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Abstract: Limited energy resources of sensor nodes in Wireless Sensor Networks (WSNs) make
energy consumption the most significant problem in practice. This paper proposes a novel,
dynamic, self-organizing Hesitant Fuzzy Entropy-based Opportunistic Clustering and data fusion
Scheme (HFECS) in order to overcome the energy consumption and network lifetime bottlenecks.
The asynchronous working-sleeping cycle of sensor nodes could be exploited to make an opportunistic
connection between sensor nodes in heterogeneous clustering. HFECS incorporates two levels of
hierarchy in the network and energy heterogeneity is characterized using three levels of energy
in sensor nodes. HFECS gathers local sensory data from sensor nodes and utilizes multi-attribute
decision modeling and the entropy weight coefficient method for cluster formation and the cluster
head election procedure. After cluster formation, HFECS uses the same techniques for performing
data fusion at the first hierarchical level to reduce the redundant information flow from the first-second
hierarchical levels, which can lead to an improvement in energy consumption, better utilization of
bandwidth and extension of network lifetime. Our simulation results reveal that HFECS outperforms
the existing benchmark schemes of heterogeneous clustering for larger network sizes in terms of
half-life period, stability period, average residual energy, network lifetime, and packet delivery ratio.

Keywords: hesitant fuzzy entropy; heterogeneous clustering; wireless sensor networks; opportunistic
routing; multi-attribute decision modeling; data fusion

1. Introduction

In WSNs, the wireless sensors are spatially distributed autonomous devices responsible for
sensing the change in the required physical phenomena of their surrounding environment using a
small microprocessor, a few transducers, a radio transceiver and a low-power battery [1,2]. These
wireless sensor devices collaborate with each other for data sensing, data collection and aggregation
purposes [2,3]. In order to reduce the communication overhead and to allocate resources to sensor
nodes effectively, we need a topology architecture in which sensor nodes are organized in clusters.
Each cluster includes one Cluster Head (CH) and several Cluster Members (CM) [4]. The multi-hop
routing used in clustering topology to forward the sensed data from source to destination results in the
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overall decrease in energy consumption and also reduces the interference among sensor nodes due to
specific allocation of timeslots for communication purposes [4,5]. The clustering topology in WSN can
effectively optimize the data redundancy by significantly reducing the size of the collected data using
data aggregation and data fusion techniques at CH level. The aggregated or fused data can then be
forwarded to the Base Station (BS) for further processing and accurate decision making of interested
events [4–6].

The recent literature shows that researchers have proposed a working–sleeping cycle strategy
in WSN to save battery power in case the sensor nodes are idle and not performing any of the
designated tasks. Alfayez et al. [7] discussed that the sensor nodes go to sleep to save their battery
power and wake up before performing their routine operations. These node scheduling techniques
can be categorized as synchronous and asynchronous working–sleeping scheduling. These node
scheduling techniques are designed in accordance with the scenario to prolong the network lifetime
and improve energy utilization by creating an opportunistic node connection between sensor nodes.
According to [8–12], Opportunistic Routing (OR) is a paradigm for wireless networks that benefits
from broadcast characteristics of a wireless medium by selecting multiple sensor nodes as candidate
forwarders. In [10–12], a set of nodes were selected as potential forwarders that transmitted the data
packet according to some special criteria after receiving data packet from their neighbors. This set of
sensor nodes is called a Candidate Set (CS). The performance of OR significantly depends on several
key factors, such as the OR metric, the candidate selection algorithm, and the candidate coordination
method. The idea of OR can also be exploited in clustering topology of WSN to extend network
lifetime, improve energy utilization, increase the packet delivery ratio (PDR) by adapting asynchronous
working-sleeping cycle strategy.

Entropy in information theory is employed in various fields involving data analysis. Entropy
uses the Probability Distribution Function (PDF) to statistically measure the degree of uncertainty in
information sources [13]. The entropy H(X) of a random variable X = {x1, x2, . . . xn} having probability
distribution as p(X) can be given as H(X) = −

∑
x∈X

p(x)log2p(x) for 0 ≤ H(X) ≤ 1 [14–16]. As we want

to utilize the functionality of information entropy in clustering WSN, it should be kept in focus that CH
or BS should not be hesitant or irresolute about any of their decisions regarding cluster formation and
data fusion. Keeping in view the opportunistic connection between sensor nodes in heterogeneous
clustering, we selected multiple parameters including an asynchronous working–sleeping cycle, status
transition frequencies, residual energy, link quality factor in terms of signal-to-noise ratio, distance
between sensor node and BS, and number of supported sensor nodes by a potential CH as our attributes
of hesitant fuzzy set. Furthermore, we need Multi-Attribute Decision Modeling (MADM) to efficiently
utilize our hesitant fuzzy set to generate hesitant fuzzy entropy matrix and determine our entropy
weight coefficients [14,15,17,18].

In this paper, we propose a hesitant fuzzy entropy based opportunistic clustering and data
fusion scheme in which a hesitant fuzzy set is created by acquiring the multi-attribute values of
sensor nodes. Moreover, the hesitant entropy matrix is generated after finding entropy values of each
attribute in the hesitant fuzzy set using data standardization process. Subsequently, the entropy weight
model [14,15,17] is employed to determine the entropy weight coefficients for each sensor node and,
finally, the threshold attribute values are determined and then compared with the original attribute
values for making a decision about new CH. This entire process is part of the CH election procedure
which is initiated by the BS and continued by every CH for all communication rounds. The BS creates
a CH election set and adds sensor nodes in this set which have original attribute values greater than
threshold attribute values. After that, the BS invokes these added sensor nodes by sending them a
CH election set message. Furthermore, the hesitant fuzzy entropy technique is also used for reliable
data fusion performed by CHs in such a way that CMs integrate and forward their sensed data to
the assigned CH by removing the redundant information from the sensed data. CHs perform data
aggregation on integrated data packets by concatenating them into a single larger data packet of a
specified length. Later on, CHs exploit hesitant fuzzy entropy and entropy weight coefficients to detect
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the change in sensed data periodically and then send the aggregated data to the BS upon detecting that
change in sensed data [19,20].

The rest of the paper is organized as follows: Section 2 describes the related research work
conducted for heterogeneous clustering in WSNs, entropy-based clustering schemes, hesitant fuzzy
entropy, and OR. System modeling is presented in Section 3. Our proposed scheme, HFECS,
is presented in Section 4. Section 5 describes the case study of HFECS in neighborhood area networks.
The performance evaluation and simulation results are described in Section 6. Finally, Sections 7 and 8
discuss and conclude the paper, respectively, and provide some future research directions.

2. Related Research Work

Various researchers have focused on proposing different routing protocols for WSNs based on
different parameters, such as end–end delay, successful packets delivered to sink, network lifetime,
overall energy consumption, control packet overhead, and sink node mobility, etc. Ogundile et al. [21]
presented a detailed survey for energy efficient and energy balanced routing protocols for WSNs.
The authors argued that energy efficiency, packet delivery ratio and average end–end delay are the
most critical and significant parameters for delay-tolerant and delay-sensitive applications involving
WSNs. Furthermore, in this survey, the taxonomy of cluster-based routing protocols for WSNs was also
discussed in terms of the energy efficiency and energy balancing aspects. Routing protocols in WSNs
can be segmented into two main categories, i.e., hierarchical and non-hierarchical routing protocols.
Non-hierarchical routing protocols are proposed on the basis of overhearing, flooding, and information
related to the advertisement of the sink’s position through agent node selection, whereas hierarchical
routing protocols are proposed on the basis of (i) grid-based, tree-based, cluster-based and area-based
routing. Different hierarchical routing protocols have their own merits and demerits, but as far as
cluster-based hierarchical routing protocols are concerned, researchers have been challenged with a
task of achieving an optimal balance between end–end delay and energy consumption [4–6,21].

