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Abstract: Efficient matching of incoming events of data streams to persistent queries is fundamental
to event stream processing systems in wireless sensor networks. These applications require dealing
with high volume and continuous data streams with fast processing time on distributed complex
event processing (CEP) systems. Therefore, a well-managed parallel processing technique is needed
for improving the performance of the system. However, the specific properties of pattern operators
in the CEP systems increase the difficulties of the parallel processing problem. To address these
issues, a parallelization model and an adaptive parallel processing strategy are proposed for the
complex event processing by introducing a histogram and utilizing the probability and queue theory.
The proposed strategy can estimate the optimal event splitting policy, which can suit the most recent
workload conditions such that the selected policy has the least expected waiting time for further
processing of the arriving events. The proposed strategy can keep the CEP system running fast under
the variation of the time window sizes of operators and the input rates of streams. Finally, the utility
of our work is demonstrated through the experiments on the StreamBase system.

Keywords: complex event processing; data streams; adaptive strategy; parallel processing; queue
theory; probability theory

1. Introduction

Recently, there has been an increasing interest in wireless sensor networks, which require
continuously processing flowing data from geographically-distributed sources to achieve timely
responses to complex queries, such as data stream processing (DSP) systems [1–3] and complex event
processing (CEP) systems [4–6]. Additionally, the CEP systems focus on detecting the patterns of
information that represent the higher level events, which are different with the DSP systems that focus
on transforming the incoming flow of information [7]. Because the CEP system has many advantages,
such as an expressive rule language and an efficient detection model of events, it has been highly
concerned in academic circles and recently in industry [8–14]. In the CEP systems over data streams,
events are processed in real time for all kinds of purposes, such as wireless sensor networks, financial
tickers, traffic management, click-stream inspection and smart hospitals [15–17]. In these application
domains, highly available event stream processing with a fast processing time is critical for handling
the real-world events.

As far as we know, many kinds of parallel methods were devised to deal with massive distributed
data streams for the DSP systems [18–26]. However, due to the differences between the DSP and
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CEP systems, most of the parallel methods that exclusively focus on aggregate queries or binary
equi-joins in the DSP systems cannot be simply and directly used in the CEP systems that focus on
multi-relational non-equi-joins on the time dimension, possibly with temporal ordering constraints,
such as the sequence (SEQ) operator and conjunction (AND) operator [27,28]. Furthermore, the large
volume and input rates of data streams are very common in big data applications [29,30]. The increased
time window sizes of operators and input rates of streams may cause bottlenecks for the CEP system.
Bottlenecks can slow down the CEP system. Even worse, they can result in the poor quality of query
results, which has negative effects on decision-making.

To address these issues, we propose a parallelization model and an adaptive parallel processing
strategy, called APPS by introducing histogram, probability theory and queue theory. The proposed
APPS can estimate the optimal event splitting policy, which suits the most recent workload conditions
such that the selected policy has the least expected waiting time for further processing of the coming
events. Specifically, the CEP system based on the proposed parallelization model can split the input
stream into parallel sub-streams to realize a scalable execution of continuous pattern query. APPS can
keep the CEP system operating at high speed even under the variation of the time window sizes of
the operators and input rates of the streams. The utility of our work is substantiated through the
experiments on the StreamBase [12] system.

The rest of this paper is organized as follows. Section 2 discusses the related work in terms of the
CEP systems. Section 3 briefly introduces the preliminaries of this paper. After that, a parallelization
model and three event splitting policies are proposed in Section 4. Then, an adaptive parallel processing
strategy is proposed to estimate and select the optimal event splitting policy to suit the workload
conditions in Section 5. Section 6 demonstrates the utility of our proposal through the experiments on
the StreamBase system. Finally, conclusions are given in Section 7.

2. Related Work

In CEP systems, the operators are demanded to be highly scalable under high event stream
rates. It is well known that the traditional CEP systems are mostly centralized. For increasing the
scalability of CEP systems, distributed parallelization processing is necessary. Until recently, studies
were conducted and were mainly classified into two types: one focuses on the task parallelization of
CEP systems; the other focuses on the data parallelization of CEP systems.

