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Abstract: A traditional aerial optoelectronic platform consists of inside and outside multilayer
gimbals, while an internal gimbal and drive components occupy the internal space where optical
sensors are located. In order to improve the replaceability of optical sensors and to increase their
available space, this paper introduces a nonorthogonal aerial optoelectronic platform based on three
axes; we carried out research on its drive control method. A three-dimensional structure of an aerial
optoelectronic platform was designed. A noncontact drive of a linear voice coil motor was introduced,
and a drive control scheme of a proportional integral and a disturbance observer was adopted. Finally,
simulations and experiments were carried out. Results showed that the aerial optoelectronic platform
could effectively release three times the image sensor space, and the servo bandwidth was 60.2 Hz,
which was much better than that of traditional two-axis and four-gimbal platforms. The stability
accuracy of the system reached 4.9958 micron rad, which was obviously better than that of traditional
gimbals. This paper provides a reference for the design of new optoelectronic platforms.

Keywords: aerial optoelectronic platform; nonorthogonal; image sensor; tracking; bandwidth;
stability accuracy

1. Introduction

An aerial optoelectronic platform can continuously measure its attitude and position [1,2] due to
carrier disturbance (e.g., missiles, aircraft, and ships), accurately maintain a dynamic attitude reference,
and realize the automatic tracking [3–5] of a maneuvering target through image sensors. In recent
years, it has been widely used in military and in civil fields such as public security, fire protection,
and environmental monitoring [6,7]. Depending on the carrier platform, an aerial optoelectronic
platform is divided into fixed-wing combat-aircraft, airborne-helicopter, and unmanned-airborne
optoelectronic platforms. The solution for acquiring images by linear array charged coupled device
(CCD) plus scanning motion is still widely used, especially in cases that require a large field of view
and high image resolution. However, high resolution alone cannot guarantee high image recognition
accuracy. Therefore, image recognition must fully take advantage of high resolution, and at the
same time overcome the effect of scanning motion from the algorithm, so that an error in mechanical
transmission will not directly affect the final image recognition accuracy.

Although the optical sensor has a lower detection range and coverage and has higher visibility
requirements than the radar, the biggest advantage of the optical sensor is that it has a shooting function.
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It can be photographed and enlarged for careful observation. It is very intuitive and the target is more
accurate than the radar. Moreover, the optical equipment is not afraid of interference. Even if the local
area releases electromagnetic interference, it can ensure sufficient detection results. At the same time,
the optical sensor can also be used for mapping, and can learn the development of natural disasters
such as earthquakes, volcanic eruptions, and fires in time. With manned or unmanned aerial vehicles,
it is highly effective, accurate, and has a wide detection range.

With the improvement of carrier-platform performance, the development of aerial photoelectric
sensors should have characteristics of precision, miniaturization, intelligence, and multitasking
integration [8]. With the development of optoelectronic sighting equipment towards all-weather,
multispectral, and multimode sensors, the image processing technology of photoelectric sensors
has also developed from a single target capture and tracking function to intelligent, multi-mode
fusion, quantitative analysis, etc., which has increased the difficulty of acquiring high-quality images,
resulting in the platform’s increasing demands. What these characteristics have in common is that they
require many types of photoelectric sensors, high performance, a small system size, and panoramic
perception. For example, Israel’s TOPLITE company has a two-axis four-stabilized gimbal equipped
with multiple optical sensors, such as visible light cameras, infrared cameras, and laser rangefinders
with a stable accuracy of 25 microrad [9]. Lockheed Martin’s AM/AAQ-30 Targeting System (TSS) for
the U.S. Marines’ AH-1Z Cobra Attack Helicopter is the most advanced multi-sensor photoelectric fire
control system in the world. TSS has large-aperture, medium-wave, forward-looking infrared sensors,
high-resolution color-television cameras, laser target indicators, human-eye-safe laser rangefinders,
laser spot trackers, and inertial measurement devices, with a stable accuracy of 20 microrad [10].
Developed by Canada’s L-3 communications company’s WESCAM branch, MX-15 is a medium-sized
sensor turret with a weight of 42.7 kg [8]. It can carry six kinds of photoelectric sensors at the same time.