Yang et al. [22] introduced an emerging concept—the ‘utilization of working–sleeping cycle’ of
sensor nodes to prolong the network lifetime. The working–sleeping cycle can be segmented into two
categories—synchronous and asynchronous working–sleeping cycle. Recent studies have revealed
that a synchronous working–sleeping cycle in sensor nodes could lead to an improvement in energy
consumption, but significant contribution is required for efficient synchronization of sensor nodes.
Ng et al. [23] presented an energy-efficient synchronization algorithm for sensor nodes in which
counter-based and exponential smoothing algorithms could improve the energy consumption using
adaptive adjustment of traffic and wakeup period. Moreover, the asynchronous working–sleeping cycle
strategy was explored in recent studies as well. Asynchronous working-sleeping schedules depend on
network connectivity requirements in terms of traffic coverage area [8,9]. Mukherjee et al. [24] proposed
an asynchronous working-sleeping schedule technique in which required network coverage was
achieved with a minimum number of awake sensor nodes. Due to the independent working-sleeping
cycle of each sensor node in asynchronous working-sleeping strategy, opportunistic node connection
can be established between sensor node and its neighbors, thus we need an Opportunistic Connection
Random Graph (OCRG) theory to form a spanning tree formation of sensor nodes having opportunistic
node connections between each other. In [25], Norman et al. proposed a novel random graph modeling
for heterogeneous sensor networks based on different transmission ranges and a new routing metric
supporting opportunistic node connections. Anees et al. [26] proposed an energy-efficient multi-disjoint
path opportunistic node connection routing protocol for smart grids (SGs) neighborhood area networks
(NAN) inspired by opportunistic connection random graph theory in WSNs with sink mobility. This
routing protocol reduces the overall energy consumption, increases the PDR, increases the network
lifetime and decreases the end–end network delay against existing benchmark schemes.

Many recent studies have addressed the problem of WSN clustering. Low Energy Adaptive
Clustering Hierarchy (LEACH) variants were proposed by Liang et al. [27], Handy et al. [28] and
Khediri et al. [29] in which each round of communication is segmented into two phases, i.e., (i) the setup
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phase, in which limited number of sensor nodes are selected as CH depending upon their probability
values and CMs of that CH, (ii) each CH assigns a particular timeslot to every CM in order to avoid
collision. Each CM forwards the sensed data only in that timeslot. Various researchers have also
proposed many variants of LEACH in [28–33]. Smaragdakis et al. [31] proposed the heterogeneous
aware Stable Election Protocol (SEP), which is based on weighted election probabilities of sensor nodes
for selection of CH depending upon their residual energies. In SEP, the energy heterogeneity problem
is characterized using node classification, in which nodes are either labeled as normal or advanced.
This protocol ensures that, during CH election procedure, CH is selected randomly based on the fraction
of energy of each sensor node, thus assuring a uniform energy usage of all sensor nodes. Foregoing
this view, Femi et al. [34] presented an extension of SEP which is known as SEP-Enhanced or SEP-E.
In SEP-E, the energy heterogeneity problem is characterized using a three-node classification, in which
nodes are labeled as normal, intermediate and advanced sensor nodes. According to [34], the main
goal of SEP-E is to achieve a robust self-configured heterogeneous WSN with a longer network lifetime
of sensor nodes and better energy utilization. Sharma et al. [33] proposed a Heterogeneity-aware
Energy efficient Clustering (HEC) protocol, which is based on three different phases and CH is selected
in every phase in a different manner, i.e., (i) in the first phase, sensor nodes labeled as advanced are
allowed to participate in CH selection, (ii) all sensor nodes, irrespective of their residual energies,
are allowed to participate in CH selection procedure with equal probabilities, (iii) for the last phase,
direct transmission to BS is preferred instead of clustering, due to low residual energy of sensor nodes.

Qing et al. [35] suggested a novel heterogeneous WSN supporting a Distributed Energy-Efficient
Clustering (DEEC) scheme in which energy heterogeneity is characterized using normal and advanced
sensor nodes. Additionally, Saini et al. [36] proposed an extension of the DEEC protocol which is
known as the Enhanced Distributed Energy-Efficient Clustering (E-DEEC) scheme, in which the energy
heterogeneity problem is addressed using three-node classification, i.e., normal, intermediate and
advanced. In E-DEEC, the CH selection probabilities are not adapted as per the energy levels of sensor
nodes. Javaid et al. [37] proposed a heterogeneous network model based on Enhanced Developed
DEEC (ED-DEEC or DEEC-E) which is established on two-node power classification and three energy
levels of sensor nodes for dynamically modifying the CH election probability. Manjeshwar et al. [38]
introduced a novel energy-efficient protocol known as Threshold sensitive Energy-Efficient Sensor
Network (TEEN) protocol for reactive networks. In TEEN, each CM in a cluster takes turns to become
the CH for a time interval, called the cluster period. After every cluster period, the CH broadcasts a
soft and hard threshold to its CMs along with other attributes. CMs only send the sensed data to its
CH by changing the status from working to sleeping, only if the data values are in the range of interest,
keeping in view the hard threshold. In addition to this, CMs send the data to CH by changing their
status from sleeping to working only if their data values change by at least the soft threshold. Although
there are no collisions between data transmissions due to TDMA scheduling, TEEN introduces an extra
delay during the reporting of time-critical data.

It has been revealed through a detailed literature review that most of the clustering schemes
consider attributes such as residual energy, distance to the BS, etc. as parameters of criteria. Meanwhile,
the Entropy-Based Clustering Scheme (EBCS) also considers cluster load in terms of supported sensor
nodes as a key parameter of criteria for the CH election procedure. [39]. The cluster load can be defined
as the number of CMs that can be efficiently handled and supported by the current CH. EBCS includes
remaining energy, distance to the BS, and the sum of distances to neighboring sensor nodes as other
parameters of criteria besides cluster load. In EBCS, a new method is introduced to predict the residual
energy at the start of the next round of communication based on consumed energy. This new method
is used to select the CH for next round of communication. Energy heterogeneity is characterized
using sensor nodes labeled as normal, intermediate and advanced in EBCS. In previous studies,
several researchers have adopted entropy weight coefficient method for making decision in clustering
environment [14–16,18]. Entropy weight-based multi-criteria decision routing is a routing technique in
which the next hop decision is based on Multi-Criteria Decision Analysis (MCDA) and Multi-Attribute
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Decision Modeling (MADM) using entropy weight coefficients [14,15,17,18]. Qiang et al. [16] presented
an optimization of objective and subjective weights based on fuzzy MADM routing for selection of
next best hop in a heterogeneous WSN. Authors in [16] utilized the entropy weight coefficient method
to avoid excessive deviation from the objective weights. Wang et al. [14] developed an index system
for capacity assessment using entropy weight coefficient method.

Xia et al. [40] discussed hesitant fuzzy information aggregation in decision making problems.
Xia et al. [41] discussed the hesitant fuzzy entropy, cross entropy, and their usage in MADM applications.
Su et al. [42] merged the fuzzy logic method with clustering in order to propose a new data fusion
method based on a fault tolerant WSN for improving the availability of communication bandwidth.
In order to reduce the data processing load on BS and efficiently distinguish the authenticity of archived
data, Izadi et al. [43] proposed a wireless sensor data fusion method based on fuzzy theory to improve
the service quality in WSNs. Chaurasia et al. [44] presented an adaptive fuzzy logic algorithm to
address the inaccuracies in data fusion. Zhai et al. [45] developed Hesitant Language Preference
Relationships (HLPR) to improve the credibility of WSNs by fusing uncertain information and putting
forward exact opinion about different WSN schemes. Wang et al. [19] proposed a novel data fusion
algorithm inspired by hesitant fuzzy entropy to reduce the redundant sensory data transfer in WSN
clustering. In this paper, we have utilized some ideas from state-of-the-art research and provided
a detailed solution for optimally handling problems like energy consumption and network lifetime
using a novel hesitant fuzzy entropy-based opportunistic clustering and data fusion scheme in WSN.

3. System Modeling

3.1. Network Model

In this paper, we considered a heterogeneous WSN in which all sensor nodes are deployed
uniformly in a field bounded by L× L

(
m2

)
region. Each static sensor node with a unique ID can acquire

its neighbors’ ID by sharing a probe message as discussed in [22,26]. Also, we assumed that all sensor
nodes follow the asynchronous working–sleeping cycle strategy with their working time as WV and
sleeping time as SV. In this model, we assumed that the BS has unlimited energy, storage space and
powerful computation capability for communication between CHs and the BS to collect the aggregated
sensory data and perform comprehensive evaluations for detection of an event. Furthermore, we also
assumed that each sensor node has its own CH and each sensor node has limited energy and limited
storage capacity.

Figure 1 illustrates our network model in which we have considered a single BS, some CHs and
many sensor nodes connected to each CH. It is evident from Figure 1 that each sensor node acting as
CMs or CHs and BS have fixed locations after deployment in the network. Each CH acquires the sensory
data from its CMs. CHs can communicate with the BS or any other CH directly or through multiple
hops. Moreover, every sensor node is aware of its position using the energy-efficient localization
method and we can estimate the distance between the CM and CH and the CH and BS using the
Relative Signal Strength Indicator (RSSI) parameter.

Anees et al. [26] utilized the OR in WSNs using the asynchronous working–sleeping cycle strategy
for sensor nodes deployed in neighborhood area networks (NANs) of smart grids (SGs). For the
efficient utilization of OR, we have to model it using the working–sleeping schedule (Wv/Sv), and the
status transition frequency (FST) of each sensor node in the network. As the concept of OR is quite
realizable in real-time scenarios of WSNs, we adopt the asynchronous working–sleeping cycle strategy
for every sensor node deployed in our network. The list of notations is given in Table 1.
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Figure 1. Network Model: heterogeneous wireless sensor networks (WSN) with three types of
sensor nodes.

