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Abstract: Pedestrian Dead Reckoning (PDR) uses inertial measurement units (IMUs) and combines
velocity and orientation estimates to determine a position. The estimation of the velocity is still
challenging, as the integration of noisy acceleration and angular speed signals over a long period of
time causes large drifts. Classic approaches to estimate the velocity optimize for specific applications,
sensor positions, and types of movement and require extensive parameter tuning. Our novel
hybrid filter combines a convolutional neural network (CNN) and a bidirectional recurrent neural
network (BLSTM) (that extract spatial features from the sensor signals and track their temporal
relationships) with a linear Kalman filter (LKF) that improves the velocity estimates. Our experiments
show the robustness against different movement states and changes in orientation, even in highly
dynamic situations. We compare the new architecture with conventional, machine, and deep learning
methods and show that from a single non-calibrated IMU, our novel architecture outperforms the
state-of-the-art in terms of velocity (≤0.16 m/s) and traveled distance (≤3 m/km). It also generalizes
well to different and varying movement speeds and provides accurate and precise velocity estimates.

Keywords: inertial navigation; motion tracking; velocity estimation; machine learning.

1. Introduction

Pedestrian dead reckoning (PDR) continuously estimates velocities and orientations to derive
a stable position [1–6]. However, this only works well if both the accelerometer and the gyroscope
are mounted on the feet [7,8] or on the spine [3,9,10]. Such methods then do not require additional
external sensors or machinery that provide accurate positions over a longer period of time [11,12].
The technical challenges of sensor drift and the decomposition of the acceleration are still unsolved
and even rotation-invariant methods that use frequency-based parameters still suffer from poor
accuracy [7,10]. Instead, a highly precise initial calibration of the alignment of the sensors with respect
to the environment is sufficient [5,6].
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However, attaching the sensors to the feet or spine is not only unsuitable for everyday use, it
is often impossible in many real-world use cases. Non-rigid mounting of the sensors (like e.g., in a
user’s pocket) is very challenging for these approaches, as the orientation of the device w.r.t the tracked
subject changes continuously and causes violations of the model [2,13,14]. Furthermore, these models
are restricted to, and optimized for, specific motion types with little variation in velocity; they cannot
be applied to jogging, running, and, especially, the transition between them [2]. To improve their
accuracy dozens of motion models have been examined: models of empirical relationships [15,16],
biomechanical models [15,17,18], linear models [19], non-linear models [20–22], and models that are
based on regression [19,23–25]. However, they also suffer from orientation variance and provide less
accuracy than data-driven state-of-the-art techniques [11,12,26].

PDR systems consist of two components: a heading and a velocity estimator. In this article, we
focus on optimizing velocity estimation for complex and dynamic movement patterns and a non-rigid
attachment of the sensors to the subjects’ bodies. Instead of modeling the complex relation between
the measured inertial data and the subject’s velocity explicitly, latest methods [9,11,12,27–31] use
machine learning (ML) and deep learning (DL) to estimate the velocity. However, these algorithms are
trained and evaluated while using data with minor velocity and orientation variations. However, for
applications, such as sports, it is desirable to have a velocity tracking method that can continuously
track the subject’s velocity, even if there is a highly dynamic progression in motion states. From
this follows that we need both a method and a representative dataset that generalize over different
motion states.

We formulate inertial measurement unit (IMU)-based velocity estimation as a regression problem
and then apply a novel hybrid filter architecture that combines DL (for velocity estimation) with a
Bayesian filter (to optimize the estimation). A convolutional neural network (CNN) extracts spatial
features from the signal stream. A recurrent neural network (RNN), specifically a bidirectional
long-short-term-memory (BLSTM), uses the temporal relationships of the features to estimate robust,
rotation-invariant, and highly accurate velocities. We use the magnitude of the gravity-free acceleration
and the angular rate signals of a single, uncalibrated, low-cost IMU as typically used in consumer
devices, e.g., smartphones. The article is an extended version of the approach published in [32].

We compare the novel hybrid architecture with state-of-the-art PDR, ML, and DL approaches.
It learns to map the raw signal to a corresponding velocity, performs well, even with different and
dynamically varying movement speeds and types (walking, jogging, running, and a random natural
combination thereof), and also works robustly under dynamically varying orientations, since it
only uses the signal magnitude vector (SMV). We evaluate the methods on temporally independent
snapshots of a novel dataset labeled with a millimeter-accurate optical positioning reference systems
and containing a variety of motion states and test subjects.

Our experiments show that, while classic approaches cannot generalize to different and varying
motion types, our approach provides accurate and precise velocity estimates, specifically in challenging
sports applications. Both the extension of the models with a linear Kalman filter (LKF) and the
consideration of the temporal dependencies in the data improve the overall results. We show that our
rotation-invariant architecture directly estimates velocities from the magnitude of raw accelerations
and angular rates and outperforms the state-of-the-art in terms of the accuracy of the instantaneous
velocity (≤ 0.10 m/s) and the distance covered (≤ 29 m/km) [33,34], even in highly dynamic scenarios.

Section 2 reviews related work. Section 3 introduces both our processing pipeline and our
novel architecture. Section 4 deals with data acquisition and introduces the setup of an extensive
measurement campaign. Section 5 evaluates our methods and discusses the results.

2. Related Work

As IMU-based PDR has been extensively studied by various communities (see [35,36] for a
thorough overview), we focus on the most recent approaches that make use of ML.
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Data-driven methods of human movement have been studied for decades, with focus on
analyzing or reconstructing the gait and posture of walking people using inertial measurements [37–43].
Chang et al. [44] learn intuitive physics, Karl et al. [45] create state-space models, and Stewart et al. [46]
monitor neural networks (NN) via physical knowledge. Others [8,47,48] learn to limit a system drift
or to get a more precise zero velocity update (ZUPT) phase to compensate for the errors of inertial
systems [11,12,49]. However, most of these approaches focus on the analysis of human movement and
do not provide velocity, orientation, or position. While our method is inspired by known data-driven
methods of analyzing human motions, we focus on localization that is based on velocity, that is, we
implicitly first extract features of human motion with a CNN and then track them over time with
an RNN.

Multiple Sensors. In the field of human localization, most DL methods are based on visual-inertial
odometry (VIO) and combine different sensors [50]. Konda et al. [51] propose a CNN and use data
from two synchronized sensors to predict the direction and the velocity changes. Carrera et al. [52]
use two or more IMUs or a military-grade IMU [12] to reduce accumulating errors and increase the
confidence of their algorithms. Others learn intuitive physics [3], design state space models [53], or
monitor NNs via physical knowledge [46,54]. Because they rely either on a tightly coupled sensor
fusion [55] or on the availability of reliable context information, such as external sensors [7,34,55,56]
or maps [33,52,57], their accuracy is highly dependent on external information sources. Instead, our
method works with a single inertial sensor and, therefore, does not suffer from error propagation from
potentially incorrect external information.

Hybrid Methods. Hybrid methods [1,8,30,31,58,59] combine ML or DL with certain models,
such as ZUPT or they combine classification and regression models to estimate both step length and
orientation. A combination with ZUPT [8,11,60] reduces the sensor drift (error<0.25 m/s) [8,57] and,
hence, provides a higher accuracy. However, at higher movement speeds, ZUPT fails due to noise
and movement artifacts [8,11,12,58]. Other methods first classify a movement type with ML or DL
methods and then select a suitable step length estimator. For example, RIDI [31] splits the velocity
and orientation estimation into three parts: first, a support vector machine classifies the placement
of the sensor, and then RIDI uses the classification to select an optimal support vector regressor
(SVR) to estimate velocities. Finally RIDI relies on traditional sensor fusion methods to estimate
orientations. RIDI shows promising results (7.64 m versus PDR: 10.28 m on average) on the publicly
available datasets RIDI [31], OxIOD [59], and RoNIN [29]. However, the classification of the sensor
placement requires hand-crafted features and time-consuming training steps for each of the individual
models. Even small anomalies in the signals mislead such hybrid methods [1,12], which leads to a
low accuracy [31]. Hence, when flexibility of use is important for a real application, in general such
methods cannot adapt easily. In contrast to these hybrid methods, we train our DL-based method in
a supervised end-to-end manner on a variety of human movements with a large range of velocities
and gaits.

Purely DL-based Methods learn end-to-end motion representations directly from raw data.
Xing et al. [25], Cho et al. [61], and Martinelli et al. [62] use a simple NN to estimate the step length from
consumer-grade inertial data. Their performance reaches that of naive SINS. To improve, recent studies
use RNNs to de-noise a signal [30,63,64], to detect steps [1,8,58], or to estimate their length [1,8,59].
However, by splitting up the problem, the networks have to deal with interdependent errors created
by the other system components. Hence, Wang et al. [26] combine two DL architectures to estimate
the step length from noisy inertial sensor data: a long-short-term-memory (LSTM) to extract the time
dependencies and a de-noising auto-encoder (DAE) to remove the noise from significant features. On
average, they achieve a step length error of 4.63% and a distance error of 14.3 cm/m when a user walks
slowly and with a spine-attached IMU. The combination of the LSTM and the DAE not only requires a
lot of computing, but it is also rotation-variant. To estimate accurate positions, the user must hold the
sensor in front of his/her chest. In contrast to these pure DL-based methods, our method does neither
require a specific placement nor a rigid mounting of the sensor on a specific body part.
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To address all of these challenges, Chen et al. [30] and Yan et al. [29] propose two DL models
(IONet and RoNIN) that offer state-of-the-art positioning performance. IONet directly reconstructs
trajectories from six-axis inertial data. A BLSTM network regresses both velocity and orientation.
Instead, RoNIN divides the reconstruction of a trajectory into an LSTM network that estimates the
orientation and a residual network (ResNet-18 [65]) that estimates the distance. Yan et al. [29] compared
the performance of RoNIN, IONet, and PDR on public datasets [29,31,59]. When users walk in circles
or on quasi-random paths, IONet suffered from even higher position estimation errors (14.60 m) than
a classic PDR method (10.28 m), while RoNIN not only achieved state-of-the-art errors (6.71 m), but
also surpasses the other methods w.r.t. accuracy (3.04 m). While IONet’s BLSTM architecture is an
optimal temporal feature tracker, it is not an optimal spatial feature extractor. Additionally, since
RoNIN is based exclusively on a CNN, it only takes spatial features into account, but cannot capture
temporal dependencies [29]. This limits their ability to generalize to unknown environments [30,66]
and the influence of long-term drift in velocity and orientation on their estimation performance remains
unclear.