A traditional aerial optoelectronic platform consists of a multilayer gimbal inside and outside [7].
As shown in Figure 1, the image sensor is surrounded by an annular gimbal of orthogonal axes,
and the gimbal and drive components occupy a large part of the space. As the number of multi-image
sensor tasks (such as infrared cameras, visible light cameras, and laser ranging) and multi-axis [11,12]
motion requirements increases, the size of multilayer gimbals also increases, resulting in poor system
stiffness. The shape of the inner gimbal is usually designed according to the shape of the image sensor,
which encounters obstacles when it is necessary to replace image sensors for different uses and types
of performance, resulting in low platform reusability.
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Figure 1. Traditional aerial-optoelectronic-platform structure.

A traditional aerial optoelectronic platform is generally driven by a torque motor [13]. The drive
motor is directly connected to the inner gimbal through the shaft assembly, and the image sensor is
driven by the inner gimbal. The frictional disturbance of the motor and the shaft system is directly
transmitted to the image sensor through the shaft system, which reduces image-acquisition accuracy.
In addition, the gimbal shape is designed as a ring structure due to the driving form. However, a large
ring structure has low fundamental frequency and a poor rigidity. When the motor is loaded with the
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torque to the ring structure for stability control, system bandwidth and other types of performance are
severely limited.

In order to solve the problems of a large occupied gimbal and low image-sensor replacement
in the existing aerial optoelectronic platform of an orthogonal axis system, a nonorthogonal aerial
triaxial-based optoelectronic platform was designed that is mainly used in unmanned aerial vehicles,
and a new linear voice coil motor drive is introduced in this paper. High-precision control technology
of a proportional integral and disturbance observer is introduced in detail, and parameters such as
system bandwidth and stability accuracy were tested and verified.

2. Aerial Optoelectronic Platform Design

2.1. Advantages of Three-Axis Compensation

Traditional aerial optoelectronic platforms generally use two-axis [14] motion, that is, yaw- and
pitch-direction motion to compensate for the image sensor, but there are certain problems with this.
The maximum disturbance of the optoelectronic platform on the carrier comes from perturbation
in the roll direction. The yaw direction is affected by the airflow, and motion in the pitch direction
changes relatively slowly. When the carrier is performing a large elevation movement or high-speed
maneuvering, the overlap ratio of the image has a greater relationship with the angle of view of the
image sensor. This is because image-sensor focal length is long and field of view is small. When certain
interference is applied from the outside, it is difficult for two-axis compensation to uniformly respond
to the carrier movement, and multiple obtained images have a slit when stitched, as shown in Figure 2.
In particular, in the case of a long focal length and small field of view, the accuracy requirements of the
system for each shafting are increased, and sensitivity to disturbance is enhanced.
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In addition, the three-axis motion of the carrier introduces three axes of disturbance, there is a 
lot of coupling between them, and the compensation of the two axes leads to information loss. In the 
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there was was contained in the squint layer, and the more disturbances there were, the more difficult 
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information of the target, then it would no longer be necessary to continuously track the target, 
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In addition, the three-axis motion of the carrier introduces three axes of disturbance, there is a lot
of coupling between them, and the compensation of the two axes leads to information loss. In the
past, image sensors used a tracking mode, but in the case of cloud occlusion at a distance, much of the
information was blocked. In particular, the longer the focal length was, then the more information there
was was contained in the squint layer, and the more disturbances there were, the more difficult it was
for the image sensor to track the target. However, if the optoelectronic platform adopted a stepping
imaging mode, that is, taking multiple photos at different angles to obtain complete information of
the target, then it would no longer be necessary to continuously track the target, thereby reducing
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the difficulty of target acquisition. In summary, there are many application limitations in two-axis
compensation. For this reason, this paper studies the design of a three-axis compensation mechanism.

2.2. Nonorthogonal Triaxial Mechanism

In order to reduce the space occupied by multilayer gimbals and the direct drive motor,
a nonorthogonal three-axis motion mechanism was studied, as shown in Figure 3. The motion
module of the optoelectronic platform is made up of three nonorthogonal shafts connected in a series.
The virtual extension lines of the three axes intersect at the same point, and this is exactly the spherical
center of the space. Design considerations were as follows: first, the space of the image sensor could be
released to the utmost; and second, the three axes intersect at the same point in space, which maximizes
average torque and facilitates servo control. During use, we tried to ensure that the center of mass for
the image sensor was located near the origin of the space sphere coordinates. The three rotating shafts
could perform a certain angular rotational motion about the axis, wherein the third virtual rotating
shaft coincided with the vertical axis of the passing center in the design, and the coupling of the three
axial angular motions realized the displacement movement of the image sensor.
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Figure 3. Nonorthogonal three-axis motion mechanism.

