

The NDBI, which takes advantage of the unique spectral characteristic of built-up areas and
other land cover types, has been widely used to extract built-up areas from remote sensing imagery.
The NDBI was used to automate the process of mapping built-up areas by integrating Otsu’s method.
The NDBI was calculated using the near-infrared band (NIR) and shortwave infrared band 1 (SWIR1)
as follows [55]:

NDBI =
ρSWIR1, − ρNIR

ρSWIR1 + ρNIR
(1)

where ρSWIR1 and ρNIR are the reflectances of band 11 and band 8 of Sentinel-2A imagery, respectively.

https://scihub.copernicus.eu/
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In this study, based on the NDBI, the built-up pixels were identified using Otsu’s method.
In general, the built-up pixels were extracted by setting an NDBI value greater than 0. However,
previous studies have demonstrated that most pixels with an NDBI value less than 0 may belong
to built-up pixels [6,56]. Xu, Zhao, Zhong, Zhang, Liu, and Sun [6] have also shown that
artificially determined NDBI threshold values may lead to large errors in extracting built-up areas.
Otsu’s method [57] uses the maximum interclass variance criterion to find an optimal threshold of
an image, and has been successfully utilized for extracting water and land pixels [58–60]. To improve
the accuracy of the built-up area extraction, Otsu’s method was used to automatically extract
built-up areas. The mathematical formula for Otsu’s method is as follows [57]:

σ2 = Pnu,·(Mnu −M)2 + Pu·(Mu −M)2

M = Pnu·Mnu + Pu·Mu

Pnu + Pu = 1

t = arg max
a≤t≤b

[
Pu·Pnu·(Mu −Mnu)

2
] (2)

where σ is the interclass variance, M is the mean value of the NDBI image, Pnu and Pu are the
percentages of non-built-up and built-up pixels, respectively, Mnu and Mu are the mean values
of non-built-up and built-up pixels of the NDBI image, respectively, and t is the optimal threshold.
Otsu’s method was applied to the NDBI image to automatically obtain the built-up pixels. In this study,
Otsu’s method was implemented using the binary thresholding function in the ArcGIS software
package, version 10.5. In the built-up image, pixels with a value of 1 were expressed as built-up pixels,
and other pixels with a value of 0 were expressed as non-built-up pixels.

3.2. Modified Linear Spectral Mixture Analysis

In this study, a MLSMA method proposed by Xu et al. [1] was applied to the Sentinel-2A image
to extract the fractions of impervious surface, vegetation, and soil. Firstly, the water body of the
Sentinel-2A image was masked by the modified normalized difference water index (MNDWI) [61].

MNDWI =
ρGreen, − ρSWIR1

ρGreen + ρSWIR1
(3)

where ρGreen and ρSWIR1 are the reflectances of bands 3 and 11 of Sentinel-2A imagery, respectively.
The fractions of high-albedo, low-albedo, vegetation, and soil endmembers were then calculated using
conventional linear spectral mixture analysis (LSMA) as follows [62]:

Ri =
n

∑
k=1,

fkRik + εi (4)

where k = 1, 2, . . . , n, n is the number of endmembers, i = 1, 2, . . . , m, m is the number of spectral
bands, Ri is the spectral reflectance of band i of a mixed pixel, fk is a fraction of endmember k within
the mixed pixel, Rik is the known spectral reflectance of endmember k within a mixed pixel of band i
and εi is the error of band i. Four endmembers, such as high-albedo, low-albedo, vegetation, and soil
endmembers, were determined in this study. The spectral reflectance of six bands from the Sentinel-2A
image (Table 1) were used as inputs of LSMA to estimate the fraction of four endmembers using the
least squares method with the following constraint:

n

∑
k=1

fk = 1, fk ≥ 0 (5)

The impervious surface fraction was estimated by using the low- and high-albedo fractions and
the built-up image extracted by Otsu’s. In the built-up image, pixels with a value of 1 were classified



Sensors 2018, 18, 2873 6 of 15

as built-up pixels; on the contrary, pixels with a value of 0 were classified as non-built-up pixels. In the
built-up pixels, the impervious surface fraction was equal to the sum of low- and high-albedo fractions;
in the non-built-up pixels, the impervious surface fraction was equal to the high-albedo fractions
and the low-albedo fraction was classified low-albedo pervious surface fraction. For the low-albedo
pervious surface fraction, if pixels had an NDVI value less than 0.2, the soil fraction was estimated
by the addition of original soil and low-albedo pervious surface fractions. Otherwise, the vegetation
fraction was calculated by the summation of original vegetation and low-albedo pervious surface
fractions. A detailed explanation of this process can be found in the work of Xu et al. [1].