The task parallelization is also known as pipelining or intra-operator parallelization, where by
deriving the states of operators and state transitions from the pattern query, the internal processing
steps can be identified to be run in parallel. In particular, Suhothayan et al. [31] brought multi-threading
and pipelining into CEP systems to make them process quickly. Wu et al. [32] presented a framework
of parallelization for stateful operators over stream processing. Although these task parallelization
methods are effective, they are not feasible for pattern matching. Later on, Balkesen et al. [33] devised
a parallelization within a single partition of an event stream for scalable pattern matching. For the
data parallelization, the main research works are as follows. Brito et al. [34] presented a system
by combining the responsiveness of event stream processing systems with the scalability of the
MapReduceprogramming model. Schneider et al. [35] introduced a compiler and run-time system,
which could automatically extract data parallelism from streaming applications by partitioning the
state through keys. De Matteis and Mencagli [36] presented parallel patterns for window-based
stateful operators.

Through analyzing the existing works, it was found that the presented task parallelization and
data parallelization methods were limited by the function of operators, especially for the pattern
operators. Besides, some existing works that were based on key splitting were limited to the number
of different key values. Most importantly, there is no adaptive parallel processing strategy for pattern
operators in CEP systems. Therefore, in this paper, we focus on adaptive parallelization of pattern
operators in CEP systems, which is a main contribution of this study. It is clear that this work contrasts
withand is complementary to the previous works.
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3. Preliminaries

3.1. Event Model

An event that represents an instance and is atomic is an occurrence of interest at a point in
time. Basically, events can be classified into primitive events and composite events. A primitive
event instance is a pre-defined single occurrence of interest that cannot be split into any small events.
A composite event instance that occurs over an interval is created by composing primitive events.

Definition 1. A primitive event ei is typically modeled multi-dimensionally, denoted as ei = e(ei.t, (ei.st = ei.et),
< a1, . . ., am >), where, for simplicity, we use the subscript i attached to a primitive e to denote the timestamp
i, ei.t is the event type that describes the essential features of ei, ei.st is the start time-stamp of ei, ei.et is the
end time-stamp of ei, < a1, . . ., am > are other attributes of ei and the number of attributes in e(·) denotes the
dimensions of interest.

Definition 2. Based on Definition 1, a composite event is denoted as e=e(e.t, ((e.st = min
1≤i≤n

ei.st) <

(e.et = max
1≤i≤n

ei.et)), < a1, . . ., ag >).

3.2. Nested Pattern Query Language

We introduce the following nested complex event query language for specifying nested
pattern queries:

PATTERN (event expression: composite event expressed by the nesting of SEQ and AND, which can
have negative event type(s), and their combination operators)
WHERE (qualification: value constraint)
WITHIN (window: time constraint)

The composite event expression in the PATTERN clause specifies nested pattern queries,
which support nests of SEQ and AND that can have negative event type(s), and their combination
operators, as explained above. The negative event type in PATTERN means that the composite event is
generated only when this event type has not occurred. Sub-expressions denote inner parts of a pattern
query expression. The value constraint in the WHERE clause defines the context for the composite
events by imposing predicates on event attributes. The time constraint in the WITHIN clause describes
the time window during the time difference between the first and the last event instances, which is
matched by a pattern query that falls within the window.

3.3. Pattern Operators and Their Formal Semantics

We define the operators that our method is targeting. Specifically, in this paper, we consider the
pattern operators as presented in [37,38]. In the following, Ei denotes an event type. More details were
presented in [28].

Definition 3. An SEQ operator [37,38] specifies a particular order according to the start time-stamps in which
the event must occur to match the pattern and thus form a composite event:

SEQ (Ei, Ej) = {< ei, ej > |(ei.st < ej.st) ∧ (ei.t = Ei) ∧ (ej.t = Ej)}.