In contrast to IONet and RoNIN, our own earlier work [32] suggests a sequential combination of
CNNs and BLSTMs. This model is rotation-invariant, as it works directly on the SMV of raw inertial
data. The CNN first extracts spatial features, and the BLSTMs then captures the temporal emergence
of these features to embed the entire motion dynamics of the inertial measurements. This accurately
estimates velocity, especially in unknown motion scenarios with abrupt changes in movement and
orientation and with various motion activities, such as standing, walking, jogging, running, and a
combination, on random trajectories. In contrast to our earlier work, we replace the one-dimensional
(1D) CNN architecture with a 1D ResNet-18 [67] architecture (similar to RoNIN [29]), merge it with a
BLSTM (similar to IONet [30]), and then optimize the output with a LKF.

3. Method

Our novel processing pipeline combines three steps: the data pre-processing, the main processing
with the DL architecture, and the optimizing post-processing step with a LKF. The pre-processing
synchronizes the input data streams (acc, gyr, and ref ), cleans them up, prepares them (by resampling
and interpolation), and then bundles the data streams so that later on different models (classic, ML,
and DL) can use them to estimate velocities v′ based on the corresponding reference velocity vre f . In
the post-processing, a LKF returns velocities v′′ that are even further optimized.

3.1. Data Pre-Processing

Figure 1 sketches the data pre-processing in detail. The data flows from the input sensors (left) to
the pre-processed data bundles (segments to features, on the right). The pre-processing is done per
bundle, i.e., the data for a single activity of a single user.
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Figure 1. A zoomed-in view of the pre-processing pipeline.

Interpolation and Resampling. Pre-processing starts from the bundle of raw input data (from
accelerometer acc, gyroscope gyr, optical reference system ref ). We resample the reference positions ref
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to 1000 Hz. Subsequently, we synchronize them with the measurements of acc and gyr. To clean up the
synchronized measurements, we visually and statistically detect corrupt data instances and outages
and then remove them. We fix short dropouts (<20 ms) by re-sampling and re-interpolating. To generate
several datasets for our benchmarks, we re-sample the clean measurement sets at 50, 100, 200, and
400 Hz. Section 4.2 discusses the configuration that offers the highest accuracy of velocity estimation.
Afterwards, we calculate the SMVs of the data. We evaluate both the SMVs of the individual sensors
(two-dimensional (2D): acc, gyr) and a combined SMV of both sensors (1D: acc + gyr).

Bundling. From the SMV bundle, we create the segment bundle to evaluate the classic baseline
PDR method. While the SMV bundle represents all of the initial raw data bundle, the segment bundle
only holds the segment of the data that matters for the user’s activity, i.e., we remove the initial and
the final parts (that may have been accidentally recorded before and after the activity) and only keep
the repetitive stretches of the movement, see Figure 2 for an example. We calculate dre f and vre f by
differentiating the 2D velocities, i.e., the translational layer spanned by the x- and y- axes obtained
from the reference system (w.r.t. time and norm). From there, we create the window bundle to evaluate
state-of-the-art DL methods and our hybrid DL method. The window bundle is a representation of
the data in the corresponding segment bundle as a set of consecutive windows. We consider both
overlapping and non-overlapping windows, see the paragraph on parameters below. Figure 2 sketches
the slicing process of a segment into a bundle of windows. From there we create the feature bundle to
evaluate the ML baseline method. For each of the windows in a window bundle the feature bundle
holds the features fw that we extract from the data, see Section 4.3 for details.
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X i fs (m      = 100(i-1)+51 … 100i+50m )

Figure 2. Exemplary cutout of a segment that shows an SMV(acc) of a single walking activity. We slice
windows from a clean segment and calculate the reference velocities at the end of each window.

Dataset Variants and Parameters. We use three variants of these dataset bundles. They will be
discussed in detail in Section 4.2. We also evaluate different sampling rates Fs (50, 100, 200, and 400 Hz)
and different window sizes Nw (64, 128, 256, and 512 Hz) of acc and gyr to find combinations of Fs and
Nw that are computationally efficient and provide accurate velocity estimates. Additionally, when
we slice a segment bundle into windows, there is the option to let windows overlap by Nw/2. We
generate window bundles with length 32, 64, 128, and 256 Hz for each segment bundle. Finally, for all
variants and parameters, we split all of the segment bundles, window bundles/groups, and feature
bundles/groups into training, validation, and test datasets and then train our estimators on labeled
data. At run-time, we predict velocities from unknown input data using the same pipeline. We do this
independently for V1, V2, and V3. Further details on the datasets are covered in Section 4.2.

Before we introduce the details of our DL architecture, we introduce some important notations and
definitions. Below, the x-axis, Figure 2 shows how we turn the windows from the pre-processing into
sequences that serve as input into the DL network. In the example, window w holds 100 measurements
m, taken at 100 time steps. While, so far, we have worked on the measurement data and have used the
index i to refer to timestamps, we now work on the granularity of full windows, so that the index i
refers to the number of a window. Xi then represents the window wi with all of its m measurements.



Sensors 2020, 20, 3656 6 of 31

This is the input of the NN. It holds all the spatial features fs for m ∈ [100 · (i− 1) + 51, 100 · i + 50]. Yi
is the output of the NN, i.e., vre f during the training phase of the network or the predicted velocity v′.

3.2. Main Processing

Background. NNs, such as multi-layer perceptrons (MLPs), consist of an input layer X, one or
more hidden layers h, and an output layer Y. Input signals propagate through the network, a loss
function compares the output to the ground truth label to calculate the error, error signals propagate
backwards through the network, and weights are adjusted in order to reduce the error [68]. All of
the MLPs only take a fixed set of input measurements m, e.g., acc and gyr samples, per time step
i (a snapshot). Hence, they cannot describe the relationship of time and context (temporal features
ft) over successive inputs to predict a velocity vi. Instead, they describe spatial features fs(Xi) of
a snapshot that have no connection or relationship to a previous fs(Xi−1) or successive snapshot
fs(Xi+1). However, we state that these relationships ( ft) are relevant, as they represent changes over
time, especially in highly dynamic motions sequences.

RNN. We use time- and context-sensitive NNs such as LSTM or BLSTM to learn dependencies of
fs in a single window and their short-long-term dependencies ft. They capture (1) the relationship
of each measurement mj in a window wi to all other mk ∈ wi in the same window (i.e., how each
measurement spatially affects other measurements in the same window) and (2) memorize their
dependencies and effects, i.e., how each measurement affects the measurements over a long period of
time, e.g., how a motion fs with the same velocity for all users has varying ft between them [64]. To be
comparable to the state-of-the-art and the baseline methods, we process input sequences with a single
window. To reconstruct latent connections between motion characteristics and data characteristics,
a BLSTM takes advantage of temporal dependencies ft, as it maintains its hidden states over the
duration of a window. It also exploits the dynamic context and examines the current window from
both the past and the future. It effectively acts as a function that maps sensor measurements to a
corresponding velocity. In our results, see Section 5, we show that this type of RNN in combination
with a state-of-the-art feature extraction can take advantage of long-term dependencies ft in batches
and that the lack of ft leads to significantly worse results.

Feature Extraction. While RNNs track signal characteristics well over time, we must derive such
characteristics from raw signals. An obvious approach is to use hand-crafted features (which we use
for the ML-methods, see Section 4) and then use them as input for the RNN. CNNs, proved to be
much better spatial feature extractors (although they cannot put these features in a temporal context).
Feigl et al. [32] propose a shallow 1D CNN architecture to extract fs from 1D inputs. It is well known
that wider or deeper CNNs can extract more characteristic and representative fs that result in a higher
accuracy of the estimates [69]. However, the deeper the CNN is, the more it suffers from a vanishing
gradient and the higher is its computing load [70]. Residual networks with multiple convolution
layers (such as ResNet-18 [65]) solve this problem. Their extremely deep networks do not suffer from
vanishing gradients and they are both accurate and computationally efficient in various applications.
Regardless of the network type, the gradient X̂i is duplicated first, as shown in Figure 3. While type I
networks convolute the features f̂s in only one of the copies, type II networks convolute both of them
before in the end they add up both results. Thus, type II residual units re-parameterize the convolutions
(e.g., stride length s, filter kernel size Fs, and the number of filter kernels F). Both types also have batch
normalization (BN) layers (between convolutional layers) and rectified linear unit layers (ReLUs) to
speed up training and reduce the sensitivity to initialization. In general, residual networks start with a
moderate number of features fs, at the input ( = Xi). Further down, the dimensionality of fs grows (for
certain configurations up to about 10 M). Note that in the above description we used X̂i, X̂′i , and f̂s

for inputs, outputs, and features that propagate through the NN. We use theˆto indicate intermediate
values. Sizes, dimensionality, and feature sets usually differ significantly between layers.
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Figure 3. Architecture of residual units.

Architecture. We use a modified ResNet to extract high-dimensional f̂s from the raw input signals
(a single window of fs(Xi) for each time step i), which is then fed into a so called "temporal feature
tracker" built from two BLSTMs. Figure 4 shows the architecture. Note that the input flows from left
to right, i.e., from input Xi ( = wi) to output Yi ( = vre f ). In contrast to the original ResNet-18 [65], (1)
we adapt the initial convolution layer to our input dimensions, (2) at the end of the so called "spatial
feature extractor" we replace the Softmax and classification layers with a flattening layer, and (3) we
add two extra BLSTM layers, a fully connected (dense) layer, and a final regression layer.
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Figure 4. Detailed overview of our deep learning (DL) architecture: The deeper the network, the more
spatial features (from 64 to 512) we extract. The two BLSTM layers track the temporal emergence of fs

in the "temporal feature tracker" (TFT). The Residual Units of type I and II are also depicted in Figure 3.

The initial convolution layer applies 64 striding convolution filters (F = 64) with the size Fs =
d× 7 to the input Xi from wi. It strides each F vertically (with stride length S = 1× 2) through the
input. Figure 4 shows this in red for d = 2, S = 1× 2, and Fs = 2× 7: it uses 14 measurements
from a window and then calculates the dot product of the weights and the measurements and then
adds a bias term. The convolution layer emits a multi-dimensional set of values X̂i and features f̂s.
A BN layer then normalizes each input channel across the complete batch of inputs. As activation
functions, we apply a ReLu layer that zeros out any elements of the input that are below zero to add
non-linearity to the network. Our first pooling layer divides the input into rectangular pooling areas
(with size P = 3× 3) and then calculates the maximum of each region to sample the input down (i.e.,
to reduce the spatial size of the representation and, thus, to reduce the number of parameters and
calculations). Subsequently, we concatenate several residual layers of types I and II to increase the
number of potential internal features f̂s (from 64 to 512). A global max pooling layer calculates the
maximum of the height and width dimensions of the input to sample it down, i.e., to reduce f̂s to only
keep prominent features. A flattening layer provides a flat sequence of f̂s to fit the input dimensions
of the first BLSTM layer. It collapses the high spatial dimensions of the input f̂s into the channel
dimension x̂i of our BLSTM (i.e., from the multi-dimensional output of the pooling layer f̂s to the 1D
input x̂(1,n) of the BLSTM layer).

