Supplementary Materials

Supplementary Table 1: Treatment effects of main plot treatment factors (Cultivars; growth regulator in 2014) on the reference traits dry matter (DM), N concentration (NC), and N uptake (Nup) and tested/selected vegetation indices for years with differing main plot factors.

<table>
<thead>
<tr>
<th>date</th>
<th>main plot</th>
<th>DM [100 kg ha(^{-1})]</th>
<th>NC [%]</th>
<th>Nup [kg ha(^{-1})]</th>
<th>NNI</th>
<th>NIR(_{\text{green}})</th>
<th>NIR(_{\text{red}})</th>
<th>R760(_{\text{730}})</th>
<th>R780(_{\text{740}})</th>
<th>R900(_{\text{970}})</th>
<th>REIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>090507</td>
<td>Solitär</td>
<td>12 a</td>
<td>3.9 b</td>
<td>47 a</td>
<td>0.77 a</td>
<td>8.7 b</td>
<td>19.5 b</td>
<td>1.6 a</td>
<td>1.28 a</td>
<td>0.97 b</td>
<td>724 a</td>
</tr>
<tr>
<td>090507</td>
<td>Elvis</td>
<td>13 a</td>
<td>3.6 c</td>
<td>49 a</td>
<td>0.76 a</td>
<td>9.5 a</td>
<td>24.5 a</td>
<td>1.6 a</td>
<td>1.29 a</td>
<td>0.99 a</td>
<td>724 a</td>
</tr>
<tr>
<td>090507</td>
<td>Tommi</td>
<td>5 b</td>
<td>4.5 a</td>
<td>25 b</td>
<td>0.64 b</td>
<td>4.7 c</td>
<td>6.6 c</td>
<td>1.3 b</td>
<td>1.18 b</td>
<td>0.93 c</td>
<td>720 b</td>
</tr>
<tr>
<td>090517</td>
<td>Solitär</td>
<td>55 a</td>
<td>2.9 b</td>
<td>164 a</td>
<td>1.17 a</td>
<td>10.8 b</td>
<td>27.2 b</td>
<td>1.8 b</td>
<td>1.39 b</td>
<td>1.03 b</td>
<td>727 b</td>
</tr>
<tr>
<td>090517</td>
<td>Elvis</td>
<td>55 a</td>
<td>2.9 b</td>
<td>162 a</td>
<td>1.16 a</td>
<td>13.1 a</td>
<td>34.1 a</td>
<td>1.9 a</td>
<td>1.43 a</td>
<td>1.07 a</td>
<td>728 a</td>
</tr>
<tr>
<td>090517</td>
<td>Tommi</td>
<td>37 b</td>
<td>3.7 a</td>
<td>136 b</td>
<td>1.22 a</td>
<td>7.7 c</td>
<td>12.6 c</td>
<td>1.6 c</td>
<td>1.30 c</td>
<td>0.99 c</td>
<td>725 c</td>
</tr>
<tr>
<td>110510</td>
<td>Peggassos</td>
<td>36 b</td>
<td>2.3 a</td>
<td>81 a</td>
<td>0.74 a</td>
<td>13.0 a</td>
<td>25.7 b</td>
<td>2.0 a</td>
<td>1.50 a</td>
<td>1.24 a</td>
<td>729 a</td>
</tr>
<tr>
<td>110510</td>
<td>Tommi</td>
<td>41 a</td>
<td>2.2 a</td>
<td>89 a</td>
<td>0.76 a</td>
<td>11.5 b</td>
<td>33.5 a</td>
<td>1.9 b</td>
<td>1.42 b</td>
<td>1.25 a</td>
<td>727 b</td>
</tr>
<tr>
<td>140603</td>
<td>GR_0</td>
<td>84 a</td>
<td>1.8 b</td>
<td>164 a</td>
<td>0.89 b</td>
<td>8.6 a</td>
<td>21.8 a</td>
<td>1.8 a</td>
<td>1.36 a</td>
<td>1.29 a</td>
<td>725 a</td>
</tr>
<tr>
<td>140603</td>
<td>GR_1</td>
<td>84 a</td>
<td>1.9 a</td>
<td>173 a</td>
<td>0.93 a</td>
<td>8.5 b</td>
<td>20.3 b</td>
<td>1.7 b</td>
<td>1.35 a</td>
<td>1.28 b</td>
<td>725 a</td>
</tr>
<tr>
<td>160509</td>
<td>Diskus</td>
<td>27 b</td>
<td>3.3 a</td>
<td>94 b</td>
<td>0.97 a</td>
<td>11.6 a</td>
<td>30.4 b</td>
<td>1.9 a</td>
<td>1.39 a</td>
<td>1.20 b</td>
<td>726 a</td>
</tr>
<tr>
<td>160509</td>
<td>Rumor</td>
<td>29 a</td>
<td>3.3 a</td>
<td>102 a</td>
<td>1 a</td>
<td>11.4 a</td>
<td>38.9 a</td>
<td>1.8 b</td>
<td>1.37 b</td>
<td>1.22 a</td>
<td>725 b</td>
</tr>
<tr>
<td>180515</td>
<td>Diskus</td>
<td>48 a</td>
<td>1.7 b</td>
<td>86 a</td>
<td>0.65 a</td>
<td>5.2 a</td>
<td>10.3 a</td>
<td>1.5 b</td>
<td>1.22 b</td>
<td>1.15 a</td>
<td>722 b</td>
</tr>
<tr>
<td>180515</td>
<td>Rumor</td>
<td>39 b</td>
<td>1.9 a</td>
<td>75 b</td>
<td>0.64 a</td>
<td>5.4 a</td>
<td>10.0 a</td>
<td>1.5 a</td>
<td>1.24 a</td>
<td>1.13 b</td>
<td>723 a</td>
</tr>
<tr>
<td>180529</td>
<td>Diskus</td>
<td>73 a</td>
<td>1.9 b</td>
<td>140 a</td>
<td>0.85 a</td>
<td>7.2 a</td>
<td>11.5 a</td>
<td>1.8 b</td>
<td>1.40 b</td>
<td>1.21 b</td>
<td>727 b</td>
</tr>
<tr>
<td>180529</td>
<td>Rumor</td>
<td>62 b</td>
<td>2.1 a</td>
<td>134 a</td>
<td>0.88 a</td>
<td>7.0 a</td>
<td>11.0 b</td>
<td>1.9 a</td>
<td>1.43 a</td>
<td>1.23 a</td>
<td>728 a</td>
</tr>
</tbody>
</table>
Supplementary Table 2: Treatment effects of N fertilization (N level) on the reference traits dry matter (DM), N concentration (NC) and N uptake (Nup) and tested/selected vegetation indices.

