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Abstract: Recent developments in smartphone-based strip readers have further improved the
performances of lateral flow test kits. Most smartphone cameras encode an unaltered and nonlinear
power-law transfer function that maps the light intensity to a pixel value; this poses some limitations
for camera-based strip readers. For faint-color test lines which are almost as white such as with
nitrocellulose pads, the slope of the transfer function is low. Therefore, it is difficult to differentiate
between the faint test lines and the white background. We show that by manually setting the camera
exposure time—instead of using the automatic settings—to the high-slope region of the transfer
function, the reader’s sensitivity can be improved. We found that the sensitivity and the limit of
detection of the Acidovorax avenae subsp. citrulli (Aac) test kit were enhanced up to 3-fold and 5-fold,
respectively, when using the readers at the optimal camera settings, compared to the automatic mode
settings. This simple technique can be readily applied to any existing camera-based colorimetric strip
reader to significantly improve its performance.
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1. Introduction

Rapid test kits using lateral flow immunoassays (LFA) have been widely used for point-of-care
diagnostics, food analysis, and environment chemical contaminant monitoring, especially in the areas
of resource-limited settings [1–3]. With the help of a reading device, LFAs can provide semi-quantitative
results, improved repeatability, simple network connectivity, and error reduction caused by varying
human visual abilities.

The rapid growth of wireless telecommunication networks and billions of subscribed smartphone
users provide a remarkable opportunity for smartphone-based diagnostics. Users can use a smartphone
to acquire an image of the test kits, process the image, display and transfer the results, and organize
the data through the internet. In recent years, several smartphone-based LFA readers were developed
using the phone’s CMOS camera to capture the LFA image and employ an external or internal light
source (either in reflection or transmission modes), and an external housing attachment for minimizing
light intensity variations [4–12]. After the LFA image is acquired by the smartphone camera, the raw
red, green, and blue (RGB) image is converted into a gray-scale image. Appropriate image processing
techniques are then applied to the gray-scale image to extract the locations of the control and test zones.
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Finally, the calibration curve is established by plotting the integrated intensity or the intensity change
at the test line.

Modern digital camera software encodes a nonlinear power-law transfer function, known as
gamma (γ), that maps the input light intensity to the electrical signal output (pixel value). An unaltered
γ = 0.45–0.55 is normally set by smartphone manufacturers to compensate for the nonlinear brightness
response of the displays to achieve proper visual observation [13,14]. This image gamma poses
limitations for camera-based LFA readers. For faint-color test lines which are almost as white as the
nitrocellulose pads, the slope of the transfer function is low. Therefore, it is difficult to differentiate
between faint-color test lines and the white nitrocellulose background. Since the effect of the gamma
on the LFA reader’s performances has not been reported yet, we assume that previous reports employ
a default gamma value.

In this work, we show that by decreasing the camera exposure time to the point with the highest
slope of the camera’s transfer function, we can improve the reader sensitivity and the limit of detection
of the Aac test kits using camera-based readers up to 3-fold and 5-fold, respectively. Using our
approach, the performances of existing smartphone colorimetric LFA readers or other camera-based
readers can be significantly improved.

2. Materials and Methods

Two versions of lateral flow readers were built using a consumer-grade web camera (C525,
Logitech, Lausanne, Switzerland) and a smart phone camera (iPhone 5S, Apple, Cupertino, CA, USA),
respectively (Figure 1). The web camera can be focused on the close range of a LFA strip without
an additional lens. The iPhone, however, needs a convex lens (f = 1.8 mm) to be placed in front of
the camera’s own lens in order to increase the image magnification and focus on a close range of
the LFA strip. The light source for both readers is a green light emitting diode line array arranged
parallel to the longitudinal axis of the test strip and at a 45◦ angle of incidence. All optical components
were enclosed in a 3D-printed housing to block out light from the surroundings. The strip images
acquired by both the web camera and the iPhone were transferred to a computer and processed by
a custom program written in the LabVIEW 2014 software (National Instruments, Austin, TX, USA).
To match the wavelength of the light source, only the green pixel values of the camera were extracted
for further processing.

To account for non-uniform light intensities and dark signal noise, a reference image and a dark
image were recorded prior to each test. The reference image was an image of a fresh LFA strip with the
light source turned on, while the dark image was an image of the strip with the light source turned off.
The reflection from the test strip at the xth camera pixel is defined as IR(x) = [I(x) − Idark(x)]/[Iref(x)
− Idark(x)], where I(x), Iref(x), and Idark(x) are the intensity values recorded by the xth pixel from the
testing strip image, the reference strip image, and the dark image, respectively. The reflection line
profile of the test strip along the x-axis was plotted and the reflected intensity drop at the center
position was calculated using ∆ITL = (ITO − ITL)/ITO, where ITO is the white background brightness
value determined from the fitted line, and ITL is the brightness value at the center of the test line
(Figure 1c), both calculated using our custom software.