The direction of the third axis pointed vertically to the center of the sphere; the angle between
the second and the third axis was 21◦, and the angle between the first and the second axis was 23◦.
The transmission part of this platform is similar to the joint part of a robotic arm. Due to this, the D–H
modeling method proposed by Denavit and Hartenberg [15,16] was used for kinematic modeling.
This method is mainly used in robot kinematics. It establishes a coordinate system on each rod and
realizes coordinate transformation on two links through homogeneous coordinate transformation.
In a multilink series system, by using the homogeneous coordinate transformation multiple times,
the relationship between the first and last coordinate system can be established.

According to the D–H modeling method, the coordinate system of each rotation axis of the
platform was established, where the Z-axis was the direction of each rotation axis, and the three axes
intersected at a certain point in space; this point is the coordinate origin of each coordinate system.
The X-axis direction was determined by the normal direction of the intersecting axis, and the Y-axis
direction was determined according to the right-hand rule. Finally, the coordinate system of each
rotation axis was established, as shown in Figure 4. The specific coordinate-system establishment
process is not described again.
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Figure 4. Establishment of coordinate system for each platform rotation axis.

After establishing the coordinate system of each axis, the D–H parameters needed to be determined.
The D–H parameters are shown in Table 1, where θi is the rotation angle around the Z-axis, di is the
distance between the adjacent common perpendicular on the Z-axis, ai is the length of each male
perpendicular line, and αi is the angle between adjacent Z-axes. Only θ (0) is variable, where 0
represents the initial state so that the homogeneous coordinate transformation of the {0} system to
the {4} system could be obtained, such as in Formulas (1) and (2). The homogeneous coordinate
transformation formula of the platform could be obtained by bringing the data in the parameter table
into the two formulas.

4
0T = 1

0T2
1T3

2T4
3T (1)

i
i−1T =


cosθi − sinθi 0 ai−1

sinθi cosα(i−1) cosθi cosα(i−1) − sinα(i−1) − sinα(i−1)di

sinθi sinα(i−1) cosθi sinα(i−1) cosα(i−1) cosα(i−1)d
0 0 0 1

 (2)

Table 1. Denavit and Hartenberg (D–H) parameters.

i a(i−1) α(i−1) di θi

1 0 0 0 θ1 (0)
2 0 −23◦ 0 θ2 (0)
3 0 −21◦ 0 θ3 (0)
4 0 0 d4 0

The driving part mainly includes a joint-like mechanism, an upper and lower support gimbal,
a base, a stage, four voice coil linear motors, angle sensors, and fiber optic gyroscopes. The image sensors
can be connected to the stage in an appropriate manner according to specific needs. The intersection
of the orthogonal roll and the pitch and the yaw axis of the optoelectronic platform coincide with
the intersection of the three virtual axes of the joint mechanism, which can realize the movement
requirements of the roll, pitch, and yaw angles of the image sensor. Figure 5 is a three-dimensional-model
and a physical diagram of the designed nonorthogonal three-axis optoelectronic platform with a
diameter of 300 mm and a height of 100 mm.
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In the design of the platform, a linear voice coil motor drive was introduced. The four linear
voice coil motors were symmetrically arranged in the three-axis intersection, and the center position
of the motor points was vertical to the three-axis intersection. The coil portions of the four motors
were respectively fixed to the base, and the permanent magnet portion of the motor was fixed to the
stage. The lower end of the stage was equipped with a nonmetallic material retaining ring for the limit
function of the roll and pitch angles, and the yaw angle limit post was mounted onto the base.

2.3. Drive Program Considerations

2.3.1. Voice-Coil-Motor Principle

The linear voice coil motor is a linear motor that was designed on the basis of the Lorentz force
principle. It converts electrical energy into mechanical energy and realizes linear motion, which can
eliminate the adverse effect of the intermediate transmission link on system performance. The regular
interaction of magnetic poles between the magnetic field of the magnetic steel and the magnetic field
generated by the energized coil conductor produces a regular motion [17,18].

Because the voice coil motor is a noncommutated power device, its positioning accuracy and
force control [19,20] are completely dependent on the feedback and control system. Accuracy is mainly
determined by the controller, and the influence of the voice coil motor is relatively small. With proper
positioning feedback and a sensing device, positioning accuracy and acceleration can achieve the
desired effect.