<table>
<thead>
<tr>
<th>Date</th>
<th>N level</th>
<th>DM [kg ha⁻¹]</th>
<th>NC [%]</th>
<th>Nup [kg ha⁻¹]</th>
<th>NNI</th>
<th>NIR_red</th>
<th>NIR_green</th>
<th>R000.790</th>
<th>R080.720</th>
<th>R080.970</th>
<th>REIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>090507</td>
<td>1</td>
<td>7 b</td>
<td>3.0</td>
<td>0.5</td>
<td>d</td>
<td>11.5</td>
<td>c</td>
<td>5.7</td>
<td>1.7</td>
<td>1.4</td>
<td>1.19</td>
</tr>
<tr>
<td>090507</td>
<td>2</td>
<td>10 ab</td>
<td>3.4</td>
<td>0.6</td>
<td>cd</td>
<td>13.5</td>
<td>bc</td>
<td>6.4</td>
<td>1.4</td>
<td>1.21</td>
<td>0.95</td>
</tr>
<tr>
<td>090507</td>
<td>3</td>
<td>10 ab</td>
<td>3.8</td>
<td>0.7</td>
<td>bd</td>
<td>15.7</td>
<td>abc</td>
<td>7.1</td>
<td>1.5</td>
<td>1.23</td>
<td>0.96</td>
</tr>
<tr>
<td>090507</td>
<td>4</td>
<td>11 a</td>
<td>4.1</td>
<td>0.8</td>
<td>ab</td>
<td>16.2</td>
<td>abc</td>
<td>7.5</td>
<td>1.5</td>
<td>1.25</td>
<td>0.96</td>
</tr>
<tr>
<td>090507</td>
<td>5</td>
<td>11 a</td>
<td>4.1</td>
<td>0.8</td>
<td>ab</td>
<td>18.3</td>
<td>abc</td>
<td>8.1</td>
<td>1.6</td>
<td>1.27</td>
<td>0.97</td>
</tr>
<tr>
<td>090507</td>
<td>6</td>
<td>9 ab</td>
<td>4.4</td>
<td>0.8</td>
<td>bc</td>
<td>17.3</td>
<td>abc</td>
<td>8.0</td>
<td>1.6</td>
<td>1.27</td>
<td>0.97</td>
</tr>
<tr>
<td>090507</td>
<td>7</td>
<td>13 a</td>
<td>4.4</td>
<td>0.9</td>
<td>ab</td>
<td>21.7</td>
<td>a</td>
<td>9.3</td>
<td>1.6</td>
<td>1.31</td>
<td>0.98</td>
</tr>
<tr>
<td>090507</td>
<td>8</td>
<td>12 a</td>
<td>4.7</td>
<td>0.9</td>
<td>ab</td>
<td>20.7</td>
<td>a</td>
<td>9.0</td>
<td>1.6</td>
<td>1.30</td>
<td>0.97</td>
</tr>
<tr>
<td>100525</td>
<td>1</td>
<td>29 d</td>
<td>1.4</td>
<td>0.7</td>
<td>f d</td>
<td>12.8</td>
<td>e</td>
<td>6.6</td>
<td>1.5</td>
<td>1.23</td>
<td>0.99</td>
</tr>
<tr>
<td>100525</td>
<td>2</td>
<td>40 bc</td>
<td>2.3</td>
<td>0.8</td>
<td>e</td>
<td>18.5</td>
<td>de</td>
<td>8.7</td>
<td>1.6</td>
<td>1.31</td>
<td>0.75</td>
</tr>
<tr>
<td>100525</td>
<td>3</td>
<td>49 abc</td>
<td>2.9</td>
<td>1.1</td>
<td>cd</td>
<td>23.0</td>
<td>cd</td>
<td>10.0</td>
<td>1.7</td>
<td>1.36</td>
<td>0.73</td>
</tr>
<tr>
<td>100525</td>
<td>4</td>
<td>52 ab</td>
<td>3.2</td>
<td>1.2</td>
<td>cd</td>
<td>24.7</td>
<td>bcd</td>
<td>10.7</td>
<td>1.8</td>
<td>1.38</td>
<td>0.73</td>
</tr>
<tr>
<td>100525</td>
<td>5</td>
<td>47 abc</td>
<td>3.4</td>
<td>1.3</td>
<td>bc</td>
<td>27.5</td>
<td>abc</td>
<td>11.3</td>
<td>1.9</td>
<td>1.41</td>
<td>0.76</td>
</tr>
<tr>
<td>100525</td>
<td>6</td>
<td>53 a</td>
<td>3.7</td>
<td>1.4</td>
<td>ab</td>
<td>27.1</td>
<td>abc</td>
<td>11.5</td>
<td>1.9</td>
<td>1.41</td>
<td>0.74</td>
</tr>
<tr>
<td>100525</td>
<td>7</td>
<td>54 a</td>
<td>3.9</td>
<td>1.5</td>
<td>a</td>
<td>32.5</td>
<td>a</td>
<td>12.8</td>
<td>1.9</td>
<td>1.45</td>
<td>0.75</td>
</tr>
<tr>
<td>100525</td>
<td>8</td>
<td>53 a</td>
<td>3.9</td>
<td>1.5</td>
<td>a</td>
<td>31.0</td>
<td>ab</td>
<td>12.4</td>
<td>1.9</td>
<td>1.44</td>
<td>0.75</td>
</tr>
<tr>
<td>110510</td>
<td>1</td>
<td>26 d</td>
<td>2.1</td>
<td>0.6</td>
<td>c</td>
<td>14.1</td>
<td>d</td>
<td>6.7</td>
<td>1.5</td>
<td>1.25</td>
<td>0.73</td>
</tr>
<tr>
<td>110510</td>
<td>2</td>
<td>30 cd</td>
<td>2.7</td>
<td>0.8</td>
<td>a</td>
<td>24.4</td>
<td>c</td>
<td>10.3</td>
<td>1.8</td>
<td>1.39</td>
<td>0.77</td>
</tr>
<tr>
<td>110510</td>
<td>3</td>
<td>36 bc</td>
<td>2.1</td>
<td>0.7</td>
<td>ab</td>
<td>28.1</td>
<td>bc</td>
<td>11.5</td>
<td>1.9</td>
<td>1.43</td>
<td>0.74</td>
</tr>
<tr>
<td>110510</td>
<td>4</td>
<td>37 bc</td>
<td>2.0</td>
<td>0.7</td>
<td>bc</td>