The web camera driver directly allows an adjustment of the camera’s settings, including exposure
time, gain, contrast, white balance, and brightness, except the γ value. To set all camera attributes,
a used LFA strip with a clear control line and a clear test line was first placed inside the reader and
the auto mode was selected to take a picture of the LFA. Next, all other camera settings were fixed
except the exposure time. We then used the web camera reader to record the images of the strips tested
with bacteria concentrations ranging from 0 (healthy sample) to 1 × 107 CFU/mL (See Supplementary
Information for more details) for the exposure times 15 ms, 31 ms, 62 ms, 125 ms (auto-mode exposure
time), and 250 ms.
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Figure 1. Schematic diagrams of the lateral flow readers using a web camera (a) and an iPhone (b) as 
a detection device. (c) Reflection line profile obtained from a LFA strip showing the intensity drops 
(ΔITL) at the control line (CL) and the test line (TL). (d) Color images of LFA strips after tested with 
various bacteria concentrations. 

Adjusting the iPhone camera settings required a third-party mobile application (the Procam 
app.). Similarly to the web camera reader, we first inserted a used LFA strip into the iPhone reader 
and used the Procam app. to adjust the camera settings until both the control line and the test line 
were clearly observed. We then manually fixed all camera settings except the exposure time. The 
exposure time of the iPhone reader was varied: 8 ms, 13 ms, 17 ms, 22 ms (auto-mode exposure time), 
and 67 ms. 

To estimate the limit of detection (LoD), we used the method proposed by Armbruster and Pry 
[15] in which LoD = LoB + 1.645 (SDlow sample concentration), where LoB is the limit of a blank defined as LoB 
= meanBlank + 1.645 (SDBlank), and SD is the standard deviation. Statistical differences of the presented 
data were analyzed using the t-test, considering p < 0.05 as statistically significant. 

3. Results and Discussion 

For the web camera reader, we tested the LFA strips with Aac concentrations of 0–1 × 107 
CFU/mL spiked in healthy plant sap extract. The healthy plant sap extract was used as negative 
control. Limit of detection for visual readout of the test kit was 1 × 106 CFU/mL (Figure 1d). Figure 2a 
shows the reflection line profiles obtained from the strip’s test area tested with 1 × 106 CFU/mL 
concentration with the camera exposure times of 15 ms, 61 ms, 125 ms (auto mode), and 250 ms. Note 
that the data for each concentration was obtained from the same strip but with its image captured 
successively with different exposure times. The results show that ΔITL significantly increases when 
the camera exposure time decreases. The highest ΔITL was obtained for the 15-ms exposure time, the 
shortest exposure time used in our experiment. The results obtained from the iPhone reader are 
shown in Figure 2b, exhibiting a similar trend as the web camera reader. The highest ΔITL was found 
with the 8-ms exposure time (see Supplementary Information for additional results). Note that the 
camera noise of both readers increases as the exposure time decreases and the strip images appear 
darker. Therefore, the camera exposure time cannot be decreased further. For both readers, ΔITL at 
the shortest exposure time is improved about 3-fold relative to the auto-mode setting (p < 0.05). 
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Figure 1. Schematic diagrams of the lateral flow readers using a web camera (a) and an iPhone (b) as
a detection device. (c) Reflection line profile obtained from a LFA strip showing the intensity drops
(∆ITL) at the control line (CL) and the test line (TL). (d) Color images of LFA strips after tested with
various bacteria concentrations.

Adjusting the iPhone camera settings required a third-party mobile application (the Procam app.).
Similarly to the web camera reader, we first inserted a used LFA strip into the iPhone reader and used
the Procam app. to adjust the camera settings until both the control line and the test line were clearly
observed. We then manually fixed all camera settings except the exposure time. The exposure time of
the iPhone reader was varied: 8 ms, 13 ms, 17 ms, 22 ms (auto-mode exposure time), and 67 ms.

To estimate the limit of detection (LoD), we used the method proposed by Armbruster and Pry [15]
in which LoD = LoB + 1.645 (SDlow sample concentration), where LoB is the limit of a blank defined as LoB =
meanBlank + 1.645 (SDBlank), and SD is the standard deviation. Statistical differences of the presented data
were analyzed using the t-test, considering p < 0.05 as statistically significant.