Table 1. Notation description.

Notation Meaning Notation Meaning

En Initial energy of normal sensor nodes RL Long-radio range
Eint Initial energy of intermediate sensor nodes Wv/Sv Working/Sleeping schedule
Eadv Initial energy of advanced sensor nodes FST Status transition frequency
µ Energy weight factor of intermediate sensor nodes TFViV j Time-Frequency parameter
τ Energy weight factor of advanced sensor nodes RE Residual Energy of a sensor

Rint Ratio of intermediate sensor nodes LQR Link quality factor(S/N)
Radv Ratio of advanced sensor nodes DtoBS Distance to Base Station
Eelec Energy spent for running radio electronics Nsupport Number of supported sensors

l Number of bits EA(α) Hesitant Fuzzy Entropy
dViV j Euclidean distance b/w transmitter and receiver CA

(
α, αC

)
Cross Entropy

ε f s Energy dissipation in free space fading wi Entropy coefficient weight
εmp Energy dissipation in multi-path fading DFi Final data attribute value
N Number of sensor nodes CR Communication round

NC Number of clusters α(x)σi
ith value in fuzzy set

Esense Energy consumed during sensing lα(x) Length of fuzzy set

EA Energy consumed during aggregation α, β, γ, σ δ Weights for TFViV j , RE, LQR, DtoBS
and Nsupport

r Compression ratio LVCM(i)VCM( j) Link connectivity b/w CM(i) and CM(j)
RCC Communication–Computation ratio LVCHVCM( j) Link connectivity b/w CH and CM(j)
ECH Energy consumed by cluster head TCP Data Collection period
ECM Energy consumed by cluster member ζ CH Election procedure set

Ecluster Energy consumption of a cluster T Time period for sending aggregated data to
BS by CH

RS Short-radio range t Time period for sending integrated data to
CH by CM

3.2. Energy Model

We considered three different types of sensor node in terms of energy levels—i.e., normal,
intermediate and advanced. If En is the initial energy of normal sensor nodes, then the initial energy
of the intermediate and advanced sensor nodes should be higher than the normal sensor nodes by a

factor of µ =
(Eint−En)

En
and τ =

(Eadv−En)
En

, respectively. Using this information, we can determine the
total energy of the sensor nodes in Equation (1) as:

Etotal = N (En + Rint(Eint − En) + Radv(Eadv − En)) = NEn(1 + Rintµ+ Radvτ) (1)
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where N is the total number of sensor nodes in the network, Rint is the ratio of intermediate sensor
nodes and Radv is the ratio of advanced sensor nodes in the network. Furthermore, we considered the
simplified energy consumption model based on [26] for radio energy dissipation during transmission
and reception. According to this model, the energy required to transmit l bits of data over distance d
can be given in Equation (2) as:

ET
(
Vi, V j

)
=

 Eelecl + ε f sld2
ViV j

d < d0

Eelecl + εmpld4
ViV j

d ≥ d0
(2)

where Eelec is the energy spent by transmitter on running the radio electronics, ε f s is the energy
dissipated by power amplifier depending on the Euclidean distance dViV j between the transmitter
and receiver when free space fading is considered for distance less than do, and εmp is the energy
dissipated by power amplifier depending on Euclidean distance dViV j between transmitter and receiver
when multi-path fading is considered for distance greater than do. The threshold distance is given as

do =
√

ε f s
εmp

. Similarly, the energy required to receive l bits of data over distance d can be computed in
Equation (3) as:

ER = Eelecl (3)

Likewise, the energy spent by CM or CH at the beginning of each round for sensing l bits of
data can be analyzed as Esense = Eelecl. Here, we have assumed that the distance between CM and
CH is shorter than the distance between CH and BS. Thus, we use ε f s (free space fading model) for
communication between CM and CH and εmp (multi-path fading model) for communication between
CH and BS. Accordingly, the energy consumed by each CM can be calculated in Equation (4) as

ECM = Esense + ET = Eelecl + Eelecl + ε f sld2
ViV j

(4)

Each CH aggregates the received sensory data and then forwards it towards BS. The energy
consumed by each CH can be calculated in Equation (5) as

ECH = Esense +
(

N
NC
− 1

)
ER +

(
N

NC

)
lEA +

(
N
r

)
ET

= Eelecl +
(

N
NC
− 1

)
Eelecl +

(
N

NC

)
l Eelec

RCC
+

(
N
r

)
Eelecl

+
(

N
r

)
εmpld4

ViV j

(5)

where NC represents the number of clusters in the network, N
NC

is the working sensor nodes per cluster
in which we have 1 CH and N

NC
− 1 CMs. EA represents the energy consumed during aggregating data

packets at CH, r is the compression ratio and RCC is the communication to computation ratio used only
during aggregation in this case. It is pertinent to mention here that the total energy consumed in a
cluster is the sum of energies consumed by all CMs plus the energy consumed by their corresponding
CH. The total energy consumed by a cluster Ecluster is given in Equation (6) as

Ecluster = ECH +

( N
NC
−1)∑

i=1

ECMi (6)

4. The Proposed Scheme HFECS

Information entropy is the statistical measure of the degree of uncertainty of an information
source and it has always played a significant role in uncertainty decision analysis [13]. Likewise,
hesitant fuzzy entropy is defined as the statistical measure of degree of hesitant fuzzy uncertainty,
which depends on MADM to make a decision about certain events. In heterogeneous clustering
schemes of WSNs, the role of CH within a cluster needs to be substituted using some decision criteria
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in order to avoid the hotspot problem. Using a single parameter such as the energy level of the sensor
nodes is not sufficient enough to make an accurate decision about CH selection after every round of
communication. In order to ensure that the best possible working sensor node is chosen as CH in
every round of communication, we have to incorporate MADM in our clustering scheme. The hesitant
fuzzy set including multi attributes and alternatives could help us out in implementing MADM for
opportunistic clustering in WSNs [40,41].

Our main objective is to design a hesitant fuzzy entropy-based self-organizing opportunistic
clustering scheme which can prolong the network lifetime and bring an improvement in overall
energy consumption of sensor nodes. In our proposed scheme, we determined the entropy weight
coefficients using hesitant fuzzy entropy to select the best possible CH through election procedure and
perform reliable data fusion at CH level to reduce the information flow. Since we are dealing with
MADM problem, we considered several parameters like time frequency parameter TFViV j (depends
on Wv/Sv and status transition frequency FST), residual energy RE, link quality factor LQR in terms
of signal-to-noise ratio, distance to BS DtoBS, and number of supported sensor nodes Nsupport as our
different attributes of hesitant fuzzy set to compute the hesitant fuzzy entropy.

We have three different types of nodes in our network which can lead to energy heterogeneity
and might result in three different types of CH, i.e., CHnormal,CHint, and CHadv, with the initial energy
En, Eint, and Eadv, respectively, but in order to avoid frequent change in the CH role, we used only
two different types of CH, i.e., CHint and CHadv, for calculating Nsupport. However, the percentage
of energy consumption for CHint (ECH/Eint) is more than that of CHadv (ECH/Eadv) due to the reason
that Eadv > Eint. As the consumed energy in relation to available energy is uneven for CHs, it leads
us to determine the optimum number of sensor nodes which can be supported by each type of CH.
Therefore, we used the remaining energy and average of Eint and Eadv to find the optimum number of
sensor nodes supported by both CHint and CHadv in Equation (7) as:

Nsupport =
(Etotal − Econsumed) ∗ (N −NC)(

NC ∗
(Eint+Eadv)

2

) (7)

4.1. CH Election Procedure

Based on the sensory data being generated by sensor nodes, we make a decision about CH
role in the cluster using TFViV j , RE, LQR, DtoBS and Nsupport. But before that, we have to construct
the hesitant fuzzy entropy matrix and determine the corresponding weight coefficents of each
attribute. Subsequently, the attribute values are synthesized to determine the threshold attribute values.
The threshold attribute values are then compared with original attribute values of each sensor node.
Based on their comparison, the BS selects the sensor nodes with original attribute values greater than
threshold attribute values and add those sensor nodes in CH election set.