<td>32.4</td>
<td>ab</td>
<td>13.1</td>
<td>2.0</td>
<td>1.49</td>
<td>0.72</td>
</tr>
<tr>
<td>110510</td>
<td>5</td>
<td>42 ab</td>
<td>2.4</td>
<td>0.8</td>
<td>a</td>
<td>32.8</td>
<td>ab</td>
<td>13.4</td>
<td>2.1</td>
<td>1.50</td>
<td>0.76</td>
</tr>
<tr>
<td>110510</td>
<td>6</td>
<td>43 ab</td>
<td>2.2</td>
<td>0.8</td>
<td>ab</td>
<td>35.0</td>
<td>a</td>
<td>14.3</td>
<td>2.1</td>
<td>1.53</td>
<td>0.76</td>
</tr>
<tr>
<td>110510</td>
<td>7</td>
<td>47 a</td>
<td>2.0</td>
<td>0.7</td>
<td>bc</td>
<td>33.6</td>
<td>ab</td>
<td>13.9</td>
<td>2.1</td>
<td>1.52</td>
<td>0.76</td>
</tr>
<tr>
<td>110510</td>
<td>8</td>
<td>44 ab</td>
<td>2.6</td>
<td>0.9</td>
<td>a</td>
<td>42.6</td>
<td>a</td>
<td>15.9</td>
<td>2.2</td>
<td>1.55</td>
<td>0.76</td>
</tr>
<tr>
<td>130617</td>
<td>1</td>
<td>52 c</td>
<td>1.6</td>
<td>0.6</td>
<td>d</td>
<td>11.6</td>
<td>b</td>
<td>6.1</td>
<td>1.5</td>
<td>1.26</td>
<td>0.73</td>
</tr>
<tr>
<td>130617</td>
<td>2</td>
<td>70 bc</td>
<td>1.7</td>
<td>0.8</td>
<td>cd</td>
<td>22.8</td>
<td>a</td>
<td>9.3</td>
<td>1.8</td>
<td>1.39</td>
<td>0.78</td>
</tr>
<tr>
<td>130617</td>
<td>3</td>
<td>85 ab</td>
<td>2.1</td>
<td>0.7</td>
<td>abc</td>
<td>25.1</td>
<td>a</td>
<td>9.9</td>
<td>1.9</td>
<td>1.43</td>
<td>0.70</td>
</tr>
<tr>
<td>130617</td>
<td>4</td>
<td>87 ab</td>
<td>2.2</td>
<td>1.1</td>
<td>abc</td>
<td>29.0</td>
<td>a</td>
<td>11.2</td>
<td>2.0</td>
<td>1.48</td>
<td>0.72</td>
</tr>
<tr>
<td>130617</td>
<td>5</td>
<td>102 a</td>
<td>2.3</td>
<td>1.2</td>
<td>ab</td>
<td>31.0</td>
<td>a</td>
<td>11.8</td>
<td>2.1</td>
<td>1.50</td>
<td>0.73</td>
</tr>
<tr>
<td>130617</td>
<td>6</td>
<td>101 a</td>
<td>2.6</td>
<td>1.4</td>
<td>ab</td>
<td>29.0</td>
<td>a</td>
<td>11.1</td>
<td>2.0</td>
<td>1.49</td>
<td>0.72</td>
</tr>
<tr>
<td>130617</td>
<td>7</td>
<td>92 ab</td>
<td>2.6</td>
<td>1.3</td>
<td>ab</td>
<td>32.8</td>
<td>a</td>
<td>12.4</td>
<td>2.1</td>
<td>1.53</td>
<td>0.73</td>
</tr>
<tr>
<td>130617</td>
<td>8</td>
<td>100 a</td>
<td>2.3</td>
<td>1.2</td>
<td>ab</td>
<td>30.5</td>
<td>a</td>
<td>11.6</td>
<td>2.0</td>
<td>1.50</td>
<td>0.73</td>
</tr>
<tr>
<td>140603</td>
<td>1</td>
<td>27 f</td>
<td>1.1</td>
<td>0.7</td>
<td>h</td>
<td>2.9</td>
<td>g</td>
<td>2.7</td>
<td>1.2</td>
<td>1.11</td>
<td>0.70</td>
</tr>
<tr>
<td>140603</td>
<td>2</td>
<td>59 e</td>
<td>1.3</td>
<td>0.5</td>
<td>de</td>
<td>8.6</td>
<td>f</td>
<td>5.0</td>
<td>1.4</td>
<td>1.19</td>
<td>0.71</td>
</tr>
<tr>
<td>140603</td>
<td>3</td>
<td>77 d</td>
<td>1.4</td>
<td>0.7</td>
<td>f</td>
<td>16.5</td>
<td>e</td>
<td>7.3</td>
<td>1.6</td>
<td>1.27</td>
<td>0.72</td>
</tr>
<tr>
<td>140603</td>
<td>4</td>
<td>87 cd</td>
<td>1.8</td>
<td>0.9</td>
<td>c</td>
<td>23.1</td>
<td>d</td>
<td>9.1</td>
<td>1.8</td>
<td>1.35</td>
<td>0.73</td>
</tr>
<tr>
<td>140603</td>
<td>5</td>
<td>95 bc</td>
<td>1.9</td>
<td>1.1</td>
<td>c</td>
<td>26.6</td>
<td>a</td>
<td>10.1</td>
<td>1.9</td>
<td>1.42</td>
<td>0.73</td>
</tr>
<tr>
<td>140603</td>
<td>6</td>
<td>103 ab</td>
<td>2.2</td>
<td>1.2</td>
<td>c</td>
<td>28.3</td>
<td>b</td>
<td>10.6</td>
<td>2.0</td>
<td>1.46</td>
<td>0.74</td>
</tr>
<tr>
<td>140603</td>
<td>7</td>
<td>107</td>
<td>a</td>
<td>2.4</td>
<td>b</td>
<td>256</td>
<td>ab</td>
<td>1.3</td>
<td>b</td>
<td>29.7</td>
<td>ab</td>
</tr>
<tr>
<td>140603</td>
<td>8</td>
<td>110</td>
<td>a</td>
<td>2.6</td>
<td>a</td>
<td>287</td>
<td>a</td>
<td>1.4</td>
<td>a</td>
<td>30.0</td>
<td>a</td>
</tr>
<tr>
<td>160509</td>
<td>1</td>
<td>12</td>
<td>e</td>
<td>1.7</td>
<td>g</td>
<td>21</td>
<td>g</td>
<td>0.4</td>
<td>g</td>
<td>6.9</td>