3. Results and Discussion

For the web camera reader, we tested the LFA strips with Aac concentrations of 0–1 × 107 CFU/mL
spiked in healthy plant sap extract. The healthy plant sap extract was used as negative control. Limit
of detection for visual readout of the test kit was 1 × 106 CFU/mL (Figure 1d). Figure 2a shows the
reflection line profiles obtained from the strip’s test area tested with 1 × 106 CFU/mL concentration
with the camera exposure times of 15 ms, 61 ms, 125 ms (auto mode), and 250 ms. Note that the data
for each concentration was obtained from the same strip but with its image captured successively
with different exposure times. The results show that ∆ITL significantly increases when the camera
exposure time decreases. The highest ∆ITL was obtained for the 15-ms exposure time, the shortest
exposure time used in our experiment. The results obtained from the iPhone reader are shown in
Figure 2b, exhibiting a similar trend as the web camera reader. The highest ∆ITL was found with the
8-ms exposure time (see Supplementary Information for additional results). Note that the camera noise
of both readers increases as the exposure time decreases and the strip images appear darker. Therefore,
the camera exposure time cannot be decreased further. For both readers, ∆ITL at the shortest exposure
time is improved about 3-fold relative to the auto-mode setting (p < 0.05).
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Figure 2. Reflected light profiles from the test area of the test strip at a bacteria concentration of 1 × 
106 CFU/mL. The image of the LFA strip was captured with different camera exposure times when 
using (a) a web cam reader and (b) an iPhone reader. 
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We found that the brightness values for both cameras decrease in a nonlinear fashion, as expected, 
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cameras have different transfer functions since they have different camera settings, including gain, 
contrast, brightness, and white balance. 
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Figure 2. Reflected light profiles from the test area of the test strip at a bacteria concentration of
1 × 106 CFU/mL. The image of the LFA strip was captured with different camera exposure times when
using (a) a web cam reader and (b) an iPhone reader.

Figure 3a,b (see also Figure S12) show the plots of ∆ITL for the different exposure times for
various Aac bacteria concentrations for the web-camera reader and the iPhone reader, respectively.
The results show that the reader’s sensitivity increases when the exposure time decreases for all
bacteria concentrations.

Figure S13 shows reflected line profiles obtained from the LFA’s test area with 0–1 × 107 CFU/mL
bacteria concentrations for 3 measurements using the webcam reader using the exposure time of
15 ms. Note that the experiments in Figure S13 were performed about one month apart from the
experiments in Figure 3a using the same reader. The measured line profiles and the sensor response
for each concentration were nearly identical indicating that the LFA test has a good repeatability
and reproducibility.

The calculated LoD for the Aac test kits is at 1 × 105 CFU/mL for both the web camera reader
(15-ms exposure time) and the iPhone reader (8-ms exposure time) which is 5-fold better than using
the automatic settings. Compared to visual readout having an LoD of 1 × 106 CFU/mL, using the
readers provides a 10 folds improvement in LoD.

To confirm the CMOS cameras have non-linear transfer functions, we measured the image
brightness value of the white background area of the test strip as a function of camera exposure time.
We found that the brightness values for both cameras decrease in a nonlinear fashion, as expected,
exhibiting a higher slope at the lower range of the exposure time (Figure 4). Nonetheless, both cameras
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have different transfer functions since they have different camera settings, including gain, contrast,
brightness, and white balance.Sensors 2018, 18, x 5 of 8 
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Figure 3. Relative intensity drops ΔITL at the strip’s test line for various Aac bacteria concentrations 
plotted as a function of camera exposure time for (a) the web-camera reader, N = 5 for each 
concentration, and (b) the iPhone reader, N = 3 for each concentration. 

It has been known in the field of image processing that a higher slope of the transfer function 
corresponds to higher the image contrast [13]. The Weber’s image contrast of the test line defined as 
(ITL − IBG)/IBG, where IBG is the brightness value of the white background, is similar to the reader 
sensitivity, ΔITL, presented in this work. Therefore, we can conclude that reducing the camera 
exposure time enhances the image contrast of the test line resulting in a larger difference in pixel 
values between the test line and the white nitrocellulose pad. 

This approach, however, may not be applied to chemiluminescence or fluorescence lateral flow 
systems since the signal intensities of both systems are quite low compared to the signal intensity of 
a colorimetric LFA. For low brightness images, the camera’s transfer function is already in a high-
slope region. Setting the camera exposure time to a shorter value in this case will not improve the 
reader performance. In fact, it will rather deteriorate the reader performance because the signal 
intensity as well the signal-to-noise ratio will decrease significantly. 