Figure 5 sketches the tail of the architecture, from the flattening layer to the BLSTM network. x̂
and ŷ (lowercase letters) are the input and output of the BLSTM layers. For the first BLSTM layer x̂
is the flattened representation of the f̂s, i.e., there is another change of the representation (x̂1 to x̂n

represent the flattened f̂s1 to f̂sn). The two BLSTM layers learn bidirectional long-term dependencies
ft between the f̂s that we extract with ResNet (i.e., between different motions that represent the same
velocity). Each of the two BLSTM layers consist of a single hidden f orward LSTM layer (H f ) and
backward LSTM layer (Hb). Figure 5 only shows the first two of the four LSTM layers. To indicate the
capability of BLSTM to look at the data from both the past and future, there are no LSTM cells for x̂1

("the past") and x̂n (“the future“) but we left the gray arrows in place. The last BLSTM layer acts as a
bottleneck and yields the last ŷn, which is processed through a dropout layer to prevent overfitting
(dp = 0.5 = 50% defines the number of dropped elements). A fully connected layer connects each of
its neurons to all activations in the previous layer and a regression layer returns the velocity v′ = Yi
that we optimize while using a half-mean-squared-error loss.
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Figure 5. "Temporal feature tracker" built from two BLSTMs, each with two hidden f orward (H f ) and
backward (Hb) long-short-term-memory (LSTM) layers (only one shown; no LSTMs for x̂1 and x̂n).

Design Decisions. We design our ResNet18-BLSTM architecture in such a way that it first extracts
and generates high-dimensional features fs from convolution layers and then tracks their temporal
coherence (i.e., the context ft). It memorizes the evolution of feature maps that represent the mapping
of motion to velocity) in the BLSTM layers. The filter kernels F of our 1D ResNet-18 extract fs as they
stride over a batch of windows to detect features at different positions [71]. The idea behind the 1D
convolution is to perform an element-by-element multiplication for each 1D filter kernel with every
1D window to create an initial feature map that is sensitive to time [72]. As soon as the first part of the
network has extracted high-level features f̂s from the window bundle, they are put into BLSTMs. The
added pooling reduces the complexity of the network and focuses on the most promising f̂s. Unlike
simple LSTMs, our BLSTM processes information regarding the future and the past by retrieving
the short-term and long-term context between input and output in both the forward and backward
directions [71]. The BLSTM acts as a time- and context-sensitive detector and tracker of high-level
motion features (extracted by the convolution layers) in the signal embedding (acc and gyr). We use
the last hidden layer as the bottleneck layer [72]. From a single window m, the model learns how
to estimate a single velocity v′i and how to predict consecutive ones. Because the initial state H0 is
randomly initialized, the model has no previous knowledge of the movement, and thus learns to
estimate the velocity from local information. We select the last velocity estimate ŷn as the final result
v′n per window.
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3.3. Post-Processing

The post-processing uses a LKF to optimize the velocity v′ that our RNN predicts. The LKF [73,74]
is known to reduce noise artifacts in temporal information, such as velocity. It consists of linear state
transition models and measurement models and it assumes that all noise components are a non-zero
additive Gaussian noise c. The state transition model describes the dynamics of a moving object,
e.g., the IMU sensor. The measurement model describes the relationship between the tracked state
(optimized velocity v′′) and the expected measurements (input velocity v′). The covariance of the state
transition noise cv,d assumes the reliability of the state. Based on this reliability, the predictions and
measurements hold information regarding the filter weights. The filter tracks the object’s velocity v′′

as a state. Our state transition model assumes a constant velocity between successive time steps i and
i + 1:

v′′i+1 = v′′i + cv,d, (1)

with the covariance of the state transition noise cv,d ∼ N (0, T2σ2
v,d) and the time interval of the

sampling T ( = t(i + 1)− t(i)). Because the filter only processes the velocity v′′ as a 1D state, we can
define the state transition with a scalar and set the state transition covariance to T2σ2

v,d. We estimated
σv,d by calculating the standard deviation of the derivative w.r.t. time of the velocities on the validation
data. Typically, the model’s assumption of validity decreases over time. Similar to the state transition
model, our measurement model also assumes additive white Gaussian noise cv,m ∼ N (0, σ2

v,m):

v′′i = v′i + cv,m. (2)

Again we define our measurement model with a scalar, but we set the measurement covariance
to σ2

v,m. We compute the error standard deviations of v′ on the validation dataset to determine σv,m for
each (main processing) method individually, and then compute the standard deviation of the velocity
derivative (corresponding to the prediction model error) of the validation data to obtain σv,d. We use
these parameters (given directly from the data) in a standard LKF implementation [73] to predict v′′

on v′ at every time step i.

4. Experimental Setup

We describe the components of the experimental setup (Section 4.1) and the data acquisition
process (Section 4.2). We next discuss the variants of the dataset (Section 4.2). Finally, we provide
details regarding the parameterization of the classic, the ML, and the DL methods (Section 4.3).

4.1. Hard- and Software Components

Measurement Area. We recorded the motion data (i.e., acc and gyr) at the Fraunhofer IIS L.I.N.K.
(localization, identification, navigation, and communication) test center in Nürnberg, Germany. It
provides a unique test ground on 1400 m2, see Figure 6a [75], equipped with a variety of positioning
reference systems. We used the following measurement and reference systems to collect and label our
training, validation, and test data, and to capture the characteristics of different high dynamic motion
types.

Reference System. We recorded refe-rence data (3D positions) with 28 cameras of the
millimeter-accurate optical Qualisys motion tracking system (spherical error probable (SEP95) ≤5
mm and ≤ 0.1◦). The cameras are mounted on the edges of the upper side of the test area and cover
a volume of 11.025 m3 (45 ×35× 7 m). The subjects wore four small trackable reflective markers,
attached to an elastic ribbon, see Figure 6b. All of the cameras had a clear field of view when we
tracked each subject’s position and orientation with constant 100 Hz.
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45 m

35 m

(a) Test center (b) Reference system.

Figure 6. Setup.(a): lateral view of the data acquisition environment; (b): smartphones in the pockets
of a trial subject and trackable object of the reference system.

IMU Measurement Device. We used two Samsung Galaxy S7 phones with their acc and gyr
sensors (STMicroelectronics LSM6DS3 samples acc at ±16 G and gyr at ±1000 dps at quasi constant
100 Hz) to measure the subject’s accelerations and angular rates. To cover motion differences between
the legs, we loosely placed a phone (inverse portrait) in each of the pockets, see Figure 6b. Because we
evaluate all of the methods on the SMV of the signal, the input data are rotation-invariant. Hence, we
do not care about the initial location and orientation. Note that we used two phones to collect more
data per subject in parallel. However, we train and predict velocities on data from only one sensor.

IMU Software and Time Synchronization. We accessed the raw IMU sensor data of the
smartphones via the Android API (Version 6, 2019) [31]. We stored them along with timestamps
that are globally NTP-time-synchronized. Our API also received the NTP-time-synchronized 3DoF
and 6DoF state information data as streams from Qualisys via 5GHz WiFi. We labeled each activity
and measurement (acc, gyr, and re f ) and stored separate files per subject. Thus, we can also use our
data for activity classification. Note that we sampled the reference data (from 100) up to 1.000 Hz to
synchronize with them the inertial measurements (constant 100 Hz).

4.2. Data Acquisition and Datasets

We asked 23 people (male: 17, female: 6, average age: 26.7, heights from 146 cm to 187 cm, SD 19
cm) to perform four different types of movement activities (walking, jogging, running, and random
movements, a natural combination of all) within our tracking area. The participants stand still for
1 min at the beginning of each activity to enable estimation of initial sensor bias. Each subject and
activity starts at roughly the same initial position. This helps to calibrate and identify the initial pose
in repeated measurements. We manually labeled the activities (class according to activity). Each
activity took 7.5 min on average (SD 1 min). The users performed the walking, jogging, and running
activities at different velocities, but mostly along similar movement trajectories, see Figure 7. However,
each participant performed the random movements in a unique way, i.e., changed between walking,
jogging, and running at individual movement speeds and trajectories. The different types of running
pants (with wide or tight pockets) introduced various sensor noise and motion artifacts.

In total, we recorded data regarding 23 h = 1381 min of motion data ( = 4 activities × two sensors
× 23 subjects × 7 min (SD 1 min)) with circa 30 min per sensor (two or one) per subject (SD ± 4.6 min).
The full study resulted in a total traveled distance of around 107 km (about 214 km for two sensors per
user) for all activities (walking: ~14 km; jogging: ~29 km; running: ~38 km; and, random: ~26 km) at
different speeds (average for walking: 1.4 m

s ; min. 0.8 m
s ; max. 2.2 m

s ; SD 0.31 m
s ; jogging: 2.8 m

s ; min. 1.5 m
s ;

max. 3.4 m
s ; SD 0.34 m

s ; running: 3.6 m
s ; min. 2.9 m

s ; max. 7.9 m
s ; SD 0.67 m

s ; random: 2.5 m
s ; min. 1.2 m

s ; max.
7.8 m

s ; and, SD 3.19 m
s ). Figure 7 shows an exemplary subset of 10 min of motion for a single user. The

graphs show trajectories (top row) and velocities (bottom) of all activities (left to right). Each data point
represents a single window without overlap. Figure 8 shows SMV acceleration (blue) and velocity
(red) for walking, jogging, and running for 200 measurements. The signal complexity increases with
higher velocities, peaks get less prominent. The complete data pool consists of 92 segment bundles (23
subjects × four activities) with 64,688 consecutive windows (without overlap, Nw = 128, Fs = 100 Hz
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approximately 350 windows per user, per activity, and per sensor) or 129,375 overlapping windows
(50% overlap, Nw/2 = 128/2 = 64) with corresponding vre f .

(a) Walking (b) Jogging (c) Running (d) Random

(e) Walking (f) Jogging (g) Running (h) Random

Figure 7. Exemplary segment bundle of one user. Each datapoint represents a single window. The
upper row shows reference trajectories (at 1 Hz) and the bottom row shows vre f (at 1 Hz).

(a) Walking (b) Jogging (c) Running

Figure 8. Raw acc signals: SMV (blue), vre f (red).

From this data pool, we created three dataset variants with sliding windows of size 128 Hz and an
overlap of 50% (Nw/2 = 64), as there were enough prominent features f̂s and f̂t at low computational
costs to achieve the highest velocity accuracy. 1.28 s cover long-term relationships of human movement
and make our hybrid DL method applicable. Note that these parameters give the best results for
variants V1, V2, and V3 of our dataset. The description of the dataset, the parameterization of the
methods, and the results in Section 5 refer to this setting of the parameters.