The magnitude of the force generated by the linear voice coil motor depends on design structure
and current intensity: F = B × L × I, where B represents the magnetic induction strength, L represents
the coil length, and I represents the current magnitude. The relationship between the current and the
generated force is expressed as torque sensitivity Kf in the use of a linear voice coil motor. The unit of
Kf was defined as N·m/A in the design.

The coil winding was placed in a uniform air-gap magnetic field, and the winding direction was
perpendicular to the direction of the uniform magnetic field. When the current flowed through the
winding, ampere force was generated to drive the load to reciprocate. By changing the strength and
direction of the current, amperage magnitude and direction can also be changed.

2.3.2. Voice-Coil-Motor Design and Analysis

The structure and size of the voice coil motor were designed, which included permanent magnets,
coils, and yokes, as shown in Figure 6. After the preliminary design, electromagnetic simulation
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software was used for verification, and the shape and related dimensions of the motor were modified
according to the results. After repeated iterations, simulation results reached the requirements.
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The NdFeB materials have excellent physical properties and low cost, which is why they are 
widely used in applications with high standards on motor weight and performance. In this paper, 
NdFeB was used as the permanent magnet material of the motor. The yoke was made of 
electromagnetic pure iron DT4C with high magnetic permeability and no residual magnetism. The 
coil was made of self-adhesive enameled wire. Therefore, the wound coil itself had sufficient 
mechanical strength and could be directly fixed to the mount by adhesive. No additional gimbal was 
required, and the weight of the moving part could be reduced. 

The magnitude of the ampere force applied to the coil was proportional to the strength of the 
magnetic field. Therefore, in order to obtain stable thrust and moment, a uniform magnetic field with 
as small of a change in the magnetic-field strength as possible should be generated within the stroke 
range of the coil. It can be seen from the simulation results of the voice coil motor in Figure 7 that 
magnetic-field strength changed little at the air gap of the permanent magnet that was close to the 
central position to the yoke, and the driving force generated by the coil was uniform. Therefore, the 
motion of the image sensor should be controlled as closely as possible to the central area. We selected 
the center area of the two magnetic poles and randomly chose the 19 points shown in Table 2. The 

Figure 6. Voice-coil-motor composition.

The NdFeB materials have excellent physical properties and low cost, which is why they are widely
used in applications with high standards on motor weight and performance. In this paper, NdFeB was
used as the permanent magnet material of the motor. The yoke was made of electromagnetic pure iron
DT4C with high magnetic permeability and no residual magnetism. The coil was made of self-adhesive
enameled wire. Therefore, the wound coil itself had sufficient mechanical strength and could be
directly fixed to the mount by adhesive. No additional gimbal was required, and the weight of the
moving part could be reduced.

The magnitude of the ampere force applied to the coil was proportional to the strength of the
magnetic field. Therefore, in order to obtain stable thrust and moment, a uniform magnetic field
with as small of a change in the magnetic-field strength as possible should be generated within
the stroke range of the coil. It can be seen from the simulation results of the voice coil motor in
Figure 7 that magnetic-field strength changed little at the air gap of the permanent magnet that was
close to the central position to the yoke, and the driving force generated by the coil was uniform.
Therefore, the motion of the image sensor should be controlled as closely as possible to the central
area. We selected the center area of the two magnetic poles and randomly chose the 19 points shown in
Table 2. The measured magnetic-field-strength regions and distribution trends are shown in Figure 8.
The magnetic field strength H was distributed around 3.9 × 105 A/m, which was relatively stable.
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field strength H distribution.

Table 2. Random magnetic field strength H test.

X/(mm) Y/(mm) Z/(mm) Value/(A/m)

0 155.409 −14.2893 399,684
0 155.47 −9.42965 414,104
0 155.278 −5.11711 417,289
0 155.086 1.77009 411,519
0 155.214 9.04349 396,813
0 155.597 15.9307 372,647
0 157.195 15.5445 357,277
0 157.131 9.75152 380,283
0 157.322 −9.68711 400,714
0 157.131 −14.8364 375,973
0 158.217 −13.9997 374,636
0 158.6 −8.20669 396,512
0 158.664 −0.160898 391,982
0 158.728 7.3056 377,198
0 158.089 12.9698 366,686
0 156.428 14.5146 371,012
0 156.747 9.68715 384,173
0 157.067 −9.62275 402,452
0 156.364 −14.9652 383,107