The entropy measures for hesitant fuzzy set were already discussed by Xu et al. in [40] and Xia
et al. in [41]. Due to the fact that hesitancy is a common problem in decision making problems, we
need to develop some entropy or cross entropy measures for hesitant fuzzy sets. Wang et al. in [19]
discussed that if X is a fixed set and the hesitant fuzzy set α when applied on X returns a subset in
[0,1]. Let lα(x) be the number of values in α(x) where α(x)σi

be the ith smallest value in α(x) in which

i =
{
1, 2, . . . lα(x)

}
. In order to find the cross entropy of two hesitant fuzzy sets, i.e., α and β, we assume

that both of them have same length, or, if there is only one value in α, we extend it by repeating that
value until it reaches the length of β. Moreover, if there is only one hesitant fuzzy set, then we use α
and αC(complement of α) in the cross-entropy and calculate the hesitant fuzzy entropy in Equations (8)
and (9) as

EA(α) = 1 − CA
(
α, αC

)
(8)
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where CA
(
α, αC

)
= 2

lαT

lα∑
i=1

(
(1+qασ(i)) ln(1+qασ(i))+(1+q(1−ασ(lα−i+1))) ln(1+q(1−ασ(lα−i+1)))

2 −

2+qασ(i) q(1−ασ(lα−i+1))
2 ln

2+qασ(i) q(1−ασ(lα−i+1))
2

)
q > 0

EA(α) = 1 − 2
lαT

lα∑
i=1

(
(1+qασ(i)) ln(1+qασ(i))+(1+q(1−ασ(lα−i+1))) ln(1+q(1−ασ(lα−i+1)))

2

−
2+qασ(i) q(1−ασ(lα−i+1))

2 ln
2+qασ(i) q(1−ασ(lα−i+1))

2

)
q > 0

(9)

where T = (1 + q) ln(1 + q) − (2 + q)(ln(2 + q) − ln(2)), q > 0. Then, we calculate the entropy weight
coefficients for all sensor nodes using Equation (10) after generating entropy matrix using Equation (9).

wi =
1− Ei

r−
∑r

i=1 Ei
(10)

where 0 ≤ wi ≤ 1,
r∑

i=1
wi = 1 and Ei =

1
r

r∑
i=1

E
(
α ji

)
. In the next step, we find the average data value

of attributes in measured value matrix, i.e., Di =
1
lα

lα∑
i=1

ασ(i) and then synthesize the value of each

attribute to find the threshold attribute value using Equation (11) as:

DFi =
1
r

r∑
i=1

wiDi (11)

The decision about placing sensor nodes in CH election set depends on the comparison between
the original attribute values of sensor nodes in a cluster with that of threshold attribute values. A sensor
node can be placed in the CH election set only if the maximum of its original attribute values is greater
than the threshold attribute values generated from Equation (11). The pseudocode for this procedure
is given in Algorithm 1.
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Algorithm 1. CH Election Procedure in HFECS

Input: Multi-Attribute values of each sensor node
Output: Sensor nodes in CH election set
Begin:
1. r: number of attributes
2. s: number of sensor nodes
3. α: attribute value
4. for i = 1 to r, do
5. for j = 1 to s, do
6. Measure the attribute values for all the sensors
7. Formation of measured value matrix
8. Standardize the attribute values of all sensors
9. end for

10.
Generate the hesitant entropy decision matrix

after standardization of each attribute value

11.
Calculate the hesitant fuzzy entropy using

EA(α) = 1 − CA
(
α, αC

)
12.

Refer to Equations (8) and (9) for calculation of
cross entropy CA

(
α, αC

)
13.

Generate the entropy matrix based on calculated
hesitant fuzzy entropy for all attributes

14. end for

15.
Find the entropy value of each attribute using

Ei =
1
r

r∑
i=1

E
(
α ji

)
16. for i = 1 to r, do

17.
Determine the weight value wi for all sensor

nodes using Equation (10)
18. end for

19.
Find the average data value in measured value

matrix, i.e., Di =
1
lα

lα∑
i=1

ασ(i)

20. for i = 1 to r, do

21.
Synthesize the value of each attribute to find the

threshold value using Equation (11)
22. if (sensor node with ασ(i) > DFi), then

23.
Add k sensor nodes with highest (ασ(i) > DFi)

in CH Election Set
24. end if
25. end for

4.2. Cluster Formation

In HFECS, the BS executes the election procedure and creates a CH election set. Initially, when
CR = 1, the BS adds k sensor nodes with highest values of ασ(i) in the CH election set after executing
the election procedure given in Algorithm 1 and then invokes those k sensor nodes by sending them a
CH_Election_set message. After receiving the CH_Election_Set message from the BS, the potential
CH starts preparing its CH_announce message and then send this message to all working neighbors
in that cluster to advertise its role as a potential CH. The pseudocode for this procedure is given in
Algorithm 2.
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Algorithm 2. HFECS (BS Side)

Input: CH election procedure
Output: Potential CH advertising its role and making local decision for data fusion
Begin:
1. if (CR = 1), then
2. BS executes the CH election procedure
3. BS creates a CH election set

4.
BS adds k sensor nodes in CH election set with

highest (ασ(i) > DFi)

5.
BS invokes k working sensors with highest

attribute values in CH election set by sending
6. CH_Election_Set message
7. end if
8. Wait for collected data from CHs
9. if (final prediction result received from CH), then

10.
Evaluate the collected data to determine the

possibility of event happening
11. if (event happened)
12. Perform standard operation procedure
13. end if
14. end if

If the CH_announce message is sent by multiple potential CHs, then CMs send Connection
Request ‘Con_Req’ message to the CH with highest attribute values ασ(4) > DF4. For example, if a
neighboring sensor node receives CH_announce from multiple potential CHs, then the sensor node
becomes a cluster member of that CH which offers better link quality with that neighboring sensor
node in comparison to other CHs. However, if the CH_announce message is sent by a single potential
CH, then CMs send a Con_Req message to that CH without any delay. Meanwhile, the new CH creates
a CM_set and adds all the working CMs in CM_set after receiving the Con_Req messages from CMs.
Subsequently, the new CH transmits the TDMA schedule to all CMs in that cluster, keeping in view
the asynchronous working–sleeping cycle of CMs. This TDMA schedule for every CM should be
selected vigilantly from a CH as the timeslot for forwarding the sensory data to the CH should be
within working time of that CM. Each CM extracts its own CM timeslot from the TDMA schedule sent
by the CH, stores the CM timeslot in its local buffer and waits until the CM timeslot becomes current
timeslot. The pseudocode for CM task execution is given in Algorithm 3.

The construction of OCRG is very important to understand the asynchronous working–sleeping
cycle of sensor nodes. Therefore, we need to construct an OCRG to analyze the opportunistic
connections between CM-CH and CM-CM in a heterogeneous WSNs. When the CM timeslot becomes
the current timeslot, VCM(i) calculates its link connectivity with VCM( j) in terms of time-frequency
parameter, residual energy, LQR, distance from the BS and Nsupport as per Equation (12),

LVCM(i)VCM( j) =
max

VCM ∈ S j

{
αTFVCM(i)VCM( j) + βRE,VCM(i)VCM(J) + γS/NVCM(i)VCM( j) + σDtoBS(CM(i)) + δNsupport(CM(i))

}
(12)

where i = j = 1 : N
NC
− 2, TFVCM(i)VCM( j) is the time-frequency parameter between VCM(i) and VCM( j),

RE,VCM(i)VCM( j) is the residual energy of node VCM(i) and VCM( j), S/NVCM(i)VCM( j) is the link quality factor
between VCM(i) and VCM( j), DtoBS(CM(i)) is the distance to the BS from VCM(i) and Nsupport(CM(i)) is
the number of sensor nodes supported by VCM(i) in case VCM(i) becomes VCH. α, β, γ, σ and δ are
the appropriate weights assigned to time-frequency parameter, residual energy, link quality factor,
distance to the BS and number of supported sensor nodes, respectively. The time-frequency parameter
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depends on working-sleeping cycle Wv/Sv and status transition frequency FST. We can calculate the
time-frequency parameter TFVCM(i)VCM( j) using Equation (13) as

TFVCM(i)VCM( j) =

FSTVCM(i)

FSTmax

×

WVCM(i)

TCP

FSTVCM( j)

FSTmax

×

WVCM( j)

TCP

 (13)

where WVCM(i) and WVCM( j) are the total working time of the adjacent nodes VCM(i) and VCM( j), TCP is
the data collection period, FSTCM(i) and FSTCM( j) are the status transition frequencies of the adjacent
nodes VCM(i) and VCM( j), and FSTmax is the max status transition frequency value obtained during TCP.
Then, VCM(i) acquires the sensory data, integrates it while removing the redundant information, and
forwards the integrated data along with the link connectivity information to the current CH.