Definition 4. An AND operator [38] takes the event types as input, and events occur within a specified time
window without a specified time order:

AND(Ei, Ej) = {< ei, ej > |(ei.t = Ei) ∧ (ej.t = Ej)}.
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4. System Model

4.1. Parallelization Model

In this section, we propose a parallelization model that can be utilized for pattern operators,
which is shown in Figure 1. We assume that each pattern operator is installed into a server (or host)
here. Because of the specific property of pattern operators as described in Section 3, we cannot split
both inputs IEi and IEj at the same time. Otherwise, this will omit detecting some events that may
result in the wrong decision. Without loss of generality, an input stream can be randomly selected to be
split, while the other one is replicated. Here, we assume splitting the input stream IEj and replicate the
other stream IEi . Specifically, once an event of IEj arrives, the compute function of the pattern operator
is initiated. In other words, the pattern operator creates a new window for every input tuple of IEj .
Therefore, the input stream IEj is split into parallel sub-streams that will be sent to back-end operators.
The input rate of stream IEj is equal to the sum of the input rates of sub-streams, i.e., λEj = ∑m

k=1 λEj ,k,
where λEj ,k represents the input rate of a sub-stream to the back-end operator k. On the other hand, the
replicate of input stream IEi is directly sent to the back-end operators, each of which has input rate λEi .
We now provide details of the split− (process∗)−merge assembly, which facilitates the parallelization
model of pattern operators.

As shown in Figure 1, the split− (process∗)−merge assembly replaces the solo pattern operator
in the application data-flow. In the parallelized version of the application data-flow, λEj is split to the
back-end process operators, and the output of the pattern operator is replaced by the output coming
from the merge operator.

• Split: The split operator is to split an input stream into parallel sub-streams. The split operator
outputs the incoming events to a number of back-end pattern operators by one of the event
splitting policies from Section 4.2, where this selected event splitting policy is estimated by the
adaptive parallel processing strategy that will be explained in Section 5.

• Process: The process operator performs the events from the output of the front-end operators.
The multiple process operators with the same function can be executed in parallel.

• Merge: The merge operator consumes the output events from the process operators to generate
the final output events. The merge operator by default simply forwards the output events to its
output port.

Figure 1. The parallelization model.

4.2. Event Splitting Policies

In this section, the event splitting policies are given, which can be utilized for processing pattern
operators in parallel.

• Round-robin (RR):
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Events are assigned to the servers in a cyclical fashion, which means that the incoming events will
be sent to the downstream servers with equal probability. This policy equalizes the expected number
of events at each server.

• Join-the-shortest-queue (JSQ):

For the expected number of events, they are assigned to the downstream server with the shortest
queue length for further processing. Here, the shortest queue means the queue with the fewest events.

• Least-loaded-server-first (LLSF):

For the expected number of events, it dynamically assigns them to the downstream server with
the least load. The least loaded server is the server with the least used memory.

5. Adaptive Parallel Processing Strategy

In this section, an adaptive parallel processing strategy (APPS) is proposed to estimate and select
the optimal event splitting policy, which can suit the most recent workload conditions such that the
selected policy has the least expected waiting time for processing the coming events. Table 1 shows
the key notations that are used in the remainder of this paper. Figure 2 describes the flowchart of the
adaptive parallel processing strategy.

Table 1. Notation.

Notation Meaning

Pj event splitting policy j
ρ the expected server utilization
δ threshold of the expected server utilization
m degree of parallelization of servers
µ number of events served per unit time
λEj input rate of input stream IEj

Sν the νth segment of input stream IEj

Bg the gth batch partition of a segment
i number of events of a batch partition
q number of batch partitions of a segment
T i

ps average time devoted to processing i number of events

T i+1
rd average time devoted to re-directing the (i + 1)th event

among servers
T Sps average time devoted to processing segments

T i
es average estimation time devoted for i number of events

T Pj
es estimation time devoted to obtaining optimal Pj for Sν

E[WR
i ] expected redirect time for the events at host i

E[WH
i ] expected waiting time for the events at host i

E[WPj ] expected waiting time for policy Pj
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Step 5-2-1

Histogram: obtain the probabilities that events are sent to host i by policyPj
Step 6

Select a policy randomly

Step 3

Process events by different policies

Step 5-2-2

Histogram: obtain the probabilities that events are redirected to host i by policy Pj
Step 9-1

Probability theory: calculate the expected redirect time at host i
Step 9-2

Queue theory: calculate the expected waiting time at host i
Step 11

Select the policy with the least expected waiting time

YDatasize%(q×i)==0

N

Step 8

Collect events and their processing time

Step 4

Collect the processing time of events  

Step 5-1

Trade-off: obtain the values of q and l
Step 7

Process events by the selected policy

Step 10

Calculate the expected waiting time in terms of each policy

Output

Step 1

Determine the degrees of parallelization

Data Generator

Step 2

Obtain the expected size of the batch partition

Figure 2. The flowchart of the adaptive parallel processing strategy.
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5.1. Degrees of Parallelization

The aim of this stage is to decide the degrees of parallelization for pattern operators in the CEP
system to be used for processing data streams.