Preechaburana et al. [12] evaluated high-dynamic-range (HDR) processing to improve the image 
contrast of lateral flow strips. In their work, three strip images were successfully recorded with 
exposure values (EV) of 0 EV (auto mode), +2 EV (overexposure by 2 stops) and −2 EV 
(underexposure by 2 stops) and then converted to an HDR image using a specialized software. The 
device sensitivity was improved approximately 2-fold using the HDR processing. However, the HDR 
processing involves tone mapping, which is an intensive computational task. Another disadvantage 
of this technique is that the camera exposure time must change to three different values for every test, 
which is usually not permitted by most smartphone operating systems. Compared to the HDR 

-2

3

8

13

18

23

28

15 31 62 125 250

ΔI
TL

(%
)

Camera's exposure time (ms) 

Healthy sample
1x10⁵ CFU/mL
5x10⁵ CFU/mL
1x10⁶ CFU/mL
5x10⁶ CFU/mL

Auto mode

-2

3

8

13

18

23

28

8 13 17 22 67 

ΔI
TL

(%
)

Camera's exposure time (ms) 

Healthy sample
1x10⁵ CFU/mL
5x10⁵ CFU/mL
1x10⁶ CFU/mL

Auto mode

Figure 3. Relative intensity drops ∆ITL at the strip’s test line for various Aac bacteria concentrations
plotted as a function of camera exposure time for (a) the web-camera reader, N = 5 for each concentration,
and (b) the iPhone reader, N = 3 for each concentration.

It has been known in the field of image processing that a higher slope of the transfer function
corresponds to higher the image contrast [13]. The Weber’s image contrast of the test line defined as
(ITL − IBG)/IBG, where IBG is the brightness value of the white background, is similar to the reader
sensitivity, ∆ITL, presented in this work. Therefore, we can conclude that reducing the camera exposure
time enhances the image contrast of the test line resulting in a larger difference in pixel values between
the test line and the white nitrocellulose pad.

This approach, however, may not be applied to chemiluminescence or fluorescence lateral flow
systems since the signal intensities of both systems are quite low compared to the signal intensity of a
colorimetric LFA. For low brightness images, the camera’s transfer function is already in a high-slope
region. Setting the camera exposure time to a shorter value in this case will not improve the reader
performance. In fact, it will rather deteriorate the reader performance because the signal intensity as
well the signal-to-noise ratio will decrease significantly.

Preechaburana et al. [12] evaluated high-dynamic-range (HDR) processing to improve the image
contrast of lateral flow strips. In their work, three strip images were successfully recorded with
exposure values (EV) of 0 EV (auto mode), +2 EV (overexposure by 2 stops) and −2 EV (underexposure
by 2 stops) and then converted to an HDR image using a specialized software. The device sensitivity
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was improved approximately 2-fold using the HDR processing. However, the HDR processing involves
tone mapping, which is an intensive computational task. Another disadvantage of this technique is
that the camera exposure time must change to three different values for every test, which is usually not
permitted by most smartphone operating systems. Compared to the HDR processing, our technique
does not demand extensive computation, and it is a simple operation since the camera exposure time
is fixed for all tests.
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Figure 4. Brightness values obtained from a white background of the test strip as a function of camera
exposure time (a) using the web camera reader and (b) using the iPhone reader.

For cameras or smartphone cameras that allow gamma adjustment, γ = 1 (linear response) should
be set and the exposure time should be increased, not decreased as proposed in this work, to achieve
maximum signal-to-noise ratio.