3.3. Accuracy Assessment

The accuracy of impervious surface extraction was verified with the digitized impervious surface
proportion. First, 170 sample areas sized 480 m × 480 m were selected and randomly distributed
throughout the study area (Figure 3). Then, the impervious surface in each sample area was digitized
on a geometrically-corrected high-resolution image from Google Earth using ArcGIS. The digitized
impervious surface proportion was estimated by dividing the digitized areas of impervious surfaces by
the sample area, which was regarded as “ground” reference for validating the accuracy of impervious
surface extraction. In this study, the root mean square error (RMSE) and bias error (Bias) were used for
assessing accuracy.

RMSE =

√
∑N

i=1(x̂i − xi)
2

N
(6)

Bias =
∑N

i=1,(x̂i − xi)

N
(7)

where x̂i is the estimated impervious surface fraction of sample i from Sentinel-2A image, xi is
the digitized impervious surface proportion from the high-resolution image, and N is the number
of samples.
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4. Results

The NDBI map shown in Figure 4a reveals that the highest NDBI value was 0.98, and the lowest
NDBI value was −0.77. High NDBI values were largely found in Liwan, Yuexiu, Haizhu, south Tianhe,
southeast Baiyu, and south Huangpu, while low NDBI values were found in west Baiyu and north
Huangpu. This pattern likely emerged because forest clusters are mainly located in east Baiyu and
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north Huangpu. Based on the NDBI image, Otsu’s method was applied to extract urban built-up.
The built-up and non-built-up maps can be found in Figure 4b. Figure 4b shows that most built-up
areas are gathered around Liwan, Yuexiu, Haizhu, south Tianhe, southeast Baiyu, and south Huangpu,
and built-up pixels have high NDBI values. However, the non-built-up areas with low NDBI values
are mainly distributed in the west Baiyu and central Huangpu because these areas are mainly covered
by forest.Sensors 2018, 18, x FOR PEER REVIEW  7 of 14 
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Based on the built-up image extracted using Otsu’s method, MLSMA was applied to the
Sentinel-2A image from 1 November 2017 to extract the impervious surface, vegetation, and soil
fractions. The impervious surface, vegetation, and soil maps generated by MLSMA are shown in
Figure 5. MLSMA performs well in extracting impervious surface fractions. Most pixels in the
forested regions have a vegetation fraction of 100%, an impervious surface fraction of 0%, and a
soil fraction of 0%. This is reasonable given that pixels in the forest region have a high vegetation
fraction, along with a low impervious surface fraction or an impervious surface fraction of 0%. Figure 5
shows that impervious surface regions are largely found in Liwan, Yuexiu, Haizhu, Tianhe, southwest
Baiyu, and south Huangpu while soil can be mainly found in the northeast part of the study area.
However, in the built-up areas (Figure 4b), there is still soil fraction of greater than 0% (Figure 4c),
which may be unreasonable. In the central urban areas, the land cover types, excluding water bodies,
are mainly buildings, roads, and urban squares. Vegetation and bare soil can hardly be found in
central urban areas. In general, the built-up pixels of central urban areas are dominantly composed of
impervious surfaces and vegetation, and are dominated by impervious surfaces. The apparent errors
in the soil fraction may have been introduced by endmember selection. High-albedo and soil objects
exhibit similar spectral curves. This may result in high-albedo impervious surfaces mistakenly being
treated as soils in LSMA.
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Figure 5. Fraction maps (lighter shades represent increasing representation on a 0–1 scale) extracted
from Sentinel-2A imagery via modified LSMA: (a) impervious surfaces, (b) vegetation, and (c) soils.

The results of accuracy assessment extracting impervious surfaces from the Sentinel-2A image are
shown in Figure 6. The estimated impervious surface fraction of MLSMA is consistent with the actual
impervious surface fraction (Figure 6). The RMSE and bias of the impervious surface fraction were
0.140 and 0.050, respectively. There was a large adjusted determination coefficient (Adj. R2 = 0.857)
in the MLSMA. This indicates that MLSMA can be applied to the Sentinel-2A image to extract
the impervious surface fraction, and that it does significantly contribute to extract high-precision
impervious surface fractions.
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For the spatial exploration of urban land use, impervious surface fractions were classified
into four categories: less than 20% for pervious surfaces, 20–49% for low-density urban lands,
50–79% for medium-density urbans, and 80–100% for high-density urban lands. The classification
map of impervious surface fractions is shown in Figure 7. It can be seen from Figure 7 that only
a small proportion of low-density pixels were found in the study area, and these were mainly
distributed in northern Huangpu. Medium-density pixels were mainly distributed in northwestern
Baiyun. High-density pixels were noticeably distributed in Liwan, Yuexiu, Haizhu, southern Baiyun,
and southern Tianhe. On the border of Liwan, Yuexiu, and Haizhu, the impervious surface fractions
of almost all pixels were greater than 80%. This is reasonable given that Liwan, Yuexiu, and Haizhu
comprise the old center of Guangzhou, and contain many buildings, roads and squares. Vegetation
was mainly found along roads, and only covered a small area. The soil fraction was less than the
vegetation fraction in the central area of Guangzhou.
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5. Performance Assessment