Let ρ be the expected server utilization, µ be the service rate, m be the number of servers and δ

be the threshold of the expected server utilization that can be defined by the system administrator in
advance according to the implication requirement. By applying queueing theory [39], ρ is given by:

ρ =
λ

mµ
,

s.t. ρ ≤ δ, 0 < δ ≤ 1.
(1)

Based on Equation (1), we can obtain the degrees of parallelization for the pattern operator, i.e.,
the number of processing servers is as follows:

m ≥ λ

µδ
, 0 < δ ≤ 1; m ∈ N. (2)

5.2. Expected Size of the Batch Partition

For further parallel processing, the input stream IEj needs to be divided into batch partitions.
Because the number of events within each batch partition of segment Sν of input stream IEj should
not exceed the threshold of the expected utilization of a single server, the number of events of a batch
partition i should satisfy the following condition:

i = µδ, i ∈ N. (3)

5.3. Event Processing Time Collection

The aim of this stage is to collect the processing time of the events from the last event type matched
by the pattern operator, which are used in the on-line estimation step to estimate various distributional
properties of the processing time distribution.

For each new event arriving at the split operator, it records the arrival time of the event.
These values are stored within the event. The arriving events of a segment of the input stream
are then assigned to a back-end server by using the estimated policy Pj, where Pj denotes the event
splitting policy with the least expected waiting time to process the arriving events. Further details about
how to select an appropriate event splitting policy on-line are discussed in Section 5.5. For each event
that completes processing, its departure time will be stored at the assigned server. Next, the arrival
time and departure time of the event will be sent to its back-end operator. Then, its corresponding
processing time will be calculated by subtracting the departure time, which contributes to the last
output event matched by the pattern operator that falls within the time window, from the arrival time
recorded by the split operator.

5.4. Trade-Off between the Estimation Accuracy and the Processing Time

Figure 3 depicts an example of obtaining an appropriate policy for processing the further coming
events. Sω denotes the ωth segment of input stream IEj . B1 represents the first batch partition of the
segment, which consists of events {e1, e2, . . . , ei}. The policy Pj under segment Sν means these events
in Sν will be processed by using Pj in which this estimated Pj is selected based on the empirical data
Sω . Therefore, we can notice that the time devoted to processing previous ` number of segments over
m parallel servers should exceed the time devoted to estimating an appropriate policy Pj for segment
Sν. Otherwise, it introduces extra delay due to the waiting to obtain the optimal policy. In addition, to
obtain the most accurate expected processing time for Sν, the mean squared error is considered.
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IEj
...     obtain the optimal     for Sv by calculating the expected waiting time based on Sw  

...
............ ...

... ...
...
...

l

Pj

Sw+1 Sw S1S2Sv

P3 P1PiPh

input B1={ei, ..., e2, e1} 
Pj

Figure 3. Example of obtaining an appropriate policy for processing the coming events.
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Consequently, we treat the accuracy of estimation and the processing time of segments as an
integrated constrained optimization problem. One objective (O1) tries to maximize the accuracy of
estimation, namely minimizing the mean squared error of estimation. On the other hand, the other
objective (O2) tries to maximize the processing time of segments to avoid introducing extra delay
in selecting the optimal policy. Due to the conflicting nature of the different objectives, we obtain
the solution by integrating them into one objective, and the optimization problem can thus be
formulated as:

min
O1

O2
. (4)

On the basis of the statement (4), the values of q and ` can be obtained and be used in the further
on-line event splitting policy selection procedure in Section 5.5.

Objective O1: mean squared error of estimation constraint.