Algorithm 3. HFECS (CM Side)

Input: CH election procedure executed
Output: Executing all tasks relevant to CM after CH election procedure
Begin:

1.
if (CH_Announce message received from multiple

potential CH), then

2.
Send the Con_Req to potential CH with highest

attribute value ασ(4) > DF4

3.
else if (CH_Announce message received from

single potential CH), then
4. Send the Con_Req to that potential CH

5.
else Wait till the CH_Announce message is

received from any potential CH
6. end if

7.
Wait till the TDMA schedule is received from new

CH

8.
if (TDMA based schedule received from new CH),

then

9.
Store the schedule (especially CM timeslot) in

local buffer
10. if (timeslot = CM timeslot), then

11.
Calculate Link connectivity of VCM(i) with

VCM( j) using Equation (12)

12.
Integrate data and remove the redundant and

identical info. for every time period T

13.
while DTi , DTi−1 , do // detecting the change

in integrated data

14.
Transmit the integrated data DTi to CH

along with LVCM(i)VCM( j)

15. end while
16. else if (timeslot , CM timeslot), then
17. Wait until timeslot = CM timeslot
18. end if
19. end if

Besides the benefits of hesitant fuzzy entropy in the CH election procedure of heterogeneous
clustering scheme, it can also help in predicting an event in the heterogeneous clustering scheme and in
reducing the number of transmissions in the network by applying reliable data fusion. Let us assume
that CH requires time period T to transmit aggregated data packet to BS, and CM requires time period
t to transmit the integrated data to CH where T = nt. Moreover, we considered context-based data
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forwarding, which means that when the CH receives the integrated data from VCM(i), it performs
lossless aggregation by concatenating multiple data packets into single packet of specified length.
In addition, CH also standardizes the received integrated data, calculates the hesitant fuzzy entropy and
assign corresponding weight coefficients to integrated data of all sensor nodes. Then, CH synthesizes
the attribute values of each sensor node to determine the threshold attribute values. After that,
the threshold attribute values are compared with original attribute values to make a decision about
data forwarding to the BS. If the original attribute values (current integrated data) are greater than
threshold attribute values, it means that integrated data is changed after time period T, only then the
CH transmits the result to the BS so that the BS can initiate the Standard Operating Procedure (SOP)
accordingly against the event occurred in the cluster, but if the original attribute values are less than
threshold attribute values, it means that the integrated data are not changed after time period T and
CHs do not need to forward the integrated data to the BS. In this case, CHs should wait for time period
t so that more sensory data are available.

After forwarding the aggregated data packets to BS, CH calculates the link connectivity with all
of its CM as given in Equation (14),

LVCHVCM( j) =
max

VCM ∈ S j

{
αTFVCHVCM( j) + βRE,VCHVCM( j) + γS/NVCHVCM( j) + σDtoBS(CH) + δNsupport(CH)

}
(14)

where TFVCHVCM( j) is the time-frequency parameter between VCH and VCM( j), RE,VCHVCM( j) is the residual
energy of VCH and VCM( j), S/NVCHVCM( j) is the link quality factor between VCH and VCM( j), DtoBS(CH)

is the distance to the BS from VCH and Nsupport(CH) is the number of sensor nodes supported by VCH.
In this paper, the decision about the next CH is based on the link connectivity information of current
CH and CMs. For each VCM(i) in CM_set, we compare the link connectivity LVCHVCM( j) with that of
LVCM(i)VCM( j)

(i , j). If LVCHVCM( j) > LVCM(i)VCM( j) , we add VCH in CH_Election_Procedure set ζ but if
LVCHVCM( j) < LVCM(i)VCM( j) , then we add VCM(i) to CH_Election_Procedure set ζ.

If the current VCH is the only sensor node in CH_Election_Procedure set ζ, then current VCH will
be the new VCH for next round CR+1 but if there is only one sensor node in the CH_Election_Procedure
set ζ and VCH < ζ, then the sensor node VCM present in ζwill be the new VCH for the next round CR+1.
However, if sensor nodes present in ζ are more than 1, then the current CH executes the CH election
procedure using hesitant fuzzy entropy and selects the VCM based on highest (ασ(i) > DFi) criteria.
Subsequently, the current CH sends the CH_Election_Set message to the new CH. Upon receiving
the CH_Election_Set message, the new CH needs to multicast the CH_announce message to its CMs
in order to advertise its role as a potential CH. The pseudocode for CH task execution is given in
Algorithm 4.
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Algorithm 4. HFECS (CH Side)

Input: CH election procedure executed by BS
Output: CH decision and local data fusion decision using HFECS
Begin:
1. if (CH_Election_Set message received), then

2.
Start preparing CH_Announce message in order

to advertise your role as potential CH

3.
Send CH_Announce message to neighboring

sensor nodes S j which are in working mode
4. end if

5.
Wait till the Con_Req message is received from

neighboring S j

6.
if (Con_Req message is received from neighboring

S j), then
7. CH creates a cluster member set, i.e., CM_set
8. Add the neighboring S j in CM_set
9. end if

10.
if (all working S j in a cluster are part of CM_set of

their new CH), then

11.
Each new CH transmits the TDMA schedule to

all CMs keeping in view the
12. working-sleeping cycle of CMs
13. end if

14.
if (integrated data received from S j|S j ∈ CM_set),

then

15.
CH performs aggregation on multiple data

packets received from S j by concatenating
16. into a single file of specified length

17.
CH standardizes the data received from S j,

calculates the hesitant fuzzy entropy and weights

18.
CH synthesize the attribute values of sensor

nodes to determine threshold attribute values

19.
CH compares the original attribute value with

that of threshold attribute values

20.
if (original attribute values are greater than

threshold attribute values after T), then

21.
CH periodically transmits the aggregated

data to BS

22.
else if (original attribute values are less than

threshold attribute values after T), then

23.
CH will not transmit the aggregated data to

BS
24. end if
25. end if

26.
Calculate Link connectivity of CH with its cluster

members using Equation (14)
27. for each cluster member VCM(i) in CM_set, do
28. if (LVCHVCM( j) ≥ LVCM(i)VCM( j) ), then
29. Add VCH to CH_Election_Procedure set ζ
30. else if (LVCHVCM( j) < LVCM(i)VCM( j) ), then
31. Add VCM(i) to CH_Election_Procedure set ζ
32. end if
33. end for
34. if (ζ = 1) and VCH ∈ ζ, then
35. VCH will be new VCH for next round CR+1

36. else if (ζ = 1) and VCH < ζ

37. VCM will be new VCH for next round CR+1

38. else if (ζ > 1)

39.
VCH executes the CH election procedure and

selects new CH with highest (ασ(i) > DFi )

40. VCH sends CH_Election_Set message to new CH
41. end if



Sensors 2020, 20, 913 15 of 28

4.3. Packet Overhead Calculation

In our proposed scheme, each CH acquires the integrated sensed data from its CMs and then
forwards the aggregated data to BS after detecting the change in integrated data for every time period
T. In our paper, the hesitant fuzzy entropy balances the network load during CH rotation in successive
rounds of communication when applied on MADM. Let us assume that we have O(NW) exchanged
packets as an overhead in which NW is the number of working sensor nodes in the network. If we
assume that k is the number of CHs per round, then we can calculate the overhead packets as:

• k packets used for broadcasting CH_Announce by all CHs.
• NW − k packets in terms of Con_Req by working CMs.
• k packets used for broadcasting TDMA schedule to working CMs in CM_set by all CHs.
• NW − k packets used for sending data to CHs by working CMs.
• k packets used for forwarding data to the BS by all CHs in case if final prediction result is changed

after time period T.
•

N
NC
− 1 packets received by all CHs from their CMs for link connectivity calculation.

•
N

NC
−1 packets received by all CMs from their neighboring CMs and current CH for link connectivity

calculation comparison.
• k packets used for the CHs rotation in case if all CHs select one of its CMs as the next CH.

Therefore, the overhead of HFECS will be O(NW) as k� N
NC
� NW .

5. Case Study: HFECS in Neighborhood Area Networks

In this paper, we have described the opportunistic clustering mechanism based on hesitant fuzzy
entropy using several parameters, such as the time-frequency parameter, residual energy, LQR, distance
from the BS and Nsupport. Anees et al. in [26] proposed an energy-efficient multi-disjoint path
opportunistic node connection routing protocol for smart grids in which the OCRG was utilized to
calculate the link and path connectivity between sensor nodes for data forwarding purposes. Likewise,
we have considered the neighborhood area networks (NANs) of smart grids in our case study to prove
the significance of hesitant fuzzy entropy in heterogeneous clustering of WSNs. If we make an analogy
between heterogeneous clustering and NANs of SGs, we can consider the NAN gateway as the CH and
the several Home Area Network (HAN) gateways connected to the NAN gateway as CMs connected
to their CH, as shown in Figure 2. Furthermore, the Access gateway in NANs can be considered as the
BS, which receives the aggregated data from multiple NAN gateways and forwards it to the control
center [46]. In this case study, we can see how the efficient use of hesitant fuzzy entropy can help us in
making the CH election decision and also perform reliable data fusion.