In this study, an impervious surface fraction map with a spatial resolution of 10 m was extracted
from Sentinel-2A image data. A MLSMA method proposed by Xu et al. [1] has been implemented
to extract 30 m urban impervious surfaces with a Landsat 8 OLI image acquired on 18 October 2015.
The MLSMA was also applied to Sentinel-2A image data to extract 10 m impervious surfaces by
integrating Otsu’s method. The extraction performance of impervious surfaces from different remote
sensing images with different spatial resolutions was compared with 10 m and 30 m impervious
surfaces. The urban impervious surface was mapped with the impervious surface, vegetation, and soil
fractions by following methods presented by Jia et al. [63]. The urban impervious surface maps from
the Sentinel-2A and Landsat 8 images are shown in Figure 8.

In Figure 8, impervious surfaces are shown in red and pervious surfaces are shown in white;
water bodies are shown in blue. It can be seen from Figure 8 that the spatial pattern of the Sentinel-2A
impervious surface map is similar to that of the Landsat 8 impervious surface map. Except for forested
areas, impervious surfaces have almost covered the entire study area. However, the Sentinel-2A
impervious surface map, with its higher spatial resolution, can show more detail than the Landsat
8 impervious surface map (Figure 8).

As shown in regions 1, 2, and 3 of Figure 8, the continuous road segments can be extracted, and the
boundaries of buildings can also be clearly identified in the Sentinel-2A impervious surface map.
However, it is difficult to extract the continuous road and the boundaries of buildings in the Landsat
8 impervious surface map. This is likely because a pixel in the Landsat 8 image, which has a relatively
low spatial resolution of 30 m, may consist of both roads and vegetation, which covers 9 pixels in
the Sentinel-2A image due to the latter’s higher spatial resolution. In urban areas, Landsat 8 road
pixels were mainly composed of road and vegetation. It is difficult to distinguish pure road pixels
from vegetation in this image because the urban road width may be less than 30 m (i.e., the Landsat
8 spatial resolution).



Sensors 2018, 18, 2873 10 of 15

Sensors 2018, 18, x FOR PEER REVIEW  9 of 14 

 

5. Performance Assessment 

In this study, an impervious surface fraction map with a spatial resolution of 10 m was extracted 
from Sentinel-2A image data. A MLSMA method proposed by Xu et al. [1] has been implemented to 
extract 30 m urban impervious surfaces with a Landsat 8 OLI image acquired on 18 October 2015. 
The MLSMA was also applied to Sentinel-2A image data to extract 10 m impervious surfaces by 
integrating Otsu’s method. The extraction performance of impervious surfaces from different remote 
sensing images with different spatial resolutions was compared with 10 m and 30 m impervious 
surfaces. The urban impervious surface was mapped with the impervious surface, vegetation, and 
soil fractions by following methods presented by Jia et al. [63]. The urban impervious surface maps 
from the Sentinel-2A and Landsat 8 images are shown in Figure 8. 

 
Figure 8. Comparison of impervious surface maps: (a) Sentinel-2A, (b) Landsat 8. 

In Figure 8, impervious surfaces are shown in red and pervious surfaces are shown in white; 
water bodies are shown in blue. It can be seen from Figure 8 that the spatial pattern of the  
Sentinel-2A impervious surface map is similar to that of the Landsat 8 impervious surface map. 
Except for forested areas, impervious surfaces have almost covered the entire study area. However, 
the Sentinel-2A impervious surface map, with its higher spatial resolution, can show more detail than 
the Landsat 8 impervious surface map (Figure 8). 

Figure 8. Comparison of impervious surface maps: (a) Sentinel-2A, (b) Landsat 8.

Furthermore, the flourishing plants may cover the road when observed from high-altitude,
which may change the reflectance of pure impervious surfaces. In that case, these mixed road
pixels may be mistaken as mixed vegetation pixels. This may increase the vegetation fraction and
decrease the impervious surface fraction, and introduce errors in mapping impervious surfaces as the
impervious surface pixels may be changed to pervious pixels. In contrast, for urban areas, the spatial
pattern of roads and buildings with width greater than 10 m can be well recognized by using the
Sentinel-2A image.

The high correlation coefficient (Adj. R2 = 0.857, shown in Figure 6) between the real and
estimated fraction of impervious surfaces and low bias (0.05) indicate that MLSMA can be used
to extract high-precision impervious surfaces at a 10 m spatial resolution from Sentinel-2A images.
However, large errors of magnitude greater than 14% can still be identified in the impervious surface
fractions of MLSMA (Figure 6). To further investigate and analyze the errors in impervious surface
fractions by urban land use, an accuracy assessment for different impervious surfaces were conducted
(Figure 9).