<td>d</td>
</tr>
<tr>
<td>160509</td>
<td>2</td>
<td>22</td>
<td>d</td>
<td>2.4</td>
<td>f</td>
<td>51</td>
<td>f</td>
<td>0.6</td>
<td>f</td>
<td>21.6</td>
<td>c</td>
</tr>
<tr>
<td>160509</td>
<td>3</td>
<td>26</td>
<td>cd</td>
<td>2.9</td>
<td>e</td>
<td>77</td>
<td>e</td>
<td>0.8</td>
<td>e</td>
<td>36.1</td>
<td>b</td>
</tr>
<tr>
<td>160509</td>
<td>4</td>
<td>30</td>
<td>bc</td>
<td>3.3</td>
<td>d</td>
<td>98</td>
<td>d</td>
<td>1</td>
<td>d</td>
<td>42.3</td>
<td>a</td>
</tr>
<tr>
<td>160509</td>
<td>5</td>
<td>30</td>
<td>bc</td>
<td>3.7</td>
<td>c</td>
<td>110</td>
<td>cd</td>
<td>1.1</td>
<td>c</td>
<td>43.6</td>
<td>a</td>
</tr>
<tr>
<td>160509</td>
<td>6</td>
<td>33</td>
<td>ab</td>
<td>3.8</td>
<td>bc</td>
<td>127</td>
<td>bc</td>
<td>1.2</td>
<td>bc</td>
<td>43.5</td>
<td>a</td>
</tr>
<tr>
<td>160509</td>
<td>7</td>
<td>33</td>
<td>ab</td>
<td>4.0</td>
<td>b</td>
<td>131</td>
<td>b</td>
<td>1.3</td>
<td>b</td>
<td>41.8</td>
<td>a</td>
</tr>
<tr>
<td>160509</td>
<td>8</td>
<td>36</td>
<td>a</td>
<td>4.4</td>
<td>a</td>
<td>159</td>
<td>a</td>
<td>1.5</td>
<td>a</td>
<td>42.0</td>
<td>a</td>
</tr>
<tr>
<td>180515</td>
<td>1</td>
<td>34</td>
<td>a</td>
<td>1.3</td>
<td>d</td>
<td>47</td>
<td>d</td>
<td>0.4</td>
<td>d</td>
<td>6.3</td>
<td>d</td>
</tr>
<tr>
<td>180515</td>
<td>2</td>
<td>40</td>
<td>a</td>
<td>1.6</td>
<td>cd</td>
<td>62</td>
<td>cd</td>
<td>0.5</td>
<td>cd</td>
<td>7.6</td>
<td>cd</td>
</tr>
<tr>
<td>180515</td>
<td>3</td>
<td>42</td>
<td>a</td>
<td>1.7</td>
<td>bc</td>
<td>68</td>
<td>bcd</td>
<td>0.6</td>
<td>bcd</td>
<td>9.0</td>
<td>bc</td>
</tr>
<tr>
<td>180515</td>
<td>4</td>
<td>45</td>
<td>a</td>
<td>1.7</td>
<td>abc</td>
<td>80</td>
<td>abc</td>
<td>0.6</td>
<td>abc</td>
<td>10.6</td>
<td>ab</td>
</tr>
<tr>
<td>180515</td>
<td>5</td>
<td>46</td>
<td>a</td>
<td>1.8</td>
<td>ab</td>
<td>85</td>
<td>abc</td>
<td>0.7</td>
<td>abc</td>
<td>11.1</td>
<td>ab</td>
</tr>
<tr>
<td>180515</td>
<td>6</td>
<td>48</td>
<td>a</td>
<td>1.9</td>
<td>ab</td>
<td>94</td>
<td>abc</td>
<td>0.7</td>
<td>ab</td>
<td>11.3</td>
<td>ab</td>
</tr>
<tr>
<td>180515</td>
<td>7</td>
<td>48</td>
<td>a</td>
<td>2.0</td>
<td>a</td>
<td>95</td>
<td>ab</td>
<td>0.7</td>
<td>a</td>
<td>12.6</td>
<td>a</td>
</tr>
<tr>
<td>180515</td>
<td>8</td>
<td>44</td>
<td>a</td>
<td>2.0</td>
<td>a</td>
<td>101</td>
<td>a</td>
<td>0.8</td>
<td>a</td>
<td>12.6</td>
<td>a</td>
</tr>
<tr>
<td>180529</td>
<td>1</td>
<td>47</td>
<td>b</td>
<td>1.1</td>
<td>c</td>
<td>49</td>
<td>c</td>
<td>0.4</td>
<td>d</td>
<td>5.4</td>
<td>d</td>
</tr>
<tr>
<td>180529</td>
<td>2</td>
<td>59</td>
<td>ab</td>
<td>1.7</td>
<td>b</td>
<td>99</td>
<td>b</td>
<td>0.7</td>
<td>c</td>
<td>9.2</td>
<td>c</td>
</tr>
<tr>
<td>180529</td>
<td>3</td>
<td>65</td>
<td>ab</td>
<td>2.1</td>
<td>a</td>
<td>135</td>
<td>ab</td>
<td>0.9</td>
<td>b</td>
<td>11.0</td>
<td>b</td>
</tr>
<tr>
<td>180529</td>
<td>4</td>
<td>70</td>
<td>a</td>
<td>2.1</td>
<td>a</td>
<td>148</td>
<td>a</td>
<td>0.9</td>
<td>ab</td>
<td>12.6</td>
<td>a</td>
</tr>
<tr>
<td>180529</td>
<td>5</td>
<td>75</td>
<td>a</td>
<td>2.2</td>
<td>a</td>
<td>162</td>
<td>a</td>
<td>1</td>
<td>ab</td>
<td>12.7</td>
<td>a</td>
</tr>
<tr>
<td>180529</td>
<td>6</td>
<td>78</td>
<td>a</td>
<td>2.2</td>
<td>a</td>
<td>169</td>
<td>a</td>
<td>1</td>
<td>ab</td>
<td>12.7</td>
<td>a</td>
</tr>
<tr>
<td>180529</td>
<td>7</td>
<td>76</td>
<td>a</td>
<td>2.3</td>
<td>a</td>
<td>173</td>
<td>a</td>
<td>1</td>
<td>a</td>
<td>13.0</td>
<td>a</td>
</tr>
<tr>
<td>180529</td>
<td>8</td>
<td>71</td>
<td>a</td>
<td>2.3</td>
<td>a</td>
<td>161</td>