According to the design and simulation results, a linear voice coil motor was produced.
Peak voltage of the motor was 30.5 V, peak current was 3.6 A, and torque sensitivity Kf was 0.55 N·m/A.
Figure 9 shows the torque-sensitivity values for eight measurements, indicating that the voice coil
motor had good repeatability. The peak torque of the motor was 2 N·m, the continuous blocking torque
was 0.89 N·m, the range of motion was 6◦, and the total weight was 560 g.
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2.3.3. Voice-Coil-Motor Drive-Control Strategy

Since simple proportion integration (PI) control has a weak anti-interference ability, an interference
observer was added to enhance the anti-interference of the voice-coil-motor control. The basic idea
of the Disturbance Observer (DOB) is to input the difference between the actual object and nominal
model output caused by external torque disturbance and the change of model parameters equivalent
to the control terminal [21–23], that is, equivalent interference was observed, and an equal amount of
compensation was introduced in the control to achieve complete interference suppression. The basic
idea is shown in Figure 10.
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GP(s) is the transfer function for the object, d is the equivalent interference, d̂ is the observed
interference, and u is control input. From Figure 10, the estimated value d̂ of the equivalent
interference is:

d̂ = (ε+ d) ·GP(s) ·GP
−1(s) − ε

= d
(3)

The above formula shows that the above method can calculate accurate interference estimation
and compensation. For an actual physical system, interference-observer (Figure 10) implementation
has the following problems:

First, under normal circumstances, the relative order of GP(s) is not 0, and its inverse is physically
impossible; second, the exact mathematical model of object GP(s) is not available; third, considering
the influence of measurement noise, the control performance of the above method would decrease.

A natural idea to solve the above problem is to string a low-pass filter Q(s) behind d̂, and to
replace GP

−1(s) with the inverse, Gn
−1(s), of the nominal model Gn(s); the block diagram where the

interference observer is inside the dotted line is shown in Figure 11.
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In the figure above, ζ is measurement noise, and u, d, and ζ are the input. By the superposition
principle, system output y is:

y = GUY(s)u + GDY(s)d + GξY(s)ξ (4)

The following solutions were obtained:

GUY(s) =
GP(s)Gn(s)

Gn(s) + [GP(s) −Gn(s)]Q(s)
(5)

GDY(s) =
GP(s)Gn(s)[1−Q(s)]

Gn(s) + [GP(s) −Gn(s)]Q(s)
(6)

GξY(s) =
GP(s)Q(s)

Gn(s) + [GP(s) −Gn(s)]Q(s)
(7)

It can be seen from the four equations above that Q(s) is a very important link in the design of
the disturbance observer. Firstly, in order to make the Q(s)Gn

−1(s) regular, the relative order of Q(s)
should be no less than the relative order of Gn(s); second, the bandwidth design of Q(s) is a compromise
between robust stability r and the interference rejection capability of the interference observer.

Suppose Q(s) is the ideal low-pass filter, that is, in the low-frequency band, when f ≤ f 0, Q(s) = 1,
and in the high-frequency band, when f ≥ f 0, Q(s) = 0. At low frequencies, there is:

GUY(s) = Gn(s), GDY(s) = 0, GξY(s) = −1 (8)

The above equation shows that, in the low-frequency band, even if GP(s) , Gn(s) or there is
uncertainty, then the interference observer can still make the response of the actual object consistent with
the response of the nominal model, namely, the controller has a certain robustness to object parameter
variation. GDY(s) = 0 indicates that the interference observer completely suppresses low-frequency
interference in the Q(s) band. GζY(s) = −1 indicates that the disturbance observer is very sensitive to
low-frequency measurement noise. Therefore, in practical applications, appropriate measures must be
considered to reduce low-frequency noise in motion-state measurements.

In the high-frequency band, where Q(s) = 0, there is

GUY(s) = GP(s), GDY(s) = GP(s), GξY(s) = 0 (9)

The above equation shows that, at high frequencies, the disturbance observer is not sensitive
to the measurement noise, but it does not have an inhibitory effect on the perturbation of the object
parameters and external disturbances.
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3. Test and Results

The demonstration system was built to verify the drive and high-precision control technology of
the three-axis nonorthogonal aerial optoelectronic platform. We fixed the optoelectronic platform onto
the test turret, and connected the platform and power supply, monitor, and emulator to demonstrate
the parameters of the platform.