In this paper, a general expression is derived for the expected waiting time by applying queueing
theory [40], denoted as f (E[W]). Let f̂Sω

(E[W]) be the expected processing time of the events of
segment Sν in terms of empirical data Sω. Then, f̂Sω

(E[W]) is compared with fS(ν−1)
(E[W]) by the

following mean squared error (MSE):

MSE =
1

τ
q − `− 1

τ
q

∑
ω=ν−1−`,

ν=`+2

( f̂Sω
(E[W])− fS(ν−1)

(E[W]))2,

with f (E[W]) =
ρ
√

2(m+1)−1

µm(1− ρ)
(

C2
a + C2

s
2

),

1 ≤ q, ` ≤ τ; 1 ≤ ω ≤ τ

q
,

s.t. MSE < β,

(5)

in which q is the number of batch partitions of segment Sν and ` is the difference value subtracting
(ν− 1) of Sν−1 from ω of Sω, which is devoted to estimating policy Pj for segment Sν. C2

a represents
the squared coefficient of variation of inter-arrival times, and C2

s represents the squared coefficient of
variation of service times where they can be obtained by testing. fS(ν−1)

(E[W]) is the true expected
processing time of the events of segment Sν in terms of empirical data S(ν−1), because it is the nearest
empirical data of Sν to obtain the most accurate expected processing time. β denotes the threshold
of the mean squared error of estimation that can be defined by the system administrator in advance
according to the implication requirement.

Objective O2: processing time constraint.

Let T i
ps be the time devoted to processing i number of events, T i+1

rd be the time devoted to

re-directing the (i + 1)th event and T i
es be the estimate time for i number of events. The objectives O2

should satisfy the following condition:

T Sps = qT i
ps + (q− 1)T i+1

rd ,

s.t. `
T Sps

m
> T Pj

es ,

with T Pj
es = qT i

es,

1 ≤ q, ` ≤ τ.

(6)
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The values of T i
ps, T

i+1
rd and T i

es can be obtained via testing. If the number of events within
one batch partition of Sν is large enough, while the time for re-directing each batch partition is quite

smaller than the time for processing each batch partition, we can omit T i+1
rd in Equation (6).

5.5. On-Line Selection of Event Splitting Policies

This stage is pretty critical in the proposed adaptive parallel processing strategy, which can
estimate and decide the appropriate policy on-line. In order to calculate the expected waiting time for
the policies, we first leverage the histogram to obtain the probabilities that the events are sent to host i
by policy Pj, denoted as PHi

j , and the probabilities that the events are redirected to host i by policy Pj,

denoted as PRi
j .

Next, we introduce queue theory [41] to get the expected waiting time for the events at host i,
which is formulated as:

E[WH
i ] =

1
µi
(

ρi
1− ρi

)(
C2

ia + C2
is

2
), (7)

where ρi denotes the expected server utilization at host i, µi represents the number of events served
per unit time at host i, C2

ia represents the squared coefficient of variation of inter-arrival times at host
i and C2

is represents the squared coefficient of variation of service times at host i where they can be
obtained on-line.

Additionally, we utilize probability theory to calculate the expected redirect time for the events at
host i, which is formulated as:

E[WR
i ] =

k

∑
r=1

xr f (xr). (8)

Based on the probabilities that events are sent and redirected to different hosts, the expected
waiting time for the events at different hosts and the expected redirect time at different hosts,
we then calculate the expected waiting time for all the policies in the list of APPS. APPS derives
a general expression for the expected waiting time for policy Pj, denoted as E[WPj ], by applying
probability theory to select the event splitting policy with the least expected waiting time, which can
be formulated as:

E[WPj ] =
h

∑
i=1

(PHi
j E[WH

i ] + PRi
j E[WR

i ]). (9)

6. Experimental Evaluation

Based on the parallelization model in Figure 1, we implemented the experiments on the StreamBase [12]
system for query q1.

q1 : PATTERN SEQ (E1, E2)

WHERE [Id]

WITHIN 1 s

Since the proposed method both contrasts withand is complementary to the existing methods,
APPS is compared with the RR, JSQ and LLSF methods to prove the utility and effectiveness of
the proposed method. We ran the experiments on the machines, each of which has an AMD
Opteron(tm) Processor 6376 and 4.00 GB main memory. Streams used in the experiments were
generated synthetically. Specifically, each stream was set with three attributes, including the event
id, time-stamp and event type, in which the incoming events of streams were uniformly distributed.
We define the processing time as the difference between the departure time, which contributes to the
last output event matched by the pattern operator that falls within the time window, and the arrival
time recorded by the split operator. For the simplicity of the experiments, we provided four machines
for APPS, RR, JSQ and LLSF: one machine that created input data and split the input stream into
back-end machines, another two machines that were equipped with SEQ operators with the same
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functions to process the input streams in parallel and another machine that received data and output
the throughput. Then, we compared the performance of these methods under different parameter
settings in terms of input rate and time window size.