<td>a</td>
<td>1</td>
<td>ab</td>
<td>13.4</td>
<td>a</td>
</tr>
<tr>
<td>date</td>
<td>trait</td>
<td>NIR-green</td>
<td>NIR-red</td>
<td>R780_730</td>
<td>R780_740</td>
<td>R900_970</td>
<td>REIP</td>
<td>mean-normalized RMSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-----------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>090507</td>
<td></td>
<td>260</td>
<td>258</td>
<td>269</td>
<td>276</td>
<td>266</td>
<td>284</td>
<td>25% 25% 26% 27% 26% 28%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>090517</td>
<td></td>
<td>780</td>
<td>704</td>
<td>778</td>
<td>783</td>
<td>761</td>
<td>821</td>
<td>16% 14% 16% 16% 16% 17%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100525</td>
<td></td>
<td>524</td>
<td>535</td>
<td>519</td>
<td>528</td>
<td>487</td>
<td>530</td>
<td>12% 12% 12% 12% 12% 11% 12%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110510</td>
<td>DM</td>
<td>626</td>
<td>487</td>
<td>641</td>
<td>656</td>
<td>610</td>
<td>675</td>
<td>16% 13% 17% 17% 16% 18%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130617</td>
<td>[kg ha⁻¹]</td>
<td>1255</td>
<td>1257</td>
<td>1239</td>
<td>1220</td>
<td>1336</td>
<td>1230</td>
<td>86% 15% 15% 14% 14% 16% 14%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140603</td>
<td></td>
<td>738</td>
<td>827</td>
<td>729</td>
<td>746</td>
<td>727</td>
<td>696</td>
<td>9% 10% 9% 9% 9% 8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160509</td>
<td></td>
<td>342</td>
<td>350</td>
<td>341</td>
<td>334</td>
<td>322</td>
<td>348</td>
<td>12% 13% 12% 12% 12% 12%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180515</td>
<td></td>
<td>911</td>
<td>841</td>
<td>913</td>
<td>930</td>
<td>956</td>
<td>933</td>
<td>21% 19% 21% 21% 22% 21%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180529</td>
<td></td>
<td>1233</td>
<td>1238</td>
<td>1297</td>
<td>1279</td>
<td>1285</td>
<td>1314</td>
<td>18% 18% 19% 19% 19% 19%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>090507</td>
<td></td>
<td>0.67</td>
<td>0.65</td>
<td>0.69</td>
<td>0.69</td>
<td>0.67</td>
<td>0.69</td>
<td>4.0 17% 16% 17% 17% 17% 17%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>090517</td>
<td></td>
<td>0.76</td>
<td>0.78</td>
<td>0.73</td>
<td>0.72</td>
<td>0.78</td>
<td>0.70</td>
<td>3.2 24% 25% 23% 23% 25% 22%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100525</td>
<td></td>
<td>0.42</td>
<td>0.44</td>
<td>0.39</td>
<td>0.41</td>
<td>0.42</td>
<td>0.39</td>
<td>3.0 14% 15% 13% 13% 14% 13%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110510</td>
<td>NC</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>2.3 26% 26% 26% 26% 26% 26%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130617</td>
<td>[%]</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.35</td>
<td>0.31</td>
<td>2.2 14% 14% 14% 14% 16% 14%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140603</td>
<td></td>
<td>0.16</td>
<td>0.18</td>
<td>0.15</td>
<td>0.15</td>
<td>0.21</td>
<td>0.16</td>
<td>1.9 9% 10% 8% 8% 11% 8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160509</td>
<td></td>
<td>0.26</td>
<td>0.46</td>
<td>0.21</td>
<td>0.19</td>
<td>0.38</td>
<td>0.20</td>
<td>3.3 8% 14% 6% 6% 11% 6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180515</td>
<td></td>
<td>0.24</td>
<td>0.23</td>
<td>0.20</td>
<td>0.22</td>
<td>0.22</td>
<td>0.21</td>
<td>1.8 13% 13% 11% 13% 12% 12%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180529</td>
<td></td>
<td>0.20</td>
<td>0.20</td>
<td>0.17</td>
<td>0.17</td>
<td>0.18</td>
<td>0.17</td>