Dataset Variant V1 provides segment, window, and feature bundles (276 = 3 × 92) that cover the
entire data for every subject and every activity. Bundle sizes vary between users and activities, as,
for example, some users jog at velocities that are the running speeds of others. With data from both
sensors, V1 holds 129,375 overlapping (50% = Nw/2 = 64) windows or features at Nw = 128 and Fs =
100 Hz (approximately 700 windows per user, per activity, and per sensor with overlap).

Dataset Variant V2 provides segment, window, and feature bundles (276 = 3 × 92) trimmed to
the shortest bundle size of all users. Hence, it consists of the same amount of individual movements
per user and activity, i.e., the activities are distributed equally. However, the velocities are again not
distributed equally. In total, V2 contains 112,643 overlapping windows or features (50% = Nw/2 = 64)
at Nw = 128 and Fs = 100 Hz (approx. 600 windows per user, per activity, and per sensor with overlap).

Dataset Variant V3 merges all activities of all users. It only offers window and feature bundles
(184 = 2 × 92). We sort all of the windows of all users and all their activities from V1 w.r.t. the reference
velocity vre f . We then bin the windows with a bin width of 2 km/h, resulting in ranges [3,5), ..., [11,13]
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km/h. For each of these ranges, we found a common total of 156 entries (per sensor) for all users and
activities. We delete ranges with fewer than 156 entries and limit bins with more than 156 entries to
156 entries (we randomly delete surplus entries). This is in line with typical pre-processing techniques
in statistical analysis and DL to analyze evenly distributed classes/categories in data and their impact
on processing methods [76,77]. Therefore, V3 contains homogeneous velocity groups across all users,
regardless of their activity. Note that, within a range, gait varies between participants, i.e., it is different
how a movement leads to the same velocity and to the resulting features f̂t that our data-driven model
learns. V3 contains a total of 35,880 windows or features without overlap (five velocity ranges × 156
motion/velocity pairs per user × 23 users × two sensors without overlap).

4.3. Parameterization of Velocity Estimators

Baseline I, classic PDR. We use a state-of-the-art PDR method that implements a well-established
biomechanical model of Tian et al. [16] and we generalize it for unknown users and movements. With
inertial measurements, this PDR recognizes peaks as steps in the segment bundles and estimates the
step length (with L = K · h ·

√
f q, where h is the height of the person, K is a calibration parameter, and

f q is the step frequency) from there. Existing PDR implementations, in general, differ in how they
determine K and f q [20,78]. We saw the best results with the acc’s SMV, since it enables results in
quasi-rotational-invariance. An important insight was (a) to use a Butterworth low-pass filter with a
cut-off frequency of 15 Hz to remove high-frequency noise before spotting the peaks and (b) to ignore
peaks below a threshold of 17.23 m/s2 for walking, 24.17 m/s2 for jogging, and 32.61 m/s2 for running.
Since the exact relationship between step length and step times is specific for a particular person s and
a certain activity a, such as walking and running, we use, inspired by Weinberg et al. [20], subject- and
activity-specific (K = )Ksa that we accurately calibrated Ksa while using ground truth data that also
provided the reference height h for each participant. We took the first steps of a person (approximately
1 min) performing each activity and determined the ratio of the estimated distance d′ = v′ · dt (dt is the
time span of two steps) and the reference distance dre f between two steps: Ksa = d′/dre f . However, in
realistic application settings, it is extremely tedious to calibrate Ksa values per subject and per activity.
Therefore, for a fair comparison to the other four estimators, we generalize the step length estimation
by deriving a single general calibration parameter Kg, which embeds the movement characteristics
of multiple users and activities. We averaged all 80 Ksa parameters (20 users × four activities) Kg =
1
n ∑n

1 Ksa(i) = 1.2771. Note that, using the specific coefficients Ksa, the accuracy of the PDR velocity
estimation increased by 19%, but this did not at all change the results of the comparison in Section 5.

Baseline II, ML with Gaussian Processes ML-GP. To find the best ML method for the supervised
velocity regression problem, we conducted a serious study that included a set of well-known ML-based
methods, as well as a large set of handcrafted statistical and frequency domain features that are
known to work best on similar tasks [79]. The study optimized in a grid search the parameters of
the methods and evaluated various combinations of features to find the one method and feature
set that yield the highest accuracy of ML-GP. See Appendix A.1 for details on the features that
we investigated [80]. On the datasets V1, V2, and V3, this resulted in 84 feature combinations for
each window (42 feature bundles = six statistical × seven frequency domain features; plus the two
largest principal components (PCs) of each of these feature bundles. The search also considered
various regression methods (proposed by Bishop et al. [79]) for all possible combinations of the
features mentioned above: linear regression, logistic regression, classification and regression tree
(CART), SVR, and Gaussian process regression (GP) [81,82]. By means of a grid search for these five
regression methods and the 84 combinations of features we derived the optimal hyper parameters, see
Appendix A.2 for details. Among the estimators, GP delivers the highest accuracy with a Matern52
kernel. Interestingly, Matern52 achieves the highest accuracy with only the two PCs that represent the
strongest characteristics of the complete set of all 42 features. We used a sparse GP to deal with the
high dimensionality of the data.
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DL I, RoNIN. Yan et al. [29] published RoNIN, the current state-of-the-art in velocity estimation
of homogeneous walking in publicly available datasets. RoNIN modifies and extends ResNet [65],
see Section 3.2. It replaces all type II units by type I units; replaces the Softmax and classification
layers by a fully connected layer and a (half-mean-squared) regression layer; and, adapts the input
dimension to a six-dimensional input vector with a length of 200 that covers 1.200 raw measurements
(= 6 × 200) for both 3D acc and 3D gyr at a sampling rate of 100 Hz. In preliminary work, we applied
the original RoNIN code with its standard configuration to our datasets. However, to get to the best
possible RoNIN-type DL-based estimator, we conducted a grid search among possible variations and
configurations (input combinations of 1D and 2D SMVs (of acc and gyr), different window sizes of the
input vectors (variations from 64 to 1024 Hz), and a combination of type I and type II residual units).
With an input window size of 256 measurements on 2D SMVs (of acc and gyr) and with the other ideal
configuration parameters, see Appendix A.3 for details, the result is the best RoNIN-type DL-based
method for our dataset. This is what Section 5 uses in the comparison.

DL II, C/RNN. In previous work [32], we proposed a DL-based model that employs a shallow
CNN and a BLSTM that performs well on our dataset. The key aspects of this C/RNN are: 1D inertial
data input sequence (with m = 128 measurements per input window), a first convolution layer (128
filter kernels, each of size 1 × 3), followed by a BN layer, and a ReLU, a second convolution layer (128
filter kernels of size 1 × 3), followed by a BN and a ReLU, a flattening layer, a BLSTM layer ( = 2 ×
LSTM layers), a dropout layer, a fully connected layer (provides 1 × 1 output), and a final regression
layer that calculates the loss with a half-mean-squared error. The architecture was also optimized on
our dataset in a grid search, see Appendix A.4 for the results.

DL III, Hybrid. To find the optimal architecture and its parameters for our hybrid method, we also
performed a grid search, see Appendix A.5 for details, which evaluated different architectures, such
as LSTM, BLSTM, ResNet, and combinations of them. In the search, we kept all LSTM and BLSTM
blocks identically w.r.t. the number of hidden layers and the number of cells. ResNet-18 [65] was
adjusted to our input and output dimensions. We tested dropout layers between or after the BLSTM
layers (after was better, with an ideal dropout rate of 50%). We trained each set of parameters for
100 epochs, with early stopping based on the validation set performance to prevent over-fitting. The
resulting best combination of ResNet-18 and two BLSTM blocks (each with 128 LSTM cells) that we
have described in Section 3.2 yields the best accuracy at short inference times. The parameters used
in Figure 4 were also found in the grid search to work best. As its final stage our design has an LKF,
we parameterize it based on the predictions v′ of the hybrid method, as follows. We train the LKF’s
covariance of the measurement noise on the predictions v′ and also optimize the covariance of the
state transition noise until the LKF provides a robust and plausible performance on v′, and can thus
predict optimized velocities v′′ on unknown test data. For completeness and fairness, we also apply
LKF to the v′ estimates of all other methods to assess the effects of an LKF on the accuracy of each
method. We provide details on the impact of an LKF on the results of each method in Section 5.1.

5. Benchmark Results

As publicly available datasets, such as the OxIOD data set [59], the RIDI data set [31], or the
RoNIN data set [29], do not cover the highly dynamic motions that we want to track, we could not use
them for our experiments. Our benchmarks compare the methods along three dimensions: velocity
estimation accuracy (Section 5.1), computational effort (Section 5.2), and generalizability (Section 5.3)
to unknown data. Each of these criteria need different sub-sets of data, see Table 1. First of all, we
split the pool of 23 subjects into three groups. Twenty-two users provide data from the same type
of inertial sensors. One user provides data from two special inertial sensors and we use his/her
"unknown devices" data in the generalizability benchmark. From the 22 users, we use data from
randomly selected 20 in the accuracy benchmark (Section 5.1) and the computational effort benchmark
(Section 5.2). We used data from the remaining two users (so called left-outs) in the generalizability
benchmarks (Section 5.3). For all three benchmarks, we always use the best-performing estimator
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configurations. For PDR, we achieved this by training on V2. The data-driven methods performed
best when trained on V3.

Table 1. Dataset statistics.

Name Num. of users Total [#] Training [#] Validation [#] Testing [#] Duration Distance vre f [ m/s]
[#] Segm. Wind./Feat. Segm. Wind./Feat. Segm. Wind./Feat. Segm. Wind./Feat. [ min] [ km] avg. min max

Accuracy
V1 20 160 112.500 112 78.750 16 11.250 32 22.500 1.203 185.40 2.5 0.8 7.9
V2 20 160 97.950 112 68.565 16 9.795 32 19.590 1.045 161.42 2.6 0.8 7.8
V3 20 - 31.200 - 21.840 - 3.120 - 6.240 666 71.9 1.8 0.8 3.6
Comp. Effort
V1 20 160 112.500 112 78.750 16 11.250 32 22.500 1.203 185.40 2.5 0.8 7.9
Generalizability
Left-outs 2 16 9.795 - - - - 16 9.795 105 16.14 2.5 0.7 3.7
Unknown Device 1 8 4.898 - - - - 8 4.898 52 8.07 2.6 1.3 3.5
Interpolation (V3) 20 - 31.200 - 24.960 - 2.059 - 4.181 666 71.9 1.8 0.8 3.6
Extrapolation (V3) 20 - 31.200 - 24.960 - 2.059 - 4.181 666 71.9 1.8 0.8 3.6

5.1. Accuracy

Dataset Statistics. The benchmark works with data from the 20 randomly selected subjects. To
explicitly investigate the accuracy of the velocity estimation, it evaluates all five methods on known
training data (70% = 14 subjects), quasi-unknown validation data (10% = 2 subjects), and unknown
test data (20% = 4 subjects). The left-outs were at no time part of the benchmark. The data from the 20
subjects were pre-processed with the optimal parameter configuration (Nw = 128 and Fs = 100 Hz), as
described in Sections 3.1 and 4.2 to yield the segment, window, or feature bundles (and their variants),
each split into 70/10/20. For detailed dataset statistics and sizes, see the upper part of Table 1. Note
that the total distance traveled for both sensors and the total number of windows (214 km and 129,375)
in Section 4.2 reflect all 23 subjects. Table 1 shows values for the number of subjects picked for a sub-set.
For example, V1 has 160 segments or 112, 500 windows, or feature bundles, because it holds data of 20
users × two sensors × 30 min. × 60 s × 100 Hz sampling rate 64 Hz per 50% overlapping window
size (Nw/2 = 128/2 = 64) for four activities.