Taking the yaw axis as an example, the inner carrier of the rotating platform is controlled by the
voice coil motor to check angular-motion range, angular velocity, and angular-acceleration capabilities;
the servo control bandwidth of the optoelectronic platform was tested. By commanding the turntable to
make a sinusoidal motion according to the set value, we collected the gyro feedback characteristic curve
on the load connection board, verified the stability accuracy of the photoelectric platform, and verified
the stability of the optoelectronic platform. The physical diagram of the system demonstration device
is shown in Figure 12.
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3.1. Motion-Range Test

The optoelectronic platform was fixed on the analog turntable, and the joint shaft was driven
by driving the voice coil motor. The end of the joint shaft followed the shaft system to perform
the corresponding motion, and the angular-motion range was checked; test results are shown in
Figure 13. The stage had a range of motion of ±3.2◦ with respect to the base, thereby meeting system
specifications. Since the structure limits the movement angle of the platform to a certain extent, in the
actual design, the target parameter range of the image sensors should be fully considered, and the
angular relationship of the shaft system should be reasonably set.
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Pseudorandom noise disturbance was applied to the stage in the photoelectric platform, and a 
closed-loop servo control bandwidth test of the photoelectric platform was carried out; test results 
are shown in Figure 15. The stable servo control bandwidth was 60.2 Hz, which is far superior to that 
of traditional two-axis four-gimbal structures. 
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3.2. Stability-Accuracy Test

The analog turntable was turned on and it was controlled to perform a sinusoidal motion according
to 1◦ amplitude and 1 Hz frequency. At the same time, the feedback characteristic curve of the fiber-optic
gyroscope, fixedly connected with the stage, was collected, as shown in Figure 14. Test results showed
that the root-mean-square value of the disturbance error was 4.9958 microrad.
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3.3. System-Bandwidth Ttest

Pseudorandom noise disturbance was applied to the stage in the photoelectric platform, and a
closed-loop servo control bandwidth test of the photoelectric platform was carried out; test results are
shown in Figure 15. The stable servo control bandwidth was 60.2 Hz, which is far superior to that of
traditional two-axis four-gimbal structures.
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The proportion of the optoelectronic platform in the whole sphere space is shown in Figure 17. 
The joint drive mechanism only occupies part of the spherical crown space, and the center space of 
the sphere can be used to accommodate the image sensors, circuit boards, and other related devices. 
By calculating the volume comparison of the two parts, we found that the payload volume ratio of 
our aero-optical platform was 21,855,677.58:6,874,290.3 mm3 ≈ 3.18:1. 
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3.4. Motion-Speed Test

A traditional torque motor has poor speed-response characteristics, so it was necessary to measure
the speed of the system. Taking the yaw axis as an example, speed input with an angular velocity
of no less than 60◦/s and an angular acceleration of no less than 200◦/s2 was used for the step test,
and the gyro feedback step characteristic curve was acquired; test results are shown in Figure 16.
The measured angular velocity could reach 70◦/s, and we also calculated the angular acceleration of
the corresponding segment, which could reach 458◦/s2.
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The proportion of the optoelectronic platform in the whole sphere space is shown in Figure 17.
The joint drive mechanism only occupies part of the spherical crown space, and the center space of
the sphere can be used to accommodate the image sensors, circuit boards, and other related devices.
By calculating the volume comparison of the two parts, we found that the payload volume ratio of our
aero-optical platform was 21,855,677.58:6,874,290.3 mm3

≈ 3.18:1.
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4. Discussion

4.1. Platform Cost Considerations

The difference in structural form was largest between the driving form and the gimbal structure.
Compared with torque motors, the manufacturing process of voice coil linear motors is relatively
simple. It could obtain larger torque output under limited volume and weight, it has good dynamic
response characteristics, and it is cheaper. In addition, the number of supports for traditional platform
structures is relatively large, and some parts are difficult to process. For example, more important
support structure collimators, which are commonly used, cannot be produced by casting in small
batches, or even in single-piece production processes, while material removal can only be done by
machining. Many places that cannot be processed by tools can only be removed by means of material
processing, such as an electric spark. On the one hand, the processing cost is significantly increased,
and on the other hand, the EDM process cycle is long, which greatly increases the production cycle
of the equipment. Compared with a traditional aviation optoelectronic platform, this open structure
makes it easier to replace different image sensors to obtain the desired image according to the actual
situation, and the platform has a high utilization rate. In summary, the new platform has obvious cost
and cycle advantages over traditional platforms.