<td>1.98 10% 10% 9% 8% 9% 8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>090507</td>
<td></td>
<td>0.13</td>
<td>0.14</td>
<td>0.12</td>
<td>0.11</td>
<td>0.14</td>
<td>0.11</td>
<td>0.7 18% 19% 16% 16% 20% 15%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>090517</td>
<td></td>
<td>0.26</td>
<td>0.27</td>
<td>0.23</td>
<td>0.23</td>
<td>0.28</td>
<td>0.21</td>
<td>1.2 22% 23% 20% 19% 24% 18%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100525</td>
<td></td>
<td>0.19</td>
<td>0.20</td>
<td>0.18</td>
<td>0.19</td>
<td>0.18</td>
<td>0.19</td>
<td>1.1 17% 18% 16% 17% 17% 17%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110510</td>
<td></td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.8 26% 26% 26% 26% 26% 26%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130617</td>
<td>NNI</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.18</td>
<td>0.21</td>
<td>0.18</td>
<td>1.1 18% 18% 17% 17% 19% 17%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140603</td>
<td></td>
<td>0.10</td>
<td>0.11</td>
<td>0.09</td>
<td>0.09</td>
<td>0.13</td>
<td>0.09</td>
<td>0.9 11% 13% 10% 10% 14% 10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160509</td>
<td></td>
<td>0.11</td>
<td>0.18</td>
<td>0.10</td>
<td>0.09</td>
<td>0.14</td>
<td>0.10</td>
<td>1.0 11% 18% 10% 9% 15% 10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180515</td>
<td></td>
<td>0.10</td>
<td>0.09</td>
<td>0.08</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.6 16% 14% 12% 15% 14% 14%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180529</td>
<td></td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.09</td>
<td>0.11</td>
<td>0.10</td>
<td>0.87 12% 12% 11% 11% 12% 11%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>090507</td>
<td></td>
<td>11</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>40 27% 29% 26% 25% 30% 25%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>090517</td>
<td></td>
<td>36</td>
<td>38</td>
<td>31</td>
<td>30</td>
<td>41</td>
<td>28</td>
<td>154 23% 25% 20% 19% 26% 18%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100525</td>
<td></td>
<td>32</td>
<td>32</td>
<td>30</td>
<td>32</td>
<td>29</td>
<td>31</td>
<td>136 23% 24% 22% 23% 21% 23%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110510</td>
<td>Nup</td>
<td>24</td>
<td>23</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>25</td>
<td>85 28% 27% 28% 28% 28% 29%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130617</td>
<td>[kg ha⁻¹]</td>
<td>46</td>
<td>46</td>
<td>45</td>
<td>44</td>
<td>50</td>
<td>45</td>
<td>194 24% 24% 23% 23% 26% 23%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140603</td>
<td></td>
<td>25</td>
<td>29</td>
<td>24</td>
<td>22</td>
<td>31</td>
<td>23</td>
<td>168 15% 17% 14% 13% 19% 14%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160509</td>
<td></td>
<td>18</td>
<td>24</td>
<td>16</td>
<td>15</td>
<td>20</td>
<td>16</td>
<td>98 18% 25% 17% 16% 20% 16%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180515</td>
<td></td>
<td>19</td>
<td>16</td>
<td>16</td>
<td>18</td>
<td>17</td>
<td>17</td>
<td>80 24% 20% 20% 22% 21% 21%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180529</td>
<td></td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>29</td>
<td>28</td>
<td>28</td>
<td>137 20% 20% 20% 20% 21% 20%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supplementary Table 4: Significant (p < 0.05) coefficients of determination (R^2) for the whole data and for data subsets (by main plots: Cultivars; growth regulator in 2014 as indicated in Error! Reference source not found.), calculated across N levels.