We have selected the measured values of six attributes from five sensor nodes placed randomly in
a cluster. It is important to mention here that for this case study we considered the network area as
centralized NAN for SGs communication. As each of the attributes have different [min max] values,
so we needed to perform the data standardization in order to bring all the attributes on the same
scale and to convert our measured data values into hesitant fuzzy set. So, we divided the attribute
values into 10 parts according to their [min max] values and then assign values corresponding to
0–1.0. Table 2 represents the interval for each attribute used for data standardization whereas Table 3
represents the measured value of attributes for all sensor nodes. Different monitoring values for each
attribute indicate that data acquisition cycle for each sensor node is different due to the asynchronous
working-sleeping cycle strategy. For example, for the attribute time-frequency parameter in Table 3,
its measured values are normalized to {([0,10]→ [0,0.1]), ([10,20]→ [0.1,0.2]), . . . ([60,70]→ [0.6,0.7]),
. . . ([90,100]→ [0.9,1])}. Similarly, for residual energy, the standardized attribute values will be {([0,0.25]
→ [0,0.1]), ([0.25,0.5]→ [0.1,0.2]), . . . ([1.5,1.75]→ [0.6,0.7]), . . . ([2.25,2.5]→ [0.9,1])}. The procedure
of data standardization is the same for all other attributes mentioned in Table 3, along with their
intervals, but for attribute ‘Distance to BS’, the standardized values are {([150,136]→ [0,0.1]), ([136,122]
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→ [0.1,0.2]), . . . . . . ([66,52]→ [0.6,0.5]) . . . ([24,10]→ [0.9,1.0])} because if ‘Distance to BS’ is minimum,
then we can have better connectivity with BS.Sensors 2020, 20, x 15 of 28 
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Table 2. Interval for each attribute used for data standardization.

Time-Frequency
Parameter

Residual
Energy

Remaining
Buffer

Capacity
LQR Distance to BS Nsupport

Interval
[min,max] [0,100] [0,2.5] [0,100] [10,15] [150,10] [0,40]

Table 3. Measured value after screening matrix.

Time-Frequency
Parameter

Residual
Energy

Remaining
Buffer

Capacity
LQR Distance to BS Nsupport

S1 {70,65,60} {2,1.8,1.6} {78,75,73} {11.5,11,10.5} {110} {30,27,25}
S2 {65,60,55} {1.9,1.85,1.83} {65,63,62,60} {12} {50,49} {29,28,27}
S3 {65,60} {1.9,1.7,1.5,1.3} {90,87,84,82} {12.5,11.9} {45} {29,26,24}
S4 {54,51,48,45} {2.2,2,1.8} {80,78,77} {13.5,13,12.8} {42,40} {33,30}
S5 {67,63,59,55} {2.1,1.9} {95,92,91} {14,13.8,13.5} {39,38,36} {31.5,29}

Table 4 shows the corresponding hesitant fuzzy sets after the data standardization process.
We utilized the hesitant fuzzy sets to compute hesitant fuzzy entropy using Equation (12) to acquire
the statistical measure of uncertainty in our decision analysis for the CH election procedure and data
fusion by CH. Table 5 represents the hesitant fuzzy entropy of each attribute used in our case study.
After generating the hesitant fuzzy entropy matrix, we determined the entropy weight coefficients
using Equation (13). Table 6 represents the entropy weight coefficients of all sensor nodes, i.e.,
Wi = [W1,W2, . . .Wr−1, Wr]

T
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Table 4. Hesitant fuzzy decision matrix.

Time-Frequency
Parameter Residual Energy Remaining

Buffer Capacity LQR Distance to BS Nsupport

S1 {0.7,0.65,0.6} {0.8,0.72,0.64} {0.78,0.75,0.73} {0.3,0.2,0.1} {0.29} {0.75,0.69,0.63}
S2 {0.65,0.6,0.55} {0.76,0.74,0.73} {0.65,0.63,0.62,0.6} {0.4} {0.7,0.71} {0.74,0.7,0.68}
S3 {0.65,0.6} {0.76,0.68,0.6,0.52} {0.9,0.87,0.84,0.82} {0.5,0.38} {0.75} {0.74,0.65,0.6}
S4 {0.54,0.51,0.48,0.45} {0.88,0.8,0.72} {0.8,0.78,0.77} {0.7,0.6,0.56} {0.76,0.78} {0.82,0.75}
S5 {0.67,0.63,0.59,0.55} {0.84,0.76} {0.95,0.92,0.91} {0.8,0.76,0.7} {0.79,0.8,0.81} {0.79,0.74}

Table 5. Entropy matrix.

Time-Frequency
Parameter

Residual
Energy

Remaining
Buffer

Capacity
LQR Distance to BS Nsupport

S1 0.912 0.809 0.747 0.643 0.942 0.858
S2 0.961 0.767 0.918 0.987 0.890 0.832
S3 0.959 0.897 0.325 0.991 0.918 0.895
S4 0.999 0.644 0.683 0.943 0.808 0.786
S5 0.937 0.763 0.276 0.747 0.644 0.815

Table 6. Entropy coefficient weight values.

Ei 0.8185 0.8925 0.8308 0.8105 0.6970

Wi 0.1909 0.1131 0.1779 0.1993 0.3187

Moreover, the average values of all attributes in Table 2 and entropy weight coefficients in Table 6
were used to compute the threshold attribute values using Equation (14). As we have six attributes in
total, so the six threshold attribute values in our case study are DF1 = 59.6252, DF2 = 1.8748, DF3 =

81.8583, DF4 = 12.5952, DF5 = 54.7839, DF6 = 28.9909. Consequently, we compare the measured
attribute value of each sensor with that of theshold attribute value in Table 7. Here, we considered the
attributes with the three highest entropy coefficient weights, i.e., TFViV j , DtoBS and Nsupport.

Table 7. Comparison of measured attribute values with threshold attribute values for CH
election decision.

ασ(1) > DF1 ασ(5) < DF5 ασ(6) > DF6 CH Election Set CH Election Decision

S1 Yes No Yes No

S5 will be CH as it has
highest attributes values

S2 Yes Yes Yes Yes
S3 Yes Yes Yes Yes
S4 No Yes Yes No
S5 Yes Yes Yes Yes

According to Table 7, only three sensors fulfill our criteria after comparing the measured attribute
values with threshold attribute values. The BS puts the sensor nodes with highest (ασ(i) > DFi) in CH
election set and then invokes those sensor nodes in the CH election set. Hence, in this case study, only
S5 will be selected as the CH, but in reality, the whole process is much more complex than the one
mentioned in this case study due to interference, overhead and energy constraints.

6. Performance Evaluation

6.1. Simulation Environment

In order to validate the effectiveness of HFECS, we evaluate the performance of our proposed
scheme in MATLAB R2018a simulator using cross platform libraries such as MEX-API for simulating
WSNs [47]. This Application Programming Interface (API) can provide the user with an easy
bidirectional connection interface between MATLAB and OMNET. In our simulation environment,
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150 sensor nodes were randomly placed in a variable network area, i.e., 100 × 100, 150 × 150, 200 ×
200, 250 × 250, 300 × 300 and 350 × 350 m2 on a 2-D plane with the BS as the network center. Here,
we assumed that the BS has no energy constraints due to unlimited power supply but the randomly
deployed sensors have limited battery power and we need asynchronous working-sleeping scheduling
for their energy replenishment. The parameters used in this simulation are defined in Table 8.

Table 8. Simulation Table.

Parameters Values

Network Area (M ×M) 100 × 100, 150 × 150, 200 × 200, 250 × 250, 300 × 300,
and 350 × 350

Number of sensor nodes (N) 150
En, Eint and Eadv 1.5 J, 2 J and 2.5 J
Rnormal, Rint, Radv 40%, 35%, 25%
MAC layer IEEE 802.15.4
Eelec 50 × 10−9 J/bit
ε f s 10 × 10−12 J/bit/m2

εmp 0.0013 × 10−12 J/bit/m4

Energy consumed during aggregation EA 5 × 10−9 J/bit
Energy consumed by CH during data fusion 5 × 10−12 J/bit
(Data + Overhead) Packet size 4096 bits

In our simulation, CHs send aggregated data to the BS after every T = 100 s and CMs send
integrated sensed data to CH after every t = 20 s where n = T

t = 5. We calculated the total energy of
our network in terms of Rnormal,Rint, Radv and En, Eint and Eadv as 288.11 J. We utilized the energy model
defined for our MAC layer (IEEE 802.15.4) to compute the energy consumed during data transmission,
reception and sensing. Additionally, we also utilized the IEEE 802.15.4 MAC Layer specifications for
data rate and data packet size. It is pertinent to mention here that we considered various studies for
acquiring the parameters like EA, ε f s, εmp and energy consumed by CHs during data fusion [19,39].
The performance of our proposed scheme is evaluated by comparing it with various routing protocols
like SEP-E [34], DEEC-E [37], EBCS [39] and TEEN [38] based on the performance metrics like stability
period, half-life time, average residual energy, network lifetime and PDR.