Metrics. The accuracy of a velocity estimator is given by (1) the error of the velocity and (2) the
error of the distance traveled. For the former we use four error variables and two error functions:
the mean absolute error (MAE), the mean square error (MSE), the root mean square error (RMSE),
and the circular error probability (CEP). To gauge the error of the traveled distance (2) we use two
error variables: the distance error per meter (DEPM) and the distance error total (DET). We determine
all errors on the estimated velocity v′, the optimized velocity v′′, and the ground truth velocity vre f ,
respectively, over time for the distance errors. By default, Hybrid uses an LKF as its final stage. Because
adding an LKF also improves the results of the other estimators, we also show LKF-free evaluation
numbers and graphs for Hybrid in Table 2 and Figures 9, 10 and 11.

Table 2. Accuracy; datasets V1–V3;velocity errors in m/s, distance errors in m.

Dataset PDR Kg ML-GP RoNIN C/RNN Hybrid

of 20 subjects

M
A

E

M
SE

R
M

SE

C
E

P 9
5

D
EP

M

D
ET

M
A

E

M
SE

R
M

SE

C
E

P 9
5

D
EP

M

D
ET

M
A

E

M
SE

R
M

SE

C
E

P 9
5

D
EP

M

D
ET

M
A

E

M
SE

R
M

SE

C
E

P 9
5

D
EP

M

D
ET

M
A

E

M
SE

R
M

SE

C
E

P 9
5

D
EP

M

D
ET

V1 valid. 2.01 6.31 2.51 4.88 0.348 977.00 0.82 1.17 1.08 2.16 0.077 21.05 0.84 1.94 1.39 2.76 0.011 37.21 0.44 0.52 0.72 1.44 0.018 18.71 0.23 0.14 0.37 0.72 0.022 9.46
V1 test 2.16 7.37 2.71 5.25 0.374 2103.89 0.89 1.38 1.17 2.37 0.088 136.95 0.88 2.15 1.46 2.86 0.013 460.47 0.47 0.59 0.77 1.49 0.019 130.59 0.25 0.16 0.40 0.77 0.022 15.65
V1 test w. LKF 1.06 1.55 1.25 2.15 0.435 1451.61 0.51 0.44 0.66 1.41 0.065 363.80 0.64 0.93 0.97 1.91 0.178 101.70 0.38 0.39 0.62 1.22 0.055 38.53 0.22 0.13 0.36 0.70 0.001 5.32

V2 valid. 1.84 5.38 2.32 4.51 0.337 817.31 0.71 0.90 0.95 1.91 0.064 14.89 0.61 1.04 1.02 1.98 0.004 10.90 0.40 0.43 0.66 1.27 0.022 10.69 0.20 0.11 0.33 0.63 0.024 3.19
V2 test 1.93 5.82 2.41 4.69 0.328 1806.20 0.77 1.04 1.02 2.05 0.074 76.96 0.64 1.15 1.07 2.07 0.005 206.69 0.42 0.48 0.69 1.33 0.022 66.70 0.22 0.12 0.35 0.67 0.023 8.38
V2 test w. LKF 0.99 1.35 1.16 2.01 0.410 1010.47 0.47 0.37 0.61 1.30 0.054 267.01 0.51 0.64 0.80 1.56 0.127 62.35 0.34 0.33 0.57 1.11 0.043 36.98 0.19 0.10 0.32 0.61 0.004 4.93

V3 valid. - - - - - - 0.63 0.70 0.83 1.76 0.036 26.77 0.50 0.71 0.84 1.65 0.030 31.81 0.25 0.17 0.41 0.77 0.005 14.95 0.15 0.06 0.24 0.44 0.013 8.62
V3 test - - - - - - 0.67 0.78 0.88 1.87 0.047 39.84 0.55 0.85 0.92 1.80 0.042 145.08 0.28 0.21 0.46 0.89 0.010 21.50 0.17 0.07 0.27 0.53 0.016 12.66
V3 test w. LKF - - - - - - 0.43 0.30 0.55 1.16 0.076 113.82 0.47 0.52 0.72 1.45 0.135 22.52 0.24 0.17 0.41 0.80 0.026 14.80 0.16 0.07 0.26 0.50 0.003 3.75
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(a) V1 without LKF (b) V2 without LKF (c) V3 without LKF

(d) V1 with LKF (e) V2 with LKF (f) V3 with LKF

Figure 9. CDF on test sets V1–V3, both without and with linear Kalman filter (LKF).

Evaluation on V1. V1 contains activities that vary in their duration between users. Therefore,
the estimators have to deal with redundant information (since neither the activities nor the velocities
are equally distributed). Table 2 holds the results in its upper group of rows. On the test set, Hybrid
performs best (MAE = 0.25 m/s), followed by C/RNN (MAE = 0.47 m/s). RoNIN (MAE = 0.88 m/s)
and ML-GP (MAE = 0.89 m/s) are on par. Likewise, the CDF-Figure 9a shows that all four data-driven
models provide v′ estimates with an error below 1.25 m in 70% of all cases. PDR (with Kg) yields the
worst MAE ( = 2.16 m/s). Looking at the robustness of the methods to small and large outliers Hybrid
(best) has fewer large outliers (RMSE = 0.40 m/s), followed by C/RNN (RMSE = 0.77 m/s), while
RoNIN (RMSE = 1.46 m/s) and ML-GP (RMSE = 1.17 m/s) have more serious problems. PDR has
the largest outliers (RMSE = 2.71 m/s). These are very likely due to model inconsistencies that are
introduced by the variety of motions. Interestingly, ML-GP (MSE = 1.38 m/s) seems to handle outliers a
little better than RoNIN (MSE = 2.15 m/s). This might be due to RoNIN’s mapping of measurements to
a single fingerprint number. The PDF-Figure 10a supports these findings and underlines the robustness
of C/RNN and Hybrid, as they form more narrow and higher amplitudes (around zero) than the other
estimators.

The distance errors show that PDR has serious problems (DET = 2.1 km), followed by RoNIN (DET
= 460.47 m), while the other three methods do not show abnormalities. In the DET-Figure 11a, both
PDR and RoNIN are farther away from the ground truth than the other three methods. Interestingly,
while PDR makes large DET mistakes and also has a large DEPM ( = 0.37 m), for RoNIN its high DET
value does not correlate with its low DEPM value. Obviously, DEPM does not necessarily directly
correlate with DEPM, instead the large RMSE values (PDR: 2.71 m/s; RoNIN: 1.46 m/s) suggest that
there are outliers that may cause the high DET values.
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(a) V1 without LKF (b) V2 without LKF (c) V3 without LKF

(d) V1 with LKF (e) V2 with LKF (f) V3 with LKF

Figure 10. PDF on test sets V1–V3, both without and with LKF.

(a) V1 without LKF (b) V2 without LKF (c) V3 without LKF

(d) V1 with LKF (e) V2 with LKF (f) V3 with LKF

Figure 11. Distance error total (DET) over time on the test sets V1–V3, both without and with LKF.
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Looking at the effects of fs and ft on the accuracy, we believe that ML-GP surpasses RoNIN, as
it represents the reliability of the represented fs. A comparison of the ML-GP curve with the RoNIN
curve at ev>2 m/s in the CDF-Figure 9a supports the lower DET values of ML-GP. The shapes of the
error PDFs (Figure 10) are mostly symmetric and almost Gaussian in shape. However, a noticeable
effect of systematic overestimation is present for the PDR errors when they are filtered with the LKF.
We think that RoNIN may overfit too much to the redundant data, while ML-GP processes them
effectively and is less susceptible to unequally distributed data. In contrast, the C/RNN and Hybrid
memory cells may contribute to remembering what knowledge ft to store and what to forget. Here,
tracing the emergence of fs over time may add to the accuracy of ft. However, C/RNN is significantly
worse than Hybrid across all metrics (C/RNN: CEP95 = 1.49 m/s versus Hybrid: CEP95 = 0.77 m/s).
This might indicate that the deeper feature extractor (ResNet) of Hybrid performs better than the
shallow one of C/RNN (2 × convolution layers), as the rest of their architectures is similar. The RMSE
numbers also are an early indication that time and context ft appear to have a significantly positive
impact on accuracy: C/RNN and Hybrid that both exploit fs and ft lead to much lower errors (RMSE
= 0.77 m/s and 0.40 m/s) than ML-GP and RoNIN, which only exploit fs (RMSE = 1.17 m/s and
1.46 m/s). This is in line with the CDF-Figure 9a that shows that, in 90% of all cases, the data-driven
methods that take ft into account provide errors below 1 m, clearly outperforming the other methods.
A pre-study of PDR showed that, even with subject- and activity-specific coefficients Ksa, the errors
remain high (MAE = 1.97 m/s, RMSE = 2.41 m/s, and DEPM = 0.31 m). While, with Kg, PDR has a
high distance error DET = 2.103 m, with Ksa it only improves to DET = 1.73 m. Only a Ksa together
with a fine-tuning of the step detection (we optimized a threshold for the peak detector on a specific
test segment) yields lower errors (MAE = 1.13 m/s, RMSE = 1.87 m/s, DEPM = 0.27 m/s). However,
even with an elaborate and impractical optimization that pre-classifies an activity in the sensor stream
and selects a suitable subject-activity-specific Ksa, PDR performs worse than the others

Evaluation on V2. In V2, activities are pruned to have the same duration. Table 2 shows the
results in its middle group of rows. RoNIN benefits more than ML-GP when moving from V1 to V2
(MAE: −0.24 m/s vs. −0.21 m/s and CEP95: −0.79 m/s vs. −0.32 m/s). The reason might be that
RoNIN is no longer forced to memorize or overfit to redundant data (e.g., some users move much
slower than others, even during fast activities, such as running, V2 adjusts this imbalance slightly and
the redundancy of slow velocity data is slightly reduced), while ML-GP does no longer profit from its
functional structure. For C/RNN and Hybrid there are only mild improvements of accuracy (MAE:
around −4 cm/s and CEP95: around −12 cm/s). We think that this is because they already track only
the most important features. A comparison of the curves in the CDF-Figures 9a and 9b reveals that
they are all pushed towards the upper left. All four data-driven methods now show errors that are
below 1 m/s in 70% of all cases as compared to 1.25 m in 70% on V1. As with V1, PDR (with Kg) still
performs worse (DET) than the four data-driven methods, even though there is a significant gain when
moving from V1 to V2 (MAE: −0.23 m/s and CEP95: −0.56 m/s).