6.1. Comparing the Processing Time of the Methods

In this experiment, the input rates were set as 100 events/s, and time window sizes were set as
1 s. From the experimental result as shown in Figure 4, it was obvious that APPS and JSQ had lower
processing time compared with the RR and LLSF methods. Because APPS could estimate and select
the optimal event splitting policy for further processing of the coming events, it had almost the same
processing time as the JSQ method.

0.000

0.005

0.010

0.015

0.020

0.025

APPS RR JSQ LLSF

Pr
oc

es
sin

g 
tim

e 
(s

)

Method

Time window size: 1 (s), Input rate: 100 (events/s)

Figure 4. Comparing the processing time of the methods (APPS: An adaptive parallel processing
strategy, RR: Round-robin, JSQ: Join-the-shortest-queue, LLSF: Least-loaded-server-first).

6.2. Varying the Time Window Sizes of Operators

In this experiment, the input rates were set as 100 events/s, while the time window sizes were
varying from 1 up to 10, and 100 s. From the experimental result as shown in Figure 5, we can notice
that APPS had almost the same processing time as the JSQ method, and both outperformed the RR
and LLSF methods, especially when the time windows sizes were set as 1 s; whereas, as the time
windows sizes increased from 10 up to 100 s, the APPS, RR, JSQ and LLSF methods almost had
the same performance. The reason is that as the time windows sizes increased from 10 up to 100 s,
it reached the limitation of the processing capacity of the machines.

 0
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 0.015
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 0.03

1 10 100

P
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g
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Time window size (s)
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JSQ
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Figure 5. Comparing the methods under the variation of time window sizes.
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6.3. Varying the Input Rates of Streams

In this experiment, the time window sizes were set as 1 s, while the input rates were varying
from 100 up to 200, 300 and 400 events/s. From the experimental result as shown in Figure 6, we can
obviously see that the performance of APPS was significantly better than the performance of the RR,
JSQ and LLSF methods. Because APPS, which suits the most recent workload conditions, estimated
and selected the optimal event splitting policy for further processing of the coming events, it could
handle the input rate variation environment. On the other hand, as the input rates increased from
100 up to 200, 300 and 400 events/s, the JSQ and LLSF methods had a lower processing time than the
RR method, because JSQ assigned the events to the back-end server with the shortest queue length,
while LLSF assigned the events to the back-end server with the least load for further processing of the
coming events.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 100  200  300  400

P
ro

ce
ss

in
g
 t

im
e 

(s
)

Input rate (events/s)

Time window size: 1 (s)

APPS
RR

JSQ
LLSF

Figure 6. Comparing the methods under the variation of input rates.

7. Conclusions

In this paper, we started off with identifying the general problems of adaptive parallel processing
with respect to pattern operators in CEP systems. We proposed a new adaptive parallel processing
strategy to estimate the optimal event splitting policy, which can suit the most recent workload
conditions such that the selected policy had the least expected waiting time for further processing
the coming events. Moreover, because the proposed method was a hybrid method of intra-operator
parallelization and data parallelization, our proposal was not limited to the number of different
key values. The proposed strategy kept the CEP system running with fast processing under the
variation of the time window sizes of operators and input rates of streams. The utility of our work was
demonstrated through the experiments on the StreamBase system.

The proposed adaptive parallel processing strategy considered only the SEQ and AND
operator-based pattern query in this study. Thereby, in the future work, more complex operators
will be further investigated for the pattern queries, such as the nested SEQ and AND operators,
which may have negative event types, and combinations of them. In addition, we intend to achieve
a pilot implementation of the framework, where more complicated experimental environment and
performance analysis will be taken into account in the future work, including the Poisson distribution,
the exponential distribution of incoming events, etc. [42,43]. Another interesting future work is about
how to detect complex events over probabilistic event streams adaptively. In view of the efficiency in
handling uncertainty, some useful extended methods, like fuzzy theory, evidence theory, probability
and the entropy-based method [44–47], will be considered in CEP systems in the future work.
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