• Stability period—can be defined as the time difference between two specific points. The first point
is when the simulation starts and the second point is when first sensor node dies.

• Half-life time—can be defined as the time duration from start of the network simulation until
the time when 50% of the sensor nodes have no residual energy left to continue their data
delivery tasks.

• Energy Consumption—can be defined as the total energy consumed in the network during data
transmission, reception, sensing, status transitions (CM→ CH ) and aggregation functions.

• Network Lifetime—this parameter is used to demonstrate the complete lifetime of sensor nodes
per communication round for varying network size in terms of stacked group bar chart.

• Packet Delivery Ratio (PDR)—defined as the ratio of total number of successfully received data
packets at BS corresponding to total number of data packets generated in the network by all
sensor nodes.

6.2. Simulation Results

The performance metrics like the stability period, half-life time, average residual energy, network
lifetime and PDR are analyzed against two parametric benchmarks viz. network size and number
of communication rounds. We considered the number of communication rounds up to 4000 in
our simulation.
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6.2.1. Stability Period

Figure 3 depicts the stability period for SEP-E, DEEC-E, EBCS, TEEN and HFECS against different
network sizes. It can be observed from Figure 3 that the stability periods of HFECS and EBCS outperform
all other clustering schemes as both of them are entropy-based clustering schemes. Furthermore,
the stability period of all clustering schemes is decreased with the increase in network size due to
the reason that the distance between sensor nodes and the energy consumption is increased as we
increase our network size. For most of the clustering schemes, energy is consumed for performing data
forwarding and lossy aggregation tasks but in the case of HFECS, we perform lossless aggregation
at CHs by concatenating multiple data packets into a single large data packet of specified length to
reduce the energy consumption, thus resulting in an enhanced stability period in comparison to other
clustering schemes for larger network sizes. As DEEC-E works on the basis of absolute threshold value
calculated in each round, the residual energy of all sensor nodes is then compared with this threshold
value. As this threshold value does not take into account the network size, the stability period of this
scheme is significantly reduced when the network size increases up to 350 × 350 m2. The degraded
performance of SEP-E in comparison to EBCS and HFECS can be explained as the probability of each
type of sensor node do not consider the remaining energy while selecting the new CH. Also, when the
network size increases, the low density regions in the network have a greater number of CHs, which
results in the inefficient utilization of energy by the CMs and correspondingly the stability period
of SEP-E is reduced. The performance of EBCS in terms of the stability period is better than SEP-E,
DEEC-E, and TEEN for all the network sizes.
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The performance of EBCS for network sizes up to 200 × 200 m2 is slightly better than for HFECS.
The reason for this is that when sensor nodes supporting the asynchronous working–sleeping cycle
are deployed in a smaller network area, we have a high density of sensor nodes in every cluster, i.e.,
greater number of cluster members to be facilitated by their assigned CH, so it is highly likely that a
potential CH or a CM will lose all of its residual energy in a slightly less time than EBCS due to the
extra computation of link connectivity calculations performed in every cluster. This extra computation
is due to the increased number of sensor nodes present in every cluster. As we increase the network
size, the uniformly random deployment of sensor nodes create clusters with a lower number of sensor
nodes as compared to the scenario of smaller network sizes, so the probability of a sensor node in
HFECS for losing all of its energy decreases in comparison to the probability of a sensor node operating
in EBCS. Table 9 shows the percentage improvement in terms of the stability period.
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Table 9. Percentage Improvement of hesitant fuzzy entropy-based opportunistic clustering and data
fusion scheme (HFECS) in terms of stability period.

Schemes
Network Size

100 × 100 150 × 150 200 × 200 250 × 250 300 × 300 350 × 350

SEP-E 27.88 32.55 26.09 35 52.63 81.48
DEEC-E 62.31 98.82 110.91 161.29 314.29 512.5

EBCS −1.86 −3.43 −3.33 12.5 34.88 58.06
TEEN 45.52 53.64 54.67 62 87.1 122.73

6.2.2. Half-Life Time

Figure 4 depicts the half-life time of SEP-E, DEEC-E, EBCS, TEEN, and HFECS against different
network sizes. It can be seen from Figure 4 that HFECS and EBCS enhance the sensor nodes’ half-life
time in comparison to SEP-E, DEEC-E, and TEEN. Since the entropy weight coefficients are updated
in every communication round, we see an improvement in half-life time and correspondingly better
network lifetime. Moreover, as the number of sensor nodes which can be supported (Nsupport) by a
CH implicitly reflects the cluster load which the CH can handle, so we included Nsupport as one of our
significant attributes in CH decision making process.
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The performance of EBCS in terms of half-life time is better than SEP-E, DEEC-E, and TEEN for all
the network sizes. In addition, EBCS achieves better half-life time as compared to HFECS for network
sizes up to 200 × 200 m2 due to an increase in the cluster load and the extra computation required for
calculating link connectivity between sensor nodes in the case of HFECS. For larger network sizes,
HFECS performs better than EBCS due to the decrease in the cluster load, involvement of multiple
attributes in decision making processes and sensor nodes with opportunistic connections, which finally
results in a slight performance inversion between HFECS and EBCS. The percentage improvement of
HFECS in terms of half-life time against different clustering schemes is given in Table 10.

Table 10. Percentage Improvement of HFECS in terms of half-life time.

Schemes
Network Size

100 × 100 150 × 150 200 × 200 250 × 250 300 × 300 350 × 350

SEP-E 25 23.81 27.03 41.5 53.39 74.16
DEEC-E 2.23 20.93 43.29 66.4 101.11 150

EBCS −5.17 −3.7 −2.08 1.96 5.23 5.44
TEEN 31.7 31.31 38.24 56.39 75.73 101.3
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6.2.3. Average Residual Energy

We computed the average residual energy in two ways, i.e., (i) against different network sizes while
keeping the communication round as constant, (ii) against the number of communication rounds while
keeping the network size as constant. Also, we have computed the average residual energy against
different network sizes at 1000 rounds and 2000 rounds to check the performance of all clustering
schemes. Figure 5 depicts the average residual energy of SEP-E, DEEC-E, EBCS, TEEN, and HFECS for
different network sizes at 1000 rounds. It can be observed from Figure 5 that the performance behavior
of all clustering schemes is analogous at different network sizes. Furthermore, HFECS outperforms
all other clustering schemes including EBCS for larger network sizes. As we increase the network
size, the average residual energy starts dropping down for all clustering schemes, which indicates the
increase in energy consumption. A noticeable increase in energy consumption can be seen from SEP-E,
EBCS, and TEEN but there is a remarkable increase in energy consumption for DEEC-E, due to higher
negative slope in average residual energy. Likewise, Figure 6 depicts the average residual energy of
SEP-E, DEEC-E, EBCS, TEEN and HFECS for different network sizes at 2000 rounds.

Figure 7 illustrates the average residual energy of SEP-E, DEEC-E, EBCS, TEEN and HFECS against
number of communication rounds while keeping the network size as 300 × 300 m2. The performance
behavior of all clustering schemes is analogous at different numbers of communication rounds.
However, DEEC-E and HFECS perform slightly better than other clustering schemes after the 1500th
round of communication. DEEC-E functionality depends on an absolute threshold value calculated in
every round which do not involve network size, so the average residual energy of DEEC-E is reduced
as we increase the communication rounds due to sensor nodes’ poor lifetime and the increase in
network size, but comparing the remaining energy of sensor nodes with that of an absolute threshold
value gives advantage to sensor nodes with energy slightly above the threshold value, which results
in better average residual energy than the rest of the clustering schemes. For smaller network sizes,
the residual energy of the sensor nodes in HFECS is also consumed by link connectivity calculations
for a higher number of sensor nodes per cluster, therefore the average residual energy of DEEC-E
for smaller network sizes is better than in HFECS, but, as we increase the network size, the cluster
load in HFECS reduces, thus resulting in better average residual energy for HFECS. Furthermore,
as HFECS performs lossless data aggregation at the CH node for reducing the information flow and
energy consumption, we have better average residual energy for higher values of communication
rounds for HFECS than other clustering schemes. The percentage improvement of HFECS in terms of
average residual energy is given in Table 11.
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Table 11. Percentage improvement of HFECS in terms of average residual energy.