Looking at the small and large outliers of the methods, we see that moving from V1 to V2
remarkably reduces the number of large outliers as MSE and RMSE both decrease across all five
estimators by up to 46% (MSE of RoNIN). However, a closer look shows that, while Hybrid has the
fewest outliers (MSE = 0.12 m/s; RMSE = 0.32 m/s), followed by C/RNN (MSE = 0.48 m/s; RMSE
= 0.69 m/s), the other estimators still have serious problems (ML-GP: MSE = 1.04 m/s; RMSE = 1.02
m/s; RoNIN: MSE = 1.15 m/s; RMSE = 1.07 m/s). This is in line with the more narrow bell shape of all
curves, except PDR’s curve, in the PDF-Figure 10b. The smaller MSE and RMSE values on V2 than on
V1 might indicate that all methods focus more on denoising (i.e., filtering out small and large outliers)
than on learning redundant information.

The distance errors have an impact on the robustness. For PDR, the DET shrinks significantly from
2.1 km to 1.8 km. DET also shrinks for RoNIN by a remarkable 250 m, which is in line with its RMSE
reduction by about 40 cm. ML-GP, C/RNN, and Hybrid also show lower errors across all metrics,
but they do not benefit as much as ML-GP and RoNIN. The comparison of the PDF-Figures 10a, b
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shows a noticeable increase in the amplitudes of RoNIN, C/RNN, and Hybrid that also form a more
narrow bell shape. RoNIN’s handling of small outliers is now closer to ML-GP (their MSE differs by
0.11 m/s on V2 vs. 0.77 m/s on V1). A decrease in the DEPM values (ML-GP: 0.014 m vs. RoNIN:
0.008 m) might cause the ML-GP curve to be closer to the ground truth than RoNIN’s curve, see the
DET-Figure 11b. This might also indicate that RoNIN now has less handicap to both separate and
memorize important information.

While we do not see a significant benefit of the ft tracking methods (C/RNN and Hybrid), the
methods that track fs benefit the most from working on a dataset with less redundancy.

Evaluation on V3. Remember that we do not evaluate PDR on V3, as there are no segments. In
V3, velocities are homogeneously distributed over 3 to 13 km/h for all users; there is less redundancy
than in V2. Table 2 holds the results in its bottom rows. While ML-GP (MAE: −16% and CEP95:
−16%) and RoNIN (MAE: −37% and CEP95: −38%) benefited the most when moving from V1 to V2,
now C/RNN (MAE: −50% and CEP95: −49%) and Hybrid (MAE: −19% and CEP95: −22%), see the
strongest improvements at a much more fine-grained level (below 20 cm) when moving from V2 to
V3. Hybrid (best) shows the smallest error on V3 (MAE = 0.17 m/s; CEP95 = 0.53 m/s), followed by
C/RNN (MAE = 0.28 m/s; CEP95 = 0.89 m/s). Of course, all four methods in the accuracy benchmark
perform remarkably better with V3 than on the other data set variants. The reason might be that V3
has a suitable distribution of data and therefore also statistical information. It is known that such an
information distribution may lead to quasi optimal results of the estimators [77]. This is in line with
the CDF-Figure 9c that now tells us that, in 70% of all cases, the errors of the four data-driven methods
are below 0.75 m. Now, all methods probably focus on denoising the raw data, extracting the best fs

and ft features, and having a clear sight on what is important to memorize.
Looking at how the methods handle small and large outliers on V3, we can see the same trend as

for MAE and CEP95. For all four methods, both the MSE and RMSE values significantly decrease when
moving from V2 to V3. C/RNN benefits the most when moving from V2 to V3 (MSE: −56%; RMSE:
−30%), followed by Hybrid (MSE: −30%, RMSE: −19%) and RoNIN (MSE: −26%; RMSE: −14%).
C/RNN and Hybrid also have the fewest outliers (MSE = 0.21 m vs 0.07 m and RMSE = 0.46 m vs.
0.27 m). ML-GP benefits the least when moving from V2 to V3 (MSE: -25%; RMSE: −14%). On V3,
there seems to be the least noise in the results. All of the methods seem to efficiently denoise the data.

The distance errors and their impact on the robustness benefit from moving to V3 in the same
way as the outliers. When compared to V1 and V2, all four methods achieve their best DET values on
V3. As C/RNN and Hybrid yield the lowest DET values at a total distance of 1.5 km, their curves get
closest to the ground truth, see DET-Figure 11c.

As we have seen on the V2 dataset, both C/RNN and Hybrid (which use both fs and ft) achieve
much smaller errors across all metrics than ML-GP and RoNIN (which only use fs). Thus, we think
that the ability of a BLSTM in combination with a dropout layer (C/RNN and Hybrid) to track ft in a
window appears to have a significantly positive impact on the accuracy.

Added Value of the Post-Processing with an LKF. The final LKF does enhance the accuracy of all
five methods on datasets V1 to V3. The results are in the grey lines of Table 2. The validation dataset
does not include the LKF, as we use it to train the LKF on the predictions of each method.

There are three key findings. First, the post-processing with an LKF significantly increases the
velocity and the distance estimation accuracy of all methods on all datasets, on average by: V1: 145%,
V2: 70%, and V3: 60%. Compare the black lines to the corresponding grey lines in Table 2. Second,
methods that only work on fs (PDR, ML-GP, and RoNIN) benefit more from the LKF than C/RNN
and Hybrid. On V1, the average improvement of MAE, MSE, RMSE, and CEP95 for the former is
PDR: −185%, ML-GP: −108%, RoNIN: −67% versus for the latter C/RNN: −30%, and Hybrid: −14%.
Third, an added LKF lowers the DET for all methods (except for ML-GP) by approximately 50%.

On both V1 and V2, an added LKF helps PDR the most (MAE: −1 m; CEP95: −3 m). The PDR
curve changes the most between the CDF-Figures 9d,e. The added LKF shows a better denoising and
interpolation for the methods that work with fs (ML-GP and RoNIN) than for the two ft tracking
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methods (C/RNN and Hybrid). The CDF-Figures 9d–f underline this: all of the curves are pushed
towards the upper left (ML-GP even surpasses RoNIN), so that, with an applied LKF, the errors get
below 0.5 m in 70% of all V3 cases, which is a 125% improvement.

With respect to small and large outliers, we see the same trend of MSE and RMSE as with MAE
and CEP95. While the LKF removes outliers for all estimators, PDR profits most (MSE: −5.8 m/s,
RMSE:−1.25 m/s), followed by ML-GP (MSE:−0.94 m/s, RMSE:−0.51 m/s) and RoNIN (MSE:−1.22
m/s, RMSE: −0.49 m/s). We suppose that the LKF use the validation data to track the weak spots
of these characterizations and improve the denoising and, hence, the MSE and RMSE values, see the
PDF-Figure 10d–f that also shows that the effect is the strongest on V3.

Looking at the distance errors, the DET-Figure 11d–f shows that with an LKF all curves, except
ML-GP, get much closer to the ground truth. Other than that, the effect of the LKF on the methods’
DEPM and DET values are a bit blurry. For three methods, the LKF even downgrades the average
DEPM (PDR: +17%, RoNIN: +86%, and C/RNN: +59%), perhaps because it fails to spot and track
some outliers. On the other hand, although the LKF reduces the DEPM value of ML-GP, ML-GP has
the worst DET values across all datasets (average DET: 163 m). This is in line with ML-GP’s smaller
reduction of RMSE values. The other four methods benefit from the LKF and show improved DET
values (PDR: −724 m; RoNIN: −209 m; C/RNN: −43 m, and Hybrid: −8 m).

Regardless of whether methods work with fs or with ft, they all benefit from the LKF. The LKF
has a stronger effect on the larger errors of the fs methods, perhaps because the ft methods (C/RNN
and Hybrid) already consider the time as they learn a state-space model that the LKF also provides.

5.2. Computational Effort

We measure the training and inference times of of all five methods on the same sub-set of V1 that
is used in the accuracy benchmark. We measure the training times on the training set and the inference
times on the test set. For Hybrid, we also measure the training times of the post-processing step on the
validation set. The training and the inference times both highly depend on parameters of the method,
e.g., early stopping with patience, width, depth, and cell type of a NN.

Setup. For the benchmarks we use off-the-shelf hardware components. There are two setups:
(1) one core of a single CPU (Intel Core i7 4 × 3.6 GHz), (2) a machine equipped with a single GPU
(NVIDIA GTX1080TI 11GB). For PDR, ML-GP, and Hybrid’s LKF, there are no GPU implementations.
Hence, for PDR and ML-GP, we only have measured on setup (1). For the other systems, we have
CPU-only measurements (setup (1)) and also measurements taken on setup (2). Here, for RoNIN and
C/RNN, the CPU core only coordinates the GPU implementations. For Hybrid it also runs the LKF.
We separately measure the run-times of the full training (all windows/features) and the inference for a
single input sequence (below we use the term live). While data pre-processing times are negligible for
training (as we only do it once but run iteratively on the data), we included them in them for live, as
they matter here for the real-life application of the methods.

Evaluation Design: for the dataset V1, Table 3 lists ttrain (for all windows/features or segments)
and tlive (average time that it takes to predict the velocity on a single window/feature set). As Hybrid
uses an LKF, its total training time is ttrain = tpure

train+tLKF
train, where tpure

train covers ResNet and BLSTM on
the complete training set (on all the 112,500 windows) and tLKF

train shows how long the trained Hybrid
model needs to predict v′ on the full validation set (11,250 windows) plus how long it takes to train the
LKF on these predictions v′ (11,250 ×v′). Hybrid’s live time is tlive = tpure

live +tLKF
live with tpure

live averaging
how long the trained pure Hybrid takes to predict v′ for each of the 22,500 windows of the test dataset
and tLKF

live averaging how long the trained LKF takes to predict v′′.
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Table 3. Computational effort.