4. Conclusions

For camera-based LFA readers–including smart phone readers–that normally employ an unaltered
nonlinear power-law gamma curve, using automatic camera settings is not an optimal condition
for the detection of a faint-color test line of an LFA strip. The image of the white nitrocellulose
background and the faint-color test line have a high brightness value and the camera software maps
this input light intensity onto an output signal with in the low-slope region of the transfer function.
To improve the device sensitivity, the camera exposure time should be manually set to lower values
than set by the camera’s automatic mode, in which the slope of the transfer function is the highest
and the signal-to-noise ratio is still sufficiently large. We found that by using the optimal exposure
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time, the device sensitivity and the limit of detection of camera-based readers for the Aac test kit
increase about 3-fold and up to 5-fold, respectively, compared to those obtained using the automatic
mode. This simple but effective technique could be employed to significantly improve the sensitivity
and the detection limit of smartphone and other camera-based colorimetric LFA readers without
hardware changes.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/18/11/4026/
s1, Figure S1: Schematic illustration of the LFA strip for Aac detection. TL is sprayed with MAb 11E5 (Test line) and
CL is sprayed with goat anti-mouse IgG (Control line). Conjugate pad is sprayed with colloidal gold-MAb 11E5
conjugate. Figure S2: Result interpretation for application of Aac-LFA strip. Figure S3: Grayscale images of the
LFA strip and corresponding reflected light profiles from the test area of the test strip at a bacteria concentration
of 5 × 106 CFU/mL. Note that the data was obtained from the same strip but with its image captured successively
with different exposure times: (a) 250 ms, (b) 125 ms, (c) 62 ms, (d) 31 ms and (e) 15 ms. For low exposure
time, the LFA images appear dark and difficult to see by naked eye. Figure S4: Grayscale images of the LFA
strip and corresponding reflected light profiles from the test area of the test strip at a bacteria concentration of
1 × 106 CFU/mL. Note that the data was obtained from the same strip but with its image captured successively
with different exposure times: (a) 250 ms, (b) 125 ms, (c) 62 ms, (d) 31 ms and (e) 15 ms. For low exposure
time, the LFA images appear dark and difficult to see by naked eye. Figure S5: Grayscale images of the LFA
strip and corresponding reflected light profiles from the test area of the test strip at a bacteria concentration of
5 × 105 CFU/mL. Note that the data was obtained from the same strip but with its image captured successively
with different exposure times: (a) 250 ms, (b) 125 ms, (c) 62 ms, (d) 31 ms and (e) 15 ms. For low exposure
time, the LFA images appear dark and difficult to see by naked eye. Figure S6: Grayscale images of the LFA
strip and corresponding reflected light profiles from the test area of the test strip at a bacteria concentration of
1 × 105 CFU/mL. Note that the data was obtained from the same strip but with its image captured successively
with different exposure times: (a) 250 ms, (b) 125 ms, (c) 62 ms, (d) 31 ms and (e) 15 ms. For low exposure
time, the LFA images appear dark and difficult to see by naked eye. Figure S7: Grayscale images of the LFA
strip and corresponding reflected light profiles from the test area of the test strip at a bacteria concentration of
0 CFU/mL (healthy sample). Note that the data was obtained from the same strip but with its image captured
successively with different exposure times: (a) 250 ms, (b) 125 ms, (c) 62 ms, (d) 31 ms and (e) 15 ms. Figure S8:
Grayscale images of the LFA strip and corresponding reflected light profiles from the test area of the test strip at
a bacteria concentration of 1 × 106 CFU/mL. Note that the data was obtained from the same strip but with its
image captured successively with different exposure times: (a) 67 ms, (b) 22 ms, (c) 17 ms, (d) 13 ms and (e) 8 ms.
For low exposure time, the LFA images appear dark and difficult to see by naked eye. Figure S9: Grayscale
images of the LFA strip and corresponding reflected light profiles from the test area of the test strip at a bacteria
concentration of 5 × 105 CFU/mL. Note that the data was obtained from the same strip but with its image
captured successively with different exposure times: (a) 67 ms, (b) 22 ms, (c) 17 ms, (d) 13 ms and (e) 8 ms. For low
exposure time, the LFA images appear dark and difficult to see by naked eye. Figure S10: Grayscale images of the
LFA strip and corresponding reflected light profiles from the test area of the test strip at a bacteria concentration
of 1 × 105 CFU/mL. Note that the data was obtained from the same strip but with its image captured successively
with different exposure times: (a) 67 ms, (b) 22 ms, (c) 17 ms, (d) 13 ms and (e) 8 ms. For low exposure time,
the LFA images appear dark and difficult to see by naked eye. Figure S11: Grayscale images of the LFA strip and
corresponding reflected light profiles from the test area of the test strip at a bacteria concentration of 0 CFU/mL
(healthy sample). Note that the data was obtained from the same strip but with its image captured successively
with different exposure times: (a) 67 ms, (b) 22 ms, (c) 17 ms, (d) 13 ms and (e) 8 ms. For low exposure time,
the LFA images appear dark and difficult to see by naked eye. Figure S12: The normalized reflected intensity
drop at the center position of the test line (∆ITL) plotted as a function of bacteria concentrations of spiked samples
for the webcam reader (a) (N = 5) and the iPhone reader (b) (N = 3), respectively. Figure S13: The reflection
line profiles obtained from the strip’s test area tested with 0−1 × 107 CFU/mL concentrations with the camera
exposure time of 15 ms using the web-camera reader. The experiments were repeated 3 times.
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