In Figure 9, the impervious surface fraction of MLSMA has large errors in the categories of
pervious surfaces and low-density urban lands, whose RMSEs are greater than 0.158. The worst



Sensors 2018, 18, 2873 11 of 15

result with the largest bias, RMSE and the minimum Adj. R2, occurs for low-density urban
lands. If the impervious surface fraction is greater than 0.5, MLSMA can be used to extract the
high-precision impervious surface fraction. The best result occurs for high-density urban lands,
where the Adj. R2 = 0.510.

Large errors still exist in the MLSMA results, partly because of the numerical problems of
LSMA and the imprecise selection of pure endmembers. For instance, some high-albedo endmember
fractions in the pure impervious surface pixels may be misclassified as soil endmembers. During the
experiments, we found that the reflectance of the soil endmember was similar to that of the high-albedo
endmember over six spectral bands. The spectral curves of endmembers from the Sentinel-2A image
are not shown in this study, but are similar to those from the Landsat 8 image (shown in Figure 7
of Xu et al. [1]). This may mistakenly treat the high-albedo fraction as the soil fraction in MLSMA.
It also can be seen from Figure 4b that a soil fraction of greater than 0% can still be found in the built-up
areas. In practice, the land surface of the central urban areas is mainly covered by buildings, roads,
urban square, vegetation, and water bodies. It is unlikely that large areas of bare soil are found in
central urban areas. Therefore, to enhance the accuracy of the MLSMA results, a more reasonable
MLSMA method could be exploited for extracting the impervious surface fraction with high spatial
resolution by combining improved endmember selection and the bare soil index in future.

The soil index was introduced to separate bare soils from impervious surfaces. Based on
the bare soil image, the soil fraction was post-processed as the pure soil fraction, and the other
soil fraction was treated as the impervious surface fraction. Furthermore, a class-based multiple
endmember spectral mixture analysis method proposed by Deng et al. [64] may be useful for
extracting high-precision impervious surfaces with Sentinel-2A images. In future research of extracting
impervious surface, the Sentinel-2A image may be firstly classified into three land cover classes in
the central urban areas: pure impervious surface, pure vegetation, and hybrid impervious surface
vegetation; with the information of land cover classes, MLSMA may be then applied to extract the
impervious surface fraction.Sensors 2018, 18, x FOR PEER REVIEW  11 of 14 
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6. Conclusions

The newly available Sentine-2A and -2B data can provide fine spatial resolution multispectral
imagery at a 5-day temporal resolution, making it an important dataset for urban expansion monitoring
at the regional scale. Our main objective was to explore the extraction performance of high spatial
resolution urban impervious surfaces with a Sentinel-2A image. In this study, modified linear spectral
mixture analysis (MLSMA) was applied for extracting 10 m impervious surface fractions from the
Sentinel-2A image for the main urban area of Guangzhou. The built-up image was first extracted
with NDBI using Otsu’s method; the fractions of high-albedo, low-albedo, vegetation and soil were
then calculated using conventional LSMA. The results of LSMA were post-processed to estimate the
high-precision impervious surface, vegetation, and soil fractions by integrating the built-up image
and NDVI. To compare the extraction performance in different spatial resolution images, MLSMA was
also applied to a 30 m spatial resolution Landsat 8 OLI image. The results showed that MLSMA
could be successfully applied to the 10 m Sentinel-2A image to extract the high-precision impervious
surface fraction. The 10 m impervious surface map of Sentinel-2A revealed more detail than the 30 m
impervious surface map of Landsat 8 OLI. In the Sentinel-2A impervious surface map, the continuous
road and the boundaries of buildings could be clearly identified. However, it was almost impossible
for the Landsat 8 OLI image to distinguish these boundaries.

The bias and correlation coefficient of the 10 m impervious surface fraction were 0.05 and 0.926,
respectively. However, RMSEs greater than 0.14 were still found in the MLSMA results. In this study,
accuracy assessment was also implemented to analyze the error characteristics of impervious surfaces
by different urban land uses. The results showed that MLSMA generally performed well in extracting
the high-precision impervious surface fraction if the impervious surface fraction was larger than 0.5.
When the impervious surface fraction was less than 0.5, large RMSEs greater than 0.158 were also found
in MLSMA results. This may be partly attributed to the least squares approximate solution problems
of LSMA and the imprecise selection of pure endmembers. In conclusion, MLSMA can extract the
accurate impervious surface fraction for Sentinel-2A MSI imagery. In future research, the improved
endmember selection and the bare soil index can be used to improve MLSMA results. Moreover,
machine learning classification can be integrated into MLSMA to improve the results obtained in
this study.
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