Schemes
Number of Rounds

500 1000 1500 2000 2500 3000 3500

SEP-E −1.47 2.78 13.64 68.75 600 328.57 233.33
DEEC-E 1.52 8.82 0 −25 −33.33 −58.33 −66.67

EBCS −2.9 −2.63 8.7 50 600 328.57 233.33
TEEN −3.6 −5.13 8.7 50 75 200 100

6.2.4. Network Lifetime

Network lifetime can be defined as the time interval between the start of network simulation and
when the first sensor node dies, all sensor nodes die, some percentage of sensor nodes die, loss of coverage
occurs or network is partitioned such that path from source to sink does not exist [26]. According to [26],
network lifetime can also be evaluated in terms of the dead node ratio in the network. The time when 25%
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or 50% of the nodes present in the network have no residual energy left to continue their data delivery
tasks can be treated as the network lifetime. Here, we considered two such time intervals, i.e., (i) when the
first sensor node dies (FND) and (ii) when half the nodes in the network die, i.e., 50% of the sensor nodes
have no residual energy left to continue their data sensing tasks (HND). The stacked grouped bar chart in
Figure 8 demonstrates the network lifetime in terms of two different cases, i.e., First Node Dead (FND)
and Half Nodes Dead (HND) for SEP-E, DEEC-E, EBCS, TEEN and HFECS against different network
sizes. In every stack, we have five bars representing five different schemes, i.e., SEP-E, DEEC-E, EBCS,
TEEN and HFECS. In each bar, we have two groups, i.e., FND and HND.
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Figure 8. Network lifetime in terms of first node dead (FND) and half nodes dead (HND) against
variable network size.

It can be observed from Figure 8 that the performance behavior of all clustering schemes is
analogous for network lifetime, i.e., a decreasing trend as we increase the network size. For smaller
network sizes, the network lifetime is higher for all clustering schemes as the nodes located in close
vicinity are easy to communicate with but, for larger network sizes, the network lifetime decreases
rapidly due to the fact that sensor nodes are not located in the close vicinity and extra energy is being
consumed for communication between sensor nodes, which results in decreased network lifetime.
The performance of EBCS for network sizes of up to 200 × 200 m2 is slightly better than HFECS.
For smaller network sizes, we have a high density of sensor nodes in every cluster, so it is highly likely
that a potential CH or a CM lose all of their residual energy in slightly less time than EBCS due to
the extra computation of link connectivity calculations performed in every cluster. However, as we
increase the network size, the uniformly random deployment of sensor nodes creates clusters with a
lower number of sensor nodes as compared to the scenario of smaller network sizes, thus resulting
in better network lifetime in comparison to EBCS. HFECS also adopts lossless data aggregation in
multiple data packets at the CH level, which reduces the information flow from CHs to the BS, thus
decreasing some of the extra energy spent on control packet overhead. The percentage improvement
of HFECS in terms of network lifetime (FND and HND) is given in Tables 12 and 13.
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Table 12. Percentage improvement of HFECS in terms of network lifetime (FND).

Schemes
Network Size

100 × 100 150 × 150 200 × 200 250 × 250 300 × 300 350 × 350

SEP-E 18.87 17.78 24.72 35 45 58.06
DEEC-E 42.64 57.06 76 79.31 88 120

EBCS −5.5 −6.47 0.91 22.73 38.1 8.89
TEEN 26.85 41.96 58.57 54.29 93.33 99.22

Table 13. Percentage improvement of HFECS in terms of network lifetime (HND).

Schemes
Network Size

100 × 100 150 × 150 200 × 200 250 × 250 300 × 300 350 × 350

SEP-E 11.39 8.64 15.38 34.19 44.8 58.95
DEEC-E −2.94 8.64 34.73 57.58 92.55 96.1

EBCS −1.86 −7.72 −2.26 6.67 10.37 7.86
TEEN 19.46 18.91 28.57 52.38 64.55 77.65

6.2.5. Packet Delivery Ratio (PDR)

The higher percentage of successfully received packets at the BS reflects the higher network
reliability. In the case of HFECS, multiple data packets received by every CH node are aggregated into
a single packet of specified length and then sent to the BS, so we have to incorporate aggregated data
packets in PDR calculation instead of normal data packets. The percentage of successfully received
aggregated data packets at the BS corresponding to total number of packets generated by all sensor
nodes will be the PDR, in the case of HFECS, i.e.,

PDR (Aggregated) =
( ∑n

i=1 ADPi

Total Data packets generated

)
∗ 100 (15)

where n is the total number of aggregated data packets received at the BS and ADPi denotes the
aggregated data packet received by BS at the ith instance in Equation (15). Figure 9 shows the PDR
for SEP-E, DEEC-E, EBCS, TEEN and HFECS corresponding to different rounds of communication
with our network size as 300 × 300 m2. As in the SEP-E protocol, the optimum number of CHs is not
guaranteed due to its poor stability and every CH in SEP-E depends on the probability of each type of
sensor node without considering the residual energy of sensor nodes, so it results in the reduction in
average residual energy and network lifetime, thus leading to degraded PDR in comparison to HFECS,
DEEC-E, and EBCS. The TEEN protocol performs worst against SEP-E, DEEC-E, EBCS and HFECS
due to the low average residual energy and lower network lifetime with increasing communication
rounds. For lesser communication rounds, HFECS shows degraded performance in comparison to
EBCS due to the extra energy spent on computation purposes which result in status transitions of a
few sensor nodes, thus reducing the PDR. However, for higher communication rounds, our proposed
protocol, HFECS, outperforms all other clustering schemes due to its higher network lifetime, higher
average residual energy for larger network sizes, data aggregation performed at the CH, and collision
avoidance achieved through the assignment of TDMA slots to every CM, thus resulting in the increase
in success rate of aggregated data packets at BS. The percentage improvement of HFECS in terms of
PDR can be seen in Table 14.
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7. Discussion 

We have introduced the hesitant fuzzy entropy-based opportunistic clustering and data fusion 
scheme for WSNs. The previous entropy-based clustering schemes were designed without 
consideration of multiple attributes (especially asynchronous working-sleeping cycle) involved in the 
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Table 14. Percentage improvement of HFECS in terms of PDR.

Schemes
Number of Rounds

500 1000 1500 2000 2500 3000 3500
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7. Discussion

We have introduced the hesitant fuzzy entropy-based opportunistic clustering and data fusion
scheme for WSNs. The previous entropy-based clustering schemes were designed without consideration
of multiple attributes (especially asynchronous working-sleeping cycle) involved in the data flow
from sensor nodes to CHs and to the BS. HFECS utilizes multiple attributes like the time frequency
parameter, residual energy, remaining buffer capacity, link quality factor, the distance to the BS and
the number of supported sensor nodes etc. in terms of local information of sensor nodes to measure
hesitant fuzzy entropy and its corresponding weight coefficients for the CH election procedure and
reliable data fusion, which improves the energy utilization and also increases the network lifetime
of sensor nodes. The proposed designed of HFECS could be applicable to the following different
approaches in future:

• Designing a HFE-based multipath opportunistic routing protocol for wireless cognitive
sensor networks.

• Designing a HFE-based clustering scheme with ring routing protocol.
• Unmanned Aerial Vehicle (UAV) sensor networks
• Internet-of-Things (IOT)-enabled home energy systems
• Cyber-physical systems
• Energy harvesting wireless sensor networks [48].
• Hesitant fuzzy entropy analysis in a density-based and grid-based opportunistic clustering scheme.
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8. Conclusions

In this paper, a novel hesitant fuzzy entropy-based opportunistic clustering and data fusion
scheme is proposed, utilizing the OCRG theory. Our proposed scheme, HFECS, achieves two levels
of hierarchy in the network and energy heterogeneity is characterized using three levels of energy
in sensor nodes. Self-organizing HFECS uses multiple attributes in terms of the local information
of sensor nodes to measure hesitant fuzzy entropy and its corresponding weight coefficients for CH
election procedure and reliable data fusion at CH to reduce the redundant information flow from
CH to BS, which in turn improves the energy utilization and increases the network lifetime of sensor
nodes. The performance of HFECS is evaluated against existing energy-efficient and entropy-based
heterogeneous clustering schemes for parameters such as half-life period, stability period, average
residual energy, network lifetime (FND and HND), and PDR. Our simulation results clearly show that
HFECS performs better than the existing benchmarks for larger network sizes. Possible future work
could include HFE-based ring routing in WSNs, HFE-based heterogeneous clustering supporting sink
mobility, HFE based on Cognitive Radio Sensor Networks (CRSN) etc. In addition to this, the proposed
scheme can be applied to ring routing [49], big data systems [50], data compression [51] and blockchain
technology [52] in terms of reliable data fusion.
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