4.2. Platform Performance Analysis

Experiment results were verified for multiple indicators of the platform. The angular velocity of
the platform could reach 7◦/s and acceleration could reach 458◦/s2, which indicates that the designed
voice coil linear motor has a good dynamic performance, and the motor performance directly affects
servo bandwidth capability. The measured range of the movement angle of the platform was ±3.2◦.
Although the movement angle of the designed platform can be adjusted according to structural
changes, the structure needs to be changed, which increases the cost and cycle. It is not as flexible as a
traditional platform with large angles, which results in certain limitations in wide-FOV (field of view)
search applications.

The servo bandwidth was 60.2 Hz, which is significantly improved compared to a traditional
optoelectronic platform. High bandwidth enables the platform to quickly respond to recapture targets
when encountering external interference, such as sudden high-angle maneuvering of the aircraft or
wind disturbance that causes the target to exceed the sensor detection area, which can effectively
reduce image information. High bandwidth is a prerequisite for high system stability and accuracy.
The main problem in improving stability accuracy is that the system bandwidth is not high. In addition
to the bandwidth of the servo drive, bandwidth is also closely related to system structural stiffness,
friction, and the drive method. Stability accuracy was 4.9958 microrad, which is obviously improved
compared to a traditional platform. High stability accuracy guarantees high-quality image acquisition,
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and it is also the most important link for optical sensors to accurately capture targets and continuously
track them.

At present, traditional platforms are limited by structure and driving characteristics, so it is
difficult to obtain high stability accuracy, and the disadvantages are obvious in practical applications.
For example, for stable video, image stabilization is necessary. There are three main methods of image
stabilization: optical, mechanical, and electronic. Optical image stabilization is an optical sensor that
adaptively adjusts the optical path to stabilize an image. Electronic image stabilization uses electronic
algorithms to perform motion filtering and compensation on each video to obtain a stable image,
but with the drawback of the problem of field depth. Because the target in the scene is in a large
depth-of-field range, the relative position and size of each target in the image sequence changes with
the movement of the camera. Targets with different depths of field have different motion vectors. It is
impossible to stabilize both near and far vision with one level of compensation. Mechanical image
stabilization uses a gyro sensor and other devices to detect the shake of the camera platform, and then
adjusts the servo system to stabilize the image. High stability accuracy means that the servo system
has a good suppression effect on platform shake to obtain stable video.

In addition, due to the use of an open structure, compared to the two-axis four-gimbal structure,
this design can effectively increase the load-volume ratio, as well as the size and number of installed
image sensors, and can simultaneously replace the actual image sensors as needed. The replacement
rate of optical sensors has, therefore, been improved. In summary, the main parameters of the designed
platform and traditional platforms of the same level are compared in Table 3. In addition to the limited
movement angle, the bandwidth, stability accuracy, and load-volume ratio were significantly improved.

Table 3. Comparison of main index parameters between our platform and traditional platforms.

Optoelectronic Platform Nonorthogonal Triaxial (20 kg) Two-Axis Four-Gimbal (20 kg)

Servo bandwidth 60.2 Hz 30 Hz
Stability accuracy 4.9958 microrad 25+ microrad
Load-volume ratio 3.181 1:2.5

5. Conclusions

We proposed a nonorthogonal three-axis aviation optoelectronic platform that has a new structure
and driving method to improve the load-volume ratio and stability accuracy. The kinematics of
the nonorthogonal three-axis mechanism were studied. The structure adopted an open-space layout,
which improved the load plot ratio. The introduction of a voice coil motor drive reduced the transmission
of frictional disturbance in direct drive motors, and the use of proportional control combined with a
disturbance-observer drive control scheme effectively improved system performance. The platform
servo bandwidth was 60.2 Hz, which can quickly respond to external interference and reduce the lack of
image information. Stability accuracy was 4.9958 microrad, which guarantees that the image sensor can
obtain high-quality video-image information, and the target tracking was more stable. The load-volume
ratio was 3.18:1, which means that the platform can be loaded with more image sensors to meet
multitasking and multiscenario task requirements. Although the motion angle restricts the application
of a wide field of view, task requirements can be met by replacing large field image sensors.
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