<table>
<thead>
<tr>
<th>trait</th>
<th>date</th>
<th>across main plots</th>
<th>Main plot 1</th>
<th>Main plot 2</th>
<th>Main plot 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NIR_green</td>
<td>NIR_red</td>
<td>R760_730</td>
<td>R780_740</td>
</tr>
<tr>
<td>DM</td>
<td>090507</td>
<td>0.71 0.71 0.69 0.67 0.7 0.65</td>
<td>0.3 0.36 0.28 0.28 0.35 0.27</td>
<td>0.55 0.55 0.54 0.53 0.57 0.55</td>
<td>0.56 0.56 0.57 0.58 0.57 0.47 0.54</td>
</tr>
<tr>
<td></td>
<td>090517</td>
<td>0.54 0.63 0.55 0.54 0.57 0.49</td>
<td>0.53 0.51 0.54 0.52 0.59 0.52</td>
<td>0.48 0.49 0.54 0.55 0.6 0.53</td>
<td>0.48 0.44 0.49 0.5 0.44 0.49</td>
</tr>
<tr>
<td></td>
<td>100525</td>
<td>0.53 0.51 0.54 0.52 0.59 0.52</td>
<td>0.75 0.79 0.73 0.72 0.74 0.73</td>
<td>0.69 0.59 0.7 0.7 0.48 0.71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>110510</td>
<td>0.5 0.7 0.47 0.45 0.52 0.42</td>
<td>0.36 0.56 0.55 0.48 0.24 0.51</td>
<td>0.47 0.46 0.48 0.5 0.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>130617</td>
<td>0.58 0.58 0.59 0.6 0.52 0.59</td>
<td>0.58 0.58 0.59 0.6 0.52 0.59</td>
<td>0.58 0.58 0.59 0.6 0.52 0.59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>140603</td>
<td>0.92 0.9 0.93 0.92 0.93 0.93</td>
<td>0.94 0.93 0.94 0.94 0.94 0.95</td>
<td>0.83 0.77 0.85 0.85 0.8 0.85</td>
<td></td>
</tr>
<tr>
<td></td>
<td>160509</td>
<td>0.81 0.81 0.82 0.82 0.84 0.81</td>
<td>0.87 0.84 0.88 0.88 0.87 0.88</td>
<td>0.47 0.46 0.48 0.5 0.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>180515</td>
<td>0.3 0.41 0.3 0.28 0.23 0.27</td>
<td>0.52 0.52 0.53 0.54 0.53 0.5</td>
<td>0.32 0.29 0.31 0.31 0.32 0.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>180529</td>
<td>0.36 0.36 0.29 0.31 0.31 0.28</td>
<td>0.54 0.45 0.62 0.63 0.38 0.63</td>
<td>0.49 0.29 0.6 0.61 0.32 0.64</td>
<td>0.44 0.34 0.59 0.65 0.29 0.67</td>
</tr>
<tr>
<td>NC</td>
<td>090507</td>
<td>0.11</td>
<td>0.54 0.45 0.62 0.63 0.38 0.63</td>
<td>0.49 0.29 0.6 0.61 0.32 0.64</td>
<td>0.44 0.34 0.59 0.65 0.29 0.67</td>
</tr>
<tr>
<td></td>
<td>090517</td>
<td>0.12 0.14 0.12 0.2</td>
<td>0.76 0.77 0.8 0.82 0.53 0.82</td>
<td>0.72 0.67 0.77 0.77 0.67 0.78</td>
<td>0.7 0.58 0.75 0.76 0.68 0.78</td>
</tr>
<tr>
<td></td>
<td>100525</td>
<td>0.76 0.73 0.8 0.77 0.75 0.79</td>
<td>0.76 0.73 0.8 0.77 0.75 0.79</td>
<td>0.76 0.73 0.8 0.77 0.75 0.79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>110510</td>
<td>0.55 0.54 0.54 0.57 0.45 0.55</td>
<td>0.55 0.54 0.54 0.57 0.45 0.55</td>
<td>0.55 0.54 0.54 0.57 0.45 0.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>130617</td>
<td>0.91 0.88 0.92 0.92 0.84 0.91</td>
<td>0.95 0.95 0.95 0.96 0.89 0.95</td>
<td>0.89 0.87 0.9 0.9 0.81 0.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>140603</td>
<td>0.91 0.71 0.94 0.95 0.81 0.95</td>
<td>0.91 0.82 0.95 0.96 0.87 0.96</td>
<td>0.92 0.77 0.95 0.96 0.86 0.96</td>
<td></td>
</tr>
<tr>
<td></td>
<td>160509</td>
<td>0.17 0.25 0.41 0.27 0.31 0.34</td>
<td>0.32</td>
<td>0.32 0.75 0.29</td>
<td>0.2 0.41 0.46 0.33 0.46 0.4</td>
</tr>
<tr>
<td></td>
<td>180515</td>
<td>0.79 0.78 0.84 0.85 0.82 0.85</td>
<td>0.9 0.89 0.92 0.92 0.86 0.92</td>
<td>0.82 0.82 0.82 0.83 0.8 0.82</td>
<td></td>
</tr>
<tr>
<td></td>
<td>180529</td>
<td>0.5 0.41 0.59 0.62 0.39 0.63</td>
<td>0.59 0.5 0.64 0.64 0.41 0.66</td>
<td>0.69 0.54 0.75 0.76 0.58 0.76</td>
<td>0.7 0.64 0.75 0.77 0.6 0.76</td>
</tr>
<tr>
<td>NNI</td>
<td>090507</td>
<td>0.29 0.2 0.43 0.45 0.15 0.51</td>
<td>0.66 0.7 0.74 0.75 0.46 0.76</td>
<td>0.75 0.66 0.81 0.81 0.75 0.81</td>
<td>0.79 0.7 0.84 0.85 0.76 0.86</td>
</tr>
<tr>
<td></td>
<td>090517</td>
<td>0.72 0.7 0.75 0.72 0.74 0.74</td>
<td>0.72 0.7 0.75 0.72 0.74 0.74</td>
<td>0.72 0.7 0.75 0.72 0.74 0.74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100525</td>
<td>0.11 0.1 0.11 0.1 0.09 0.1</td>
<td>0.15 0.12 0.14 0.14</td>
<td>0.14 0.12 0.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>NNI</td>
<td>130617</td>
<td>0.6</td>
<td>0.6</td>
<td>0.61</td>
<td>0.62</td>