Method ttrain [h] tlive [ s] tlive [ Hz]
CPU GPU CPU GPU CPU GPU

PDR 0.2 - 0.00073 - 1370 -
ML-GP 23.6 - 0.00203 - 493 -
RoNIN 11.2 8.1 0.01041 0.0147 96 68
C/RNN 6.9 4.9 0.00610 0.0069 164 145
Hybrid 15.6 10.5 0.01785 0.0277 56 36

For the training, the GPU times are faster than the CPU times by a linear factor, see Table 3. For the
live time, the GPU times are slower than the CPU times, as the GPU cannot use its computing power on
a single window. PDR is by far the fastest method for the training (ttrain = 0.2 h). Due to their gradient
optimization, the other (data-driven) methods take more than 34× longer. ML-GP trains the slowest
(ttrain = 23.6 h), which is in line with Liu et al. [83]. RoNIN takes long (ttrain = 11.2 h), as it builds
upon ResNet that is known to be computationally demanding because of its many parameters [67]. As
C/RNN uses a flat CNN and, thus, employs fewer parameters, it is faster (ttrain = 6.9 h). For Hybrid,
the extra BLSTM layers (≈3.4 h) and the LKF (tLKF

train = 0.98 h) slow down the training times (ttrain = 15.6
h). With respect to the live times in Hz, again PDR is by far the fastest method (tlive = 1370 Hz). This
time, ML-GP is about 3× faster than the other data-driven methods. For both C/RNN and Hybrid, the
BLSTM layers slow down the prediction by about 40 Hz. The LKF only adds about 0.002 s per window.
Thus, it is clearly affordable to add an LKF to any of the estimators.

5.3. Generalizability

There are four experiments in this benchmark, see the last group of rows in Table 1. To investigate
the generalizability of the five methods on unknown data, we look at their performance on (1) the
unknown data of the Left-Outs, (2) of the user with two special sensors of Unknown Devices, (3)
Interpolation between two ranges of velocities, and (4) test the methods’ Extrapolation abilities. Before
the Left-Outs and Unknown Devices experiments, all methods were trained in the best possible way
(PDR on V2, others on V3). Only Hybrid uses an LKF. Before the Interpolation and Extrapolation
experiments, we have to train the four data-driven methods from scratch. We use the V3 data of the 20
subjects for this (without the left-outs and the special devices user). The two reasons for this choice are
the comparability to the other benchmarks and the fact that the data-driven methods perform better
on V3 than on V1 and V2. For the four experiments, Table 4 lists the six velocity error metrics known
from the accuracy benchmark. We also visualize the errors as: CDF, PDF, and DT graphs in Figure 12.

Table 4. Accuracy; generalizability; velocity errors in m/s; distance errors in m.

Dataset PDR Kg ML-GP RoNIN C/RNN Hybrid
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Left-out A 2.10 6.94 2.63 5.09 0.376 460.19 0.76 1.03 1.01 2.09 0.082 99.75 0.57 0.90 0.95 1.82 0.035 3.97 0.29 0.23 0.48 0.91 0.027 2.00 0.18 0.08 0.29 0.55 0.026 1.26
Left-out B 2.06 6.64 2.58 5.03 0.362 442.94 0.78 1.07 1.03 2.10 0.071 86.58 0.57 0.90 0.95 1.85 0.061 6.87 0.30 0.23 0.48 0.91 0.022 3.38 0.18 0.08 0.29 0.54 0.023 2.07
Left-outs A+B 2.10 6.95 2.64 5.08 0.374 914.55 0.78 1.08 1.04 2.14 0.077 188.13 0.58 0.92 0.96 1.85 0.029 4.43 0.30 0.23 0.48 0.93 0.024 2.33 0.19 0.09 0.29 0.56 0.024 1.54

Unknown devices 2.32 7.21 2.89 5.43 0.516 506.44 0.83 1.21 1.16 2.38 0.077 101.42 0.73 0.98 1.06 2.12 0.093 12.44 0.32 0.35 0.52 1.02 0.032 5.21 0.21 0.12 0.32 0.67 0.028 3.44

Interpolation valid. - - - - - - 0.54 0.49 0.70 1.47 0.105 61.31 0.49 0.61 0.78 1.49 0.060 34.84 0.24 0.15 0.38 0.70 0.005 16.86 0.15 0.05 0.23 0.42 0.007 10.12
Interpolation test - - - - - - 0.53 0.47 0.68 1.46 0.089 104.44 0.52 0.66 0.82 1.58 0.064 75.19 0.26 0.16 0.40 0.76 0.007 36.41 0.16 0.06 0.24 0.44 0.006 21.872
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(a) CDF of left-outs (A,B) (b) CDF of unknown devices (c) CDF of interpolation

(d) PDF of left-outs (A,B) (e) PDF of unknown devices (f) PDF of interpolation

(g) DET of left-outs (A,B) (h) DET of unknown devices (i) DET of interpolation

Figure 12. CDF, PDF, and DET of the generalizability benchmarks: left-outs (A,B), unknown devices,
and the interpolation datasets

Left-Outs. The two left-out users moved fairly similarly: left-out A moves at 0.74 m/s on average
(min.: 2.5 m/s, max.: 3,9 m/s, SD: 0.41 m/s). Left-out B, who indicated that he does not exercise as
often as A, moves somewhat slower at 0.66 m/s on average (min.: 2.4 m/s, max.: 3,6 m/s, SD: 0.38
m/s). Table 5 holds the errors for the two left-out users per activity. We evaluated the estimators on
the left-out data both individually and in combination. The main take-aways are: (1) all estimators
generalize well (small error readings) at least if unknown users move at velocities that are covered by
the training data. They also generalize robustly (similar lines for A, B, and A+B in Table 4). (2) Despite
the slightly different velocity of the two left-outs the generalization is similar. All of the estimators
only make small errors across all metrics (that are also on the level of the test set of V3 (V2 for PDR) in
the accuracy benchmark, see Table 2).

Table 5. Accuracy; left-outs; velocity errors in m/s, distance errors in m.

Dataset PDR Kg ML-GP RoNIN C/RNN Hybrid
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Walking 1.15 1.82 1.35 2.17 0.054 81.51 0.70 0.68 0.83 1.36 0.093 138.81 0.67 0.62 0.78 1.33 0.004 5.67 0.32 0.15 0.38 0.66 0.015 2.56 0.17 0.04 0.20 0.32 0.003 2.26
Jogging 1.27 2.18 1.48 2.38 0.049 141.02 0.76 0.80 0.90 1.48 0.048 138.59 0.73 0.73 0.86 1.46 0.003 9.73 0.35 0.17 0.42 0.72 0.009 2.60 0.19 0.05 0.21 0.35 0.000 1.08
Running 1.35 2.50 1.58 2.54 0.023 87.74 0.83 0.95 0.97 1.62 0.037 140.97 0.80 0.87 0.94 1.56 0.001 4.49 0.39 0.21 0.46 0.77 0.006 3.52 0.21 0.05 0.23 0.38 0.002 2.33
Random 1.38 2.56 1.60 2.56 0.037 105.69 0.97 0.93 0.96 1.60 0.054 153.55 0.83 0.92 0.93 1.58 0.026 75.11 0.41 0.23 0.48 0.79 0.009 21.46 0.21 0.06 0.25 0.43 0.004 11.47
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Similar to the accuracy benchmark, PDR generalizes worst, where the Hybrid generalizes the
best. All of the methods handle left-out B a bit better than A, across all error metrics, probably because
the training data does only partially cover A’s velocity. The results for the combined left-outs A+B in
Table 4 are similar to those for the individual left-outs, but the estimators score slightly worse across all
error metrics (about −8%) than on the test dataset of V3 (V2 for PDR). The scores are still impressive,
but the slight deviation might be caused by missing motion patterns and missing velocities in the
training data. PDR struggles with the left-outs A+B, since its parameterization does not cover the
kinetics of their movements.

Hybrid and C/RNN are the most robust estimators, as they show the highest peaks with the most
narrow amplitudes in Figure 12d. However, their MSE and RMSE values are worse (by −11%) than
their results in the accuracy benchmark, see Table 2. We explain this with the unknown and highly
individual motion patterns between windows that change over time. Even the ft tracking methods
struggle slightly when they work with the faster motions of left-out A that are not covered by the
training data. PDR, ML-GP, and RoNIN suffer even more from this.

Interestingly, the DET values for PDR (DET = 914 m) and ML-GP (DET = 188 m) are almost the
sum of the individual DET values for A and B, while the DEPM values in all three lines of Table 4 are the
same. We assume that PDR’s accumulation and underestimation of velocity is due to undetected steps
from left-out A, as Kg may not match his faster movement patterns. Instead, the accumulation of DET
values by ML-GP and the overshooting of the velocities may indicate that the velocity ranges of the
training data cover mostly faster velocities. This bias to higher velocities can explain the slightly higher
error numbers. Instead, the DL-based methods (DET<5 m on average) do not show an accumulation
of DET values. They all get close to the ground truth, probably because they implicitly learn to handle
more complex feature dependencies directly from the data.

Unknown Devices. In this experiment, two special sensors (left and right pocket of one left-out
user) move at an average velocity of 2.6 m/s (min.: 1.3 m/s, max.: 3.5 m/s, SD: 0.28 m/s). Table 4
holds the errors in the second group of rows. The main take-away is that all estimators generalize
well (error readings slightly worse than the test set of V3 (V2 for PDR) in the accuracy benchmark, see
Table 2) if known sensors move at velocities that are covered by the training data.

All five estimators generalize slightly worse (PDR worst, Hybrid best) across all error metrics for
the unknown devices than for the left-outs. Additionally, their accuracy on the unknown devices is
also slightly worse than on V3 (V2 for PDR), but comparable to their results on V1, see Table 2. This
can be attributed to the fact that the methods not only struggle with unknown movement patterns, but
also with unknown scaling of the sensor measurements or unknown short- and long-term noise.

The robustness of all methods against outliers is similar for the unknown devices and for the
left-outs, see Figures 12e,d. The denoising of Hybrid and C/RNN is more robust against both outliers
and variations in the scaling of the sensor readings. All of the methods show worse MSE and RMSE
values (by −15%) than they did in the accuracy benchmark, see Table 2. As these results are in line
with the results for the left-outs, both the highly individual motion patterns of the unknown user
that carries the two sensor as well as the unknown sensitivity to motion of the unknown sensors may
cause the higher MSE and RMSE errors. As different scaling of the sensor readings directly convert to
different amplitudes and the methods interpret these as different velocities, there are larger outliers.

In line with their higher MSE and RMSE values, the distance errors of PDR (DET = 506 m) and
ML-GP (DET = 101 m) are the worst, see Figure 12h. This is plausible as their bad MSE and RMSE
values (that may stem from a different scaling of the sensor data) directly convert to higher DET values.
Again, PDR under- and ML-GP overshoots the ground truth, see Figure 12h. The reason for PDR’s
failure to detect steps is that the different scaling no longer matches the thresholds of the peak detector
that was trained on other sensors with a different scaling. Instead, the DL-based methods (DET<12 m)
are mapped well to the ground truth.