</tr>
<tr>
<td>NNI</td>
<td>140603</td>
<td>0.93</td>
<td>0.9</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>NNI</td>
<td>160509</td>
<td>0.89</td>
<td>0.74</td>
<td>0.92</td>
<td>0.93</td>
</tr>
<tr>
<td>NNI</td>
<td>180515</td>
<td>0.33</td>
<td>0.51</td>
<td>0.61</td>
<td>0.44</td>
</tr>
<tr>
<td>NNI</td>
<td>180529</td>
<td>0.8</td>
<td>0.79</td>
<td>0.82</td>
<td>0.83</td>
</tr>
<tr>
<td>Nup</td>
<td>090507</td>
<td>0.69</td>
<td>0.63</td>
<td>0.72</td>
<td>0.73</td>
</tr>
<tr>
<td>Nup</td>
<td>090517</td>
<td>0.51</td>
<td>0.45</td>
<td>0.64</td>
<td>0.66</td>
</tr>
<tr>
<td>Nup</td>
<td>100525</td>
<td>0.65</td>
<td>0.64</td>
<td>0.68</td>
<td>0.65</td>
</tr>
<tr>
<td>Nup</td>
<td>110510</td>
<td>0.26</td>
<td>0.32</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Nup</td>
<td>130617</td>
<td>0.56</td>
<td>0.57</td>
<td>0.58</td>
<td>0.6</td>
</tr>
<tr>
<td>Nup</td>
<td>140603</td>
<td>0.92</td>
<td>0.89</td>
<td>0.92</td>
<td>0.93</td>
</tr>
<tr>
<td>Nup</td>
<td>160509</td>
<td>0.84</td>
<td>0.7</td>
<td>0.86</td>
<td>0.88</td>
</tr>
<tr>
<td>Nup</td>
<td>180515</td>
<td>0.36</td>
<td>0.55</td>
<td>0.56</td>
<td>0.43</td>
</tr>
<tr>
<td>Nup</td>
<td>180529</td>
<td>0.67</td>
<td>0.66</td>
<td>0.67</td>
<td>0.67</td>
</tr>
</tbody>
</table>
Supplementary Table 5: Index ranking by data and statistical approach. Absolute RMSE (not shown) and normalized RMSE values result in same index rankings. Two numbers indicate differing rankings depending on the data level.

<table>
<thead>
<tr>
<th>Data across all</th>
<th>approach</th>
<th>DM</th>
<th>NC</th>
<th>NNI</th>
<th>Nup</th>
</tr>
</thead>
<tbody>
<tr>
<td>across all</td>
<td>NE (lower/upper range)</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>within dates</td>
<td>R²</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>within dates</td>
<td>mean-norm. RMSE</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>within date*MPs</td>
<td>R²</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>within date*MPs</td>
<td>NE</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>within date*MPs</td>
<td>y-interval: R²</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>within date*MPs</td>
<td>y-interval: mean-norm. RMSE</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>within date*MPs</td>
<td>y-interval: mean-norm. RMSE</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>within date*MPs</td>
<td>y-interval: mean-norm. RMSE</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Supplementary Figure 1: Quadratic response of the vegetation index R760_730 to incremental N fertilization (N levels) by sampling dates (year/month/day) and main plot treatments. The applied nitrogen corresponds to 0–420 kg N ha$^{-1}$ in total fertilized nitrogen, applied in four doses. For NNI, the threshold used (NNI > 0.8) for dividing the data into two intervals is drawn as a horizontal line. Interval 1 (NNI < 0.8) and interval 2 (NNI > 0.8) are indicated as circles and rectangles, respectively.
Supplementary Figure 2: Relationships between target traits by measurement dates. Curves indicate best-fit quadratic relationships.
Supplementary Figure 3: Coefficients of determination (R^2) of the REIP within dates across main plot treatments for linear and quadratic relationships.

Supplementary Figure 4: Point of saturation (plateau point) relative to the present data range and in absolute values, identified as the first point of non-positive slope between index and target trait.
Supplementary Figure 5: R^2-values found from linear regression analysis for both NNI-based data intervals, based on the NNI-threshold 0.8. Black numbers indicate the number of data points (n) included in the intervals.
Supplementary Figure 6: RMSE-values found from linear regression analysis for both NNI-based data intervals based on the NNI-threshold 0.8 for DM [kg ha⁻¹], NC [%], NNI [unitless] and Nup [kg ha⁻¹]. Black numbers indicate the number of data points (n) included in the intervals.