Interpolation. We let the methods interpolate between two ranges of velocities. We train with
windows (or features) of slow (vre f ∈[3,7) km/h) and fast (vre f ∈(9,13] km/h) velocities. Recall that
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V3 hold these velocities in four of its five 2 km/h range bins. To gauge the interpolation abilities,
we use the remaining range bin with normal velocities (vre f ∈[7,9] km/h) and split this data into
validation (33% = 2.059 windows/features) and test datasets (67% = 4.181 windows/features). We
train the four estimators with windows (or features) of slow (vre f ∈[3,7) km/h) and fast (vre f ∈(9,13]
km/h) velocities. We evaluate them on normal velocities (vre f ∈[7,9] km/h). The results are in rows at
the bottom of Table 4. Remember that we cannot evaluate PDR on V3. The main take-away is that all
four data-driven methods are able to interpolate between two distinct ranges of velocities and provide
velocity estimates at a similar or even higher accuracy than they did on the test set of V3 (see Table 2).
The four estimators perform similar on the validation and test datasets across all error metrics.

While ML-GP (worst) and RoNIN perform similar (MAE = 0.5, CEP95 = 1.5 [m/s]), C/RNN and
Hybrid (best) perform slightly better (MAE = 0.26, CEP95 = 0.76 vs MAE = 0.16, CEP95 = 0.44 [m/s]).
Figure 12c reveals that, in 70% of cases, all four methods show errors below 0.7 m/s. The graph also
shows that ML-GP clearly outperforms RoNIN above probabilities of 0.9. Our explanation is that
ML-GP learns to align its internal distributions, such that they cover the unknown range of velocities
very well, while RoNIN cannot make that much use of its fingerprint learning mechanism. The good
performance of C/RNN and Hybrid is in line with all other findings, where the exploitation of ft

almost always outperforms the use of just fs. Both of the estimators benefit from using an optimal
training set that also covers the borderline velocities. The four methods interpolate about +3% better
than they estimate in the accuracy benchmark (Table 2). Here it helps that the unknown range of
velocities is comparably small, so that only short-range interpolations are needed.

The robustness of all methods is similar to the accuracy benchmark, as the training and test data
does not change (same 20 users), even though we left out other parts here. The DEPM and the DET
both scale linear with the MSE and RMSE. Again, ML-GP is the only method that overshoots the
ground truth, see Figure 12i, as the velocity ranges are slightly positively imbalanced within each
velocity range/bin. While RoNIN seems to handle such imbalances better than ML-GP, it undershoots
and yields slightly lower errors across all metrics. C/RNN and Hybrid interpolate slightly better (DET
= 36 m vs. DET = 21 m) than the methods that only track fs. However, we cannot reason how their
time and context sensitivity impacts the interpolation. We guess that the ft features force the C/RNN
and Hybrid models to implicitly focus more on the connectivity and inter-dependencies of velocities.

Extrapolation. To test the methods’ extrapolation abilities, the training data now contain slow
to normal velocities (vre f ∈[3,11) km/h), i.e., the first four range bins. The evaluation data is the
remaining range bin of fast velocities (vre f ∈[9,13] km/h). Again, we split this data into validation
(33% = 2.059 windows/features) and test datasets (67% = 4.181 windows/features). Note that for
simplicity we just reuse and rearrange the five bins of V3, each with 6240 windows of 20 users × two
sensors × 156 windows × one per bin (bin size of 2 km/h), see Section 4.2 for details. Remember that
we cannot evaluate PDR on V3. There are neither numbers in Table 4 nor graphs, as all methods are
unable to extrapolate well.

All of the estimators show high errors (5–10× compared to the accuracy benchmark) on both
the validation and test data that also fluctuate randomly. There is no clear relation between the input
and the extrapolation. As data-driven methods learn to fit the validation data, they can only work
well on the test data if both of the datasets stem from the same data pool. However, since, in this
experiment, all methods fail on both the validation and the test sets, this indicates that they really
cannot extrapolate. The closer the velocities are to the training data (i.e., closer to 11 km/h) the better
the accuracy gets. It decreases when testing on data that exceeds the maximal velocities covered by the
training data. Hence, we cannot recommend using the methods for extrapolation for velocities that are
not covered in the training data.

Because none of the methods extrapolate sufficiently well on specially selected velocities, we tested
their ability to extrapolate to random motion patterns. To do so, we only trained on walking, jogging,
and running data, and left out the random activities. Because the results do not show anomalies, we
only discuss the traveled distance error: the PDR method again overshoots significantly by 759 m,
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while ML-GP (−200 m), RoNIN (−142 m), C/RNN (−87 m), and Hybrid (−16 m) undershoot. Our
explanation is that the data from walking, jogging, and running already contain motion patterns from
users that moved at varying motions with abrupt direction changes and, hence, all of the methods do
learn random activity features. Hence, we recommend using the data-driven methods for extrapolation
when the motion patterns are covered in the training data.

5.4. Effects of Windows Size

Typically, the velocity estimators propagate errors along the state-space, as they continuously
integrate errors over time. We break this cycle by sliding quasi-independent windows over the
signal [66,84]. However, the window size Nw and the window overlap are parameters that affect the
model with respect to both acceleration and angular rate. The window size also affects the learning
rate. Brownlee et al. [85] found that, in general, the maximal input sequence is Nw = 400 (at 100 Hz) for
LSTM cells to work fail-safe. Our model seems to learn long-term dependencies ft of measurements
within windows already from 128 samples (1.28 s) and provided the highest accuracy for all methods.
For completeness, here we sketch the performance fluctuations that are caused by changing Nw.

While the inference times tlive are not affected (SD ±0.002 s) by Nw and by the overlap, we see
effects for the training times ttrain. A window size Nw = 512>128 results in redundant information,
slows down the training process for data-driven methods (ttrain +7.3h at 100 Hz), lowers valuable
information content ( fs) for ML-GP (as the features blur out) and RoNIN (test set of V1: RMSE 1.01
m/s and 1.16 m/s), does not help C/RNN and Hybrid (test set of V1: RMSE 0.74 m/s and 0.61 m/s),
and raises the computational effort, even for PDR methods. Nw = 64 < 128 increases the computational
performance (ttrain −4.1h at 100 Hz), but yields remarkably less accurate estimates on the test set
of V1 (RMSE [ m/s]: ML-GP 1.94, RoNIN 1.92, C/RNN 1.89, Hybrid 1.78, and compare line V1 of
Table 2). Our experiments revealed that all four data-driven methods perform similarly on both 1D-
and 2D-SMVs (RMSE SD ≤ 0.06 m/s), but 1D-SMV saves computational costs (ttrain −2.9h at 100 Hz).
A low Nw may still be an option for smartphone-based localization, when lower energy consumption
is important.

6. Conclusion and Future Work

This article proposed a novel Hybrid velocity estimator that combines DL with a Bayesian filter
on rotation-invariant signal streams. Its combination of convolutional (ResNet-18) and BLSTM NNs
extracts spatial features from the sensor signals and tracks their temporal relationships to estimate
velocities. An LKF further optimizes theses estimates. We compared our approach to state-of-the-art
methods such as PDR, ML-GP (Gaussian Processes Regression based on handcrafted features), RoNIN
(ResNet), C/RNN (CNN+BLSTM) and showed that we outperform state of the art in terms of accuracy,
generalizability, and computational cost. We also proved that an additional post-processing with a
linear Kalman filter further improves the results.

Future work examines how training on synthetic data and retraining on real data may help to
push the boundaries of generality. We will also explicitly examine other types of movements, such as
jumping and climbing stairs, and also examine other natural positions of the IMU, such as head and
hands. We will also combine Hybrid’s velocity estimates with a PDR that enables multi-sensor fusion
(based on low-frequency radio-based positions and IMU-based orientations) in a single network and
compare them to well-designed state-of-the-art PDR methods.
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Appendix A. Parameterization of Velocity Estimators

Note that we highlight the parameters that enable the highest accuracy of each velocity estimator
with bold numbers.

Appendix A.1. Feature Set of Baseline II, ML with Gaussian Processes ML-GP.

The set of of 6 time domain features is inspired by Bishop et al. [79] and consists of absolute
energy, i.e., the absolute energy of the time series which is the sum over the squared values, maximum,
minimum, mean, median, and variance. The set of 7 frequency domain features is inspired by Vathsangam
et al. [81] and comprises spectral bandwidth, spectral flatness , i.e., the ratio of the geometric mean to
the arithmetic mean of the magnitude spectrum of the signal, spectral roll-out , i.e., frequency below
which a certain percentage of the total spectral energy lies, spectral center of gravity , i.e., the spectral
centroid (mean), variance, skew, and kurtosis of the absolute Fourier transform spectrum. While all
time domain features are straightforward to calculate, the frequency domain features require to apply
a short-term Fourier transform (STFT) to each window and to extract the features from the STFT-like
representation of the time-frequency distribution. The grid search also examined a dimensionality
reduction (principal component analysis, PCA [86]) of all 13 features to reduce them to feature bundles
that contribute most to the accuracy of the estimation.

Appendix A.2. Grid search results of Baseline II, ML with Gaussian Processes ML-GP.

ML-GP grid search parameters: Logistic Reg.: penalty ∈[l1,l2,elasticnet], tolerance
∈[0.0001,0.001,1.0], C ∈[0.1,1.0,10], solver ∈[saga,newton-cg]; SVR Linear: C ∈[1,10,100,1000]; SVR
Poly.: C ∈[1,10,100,1000], degree = 3 ∈[2:1:6]; SVR RBF: γ ∈[0.001,0.0001], C ∈[1,10,100,1000]; CART:
max. depth = 97 ∈[1:1:150], max. features = 27 ∈[1:1:30], max. leaf nodes = 15 ∈[1:1:20]; GP: kernel
∈[RBF, Matern52, rotational quadratic], RQ α ∈[0.001,0.01,0.1,1.0,2.0:10], RQ length scale ∈[0.1,1.0,:,10],
RBF length scale ∈[0.1,1.0,3.0,:,10], M52 length scale ∈[0.1,1.0,:,10], M52 ν ∈[0.1,1.0,1.5,2.0,2.5,:,10]; For
every 84 feature combinations and combinations of fs (50,100,200,400) and Nw (64,128,256,512). The
parameters are in line with findings from Rasmussen et al. [82].

Appendix A.3. Grid search results of Baseline III, DL I, RoNIN.

RoNIN grid search parameters: solver ∈[SGD, Adam, rmsprop]; β1, β2 = 0.01; momentum = 0.9;
initial learning rate (LR) = 0.05 ∈[1.0:0.1:0.00001]; LR drop period ∈[0,10,50,100] epochs; LR drop rate
= 0.9; patience = 100 epochs; batch size ∈[128,256,512,1024,2048]; ResNet Fs = d × N with d ∈[1,2]
dimensions and N = 7 ∈[3,4,...,9,10]; ResNet s = 1×N with N ∈[1,2,...,9,10]; shuffle ∈[no,per epoch];
gradient clipping = max(input); dp ∈[10,20,50,75]%; For every combination of fs (50,100,200,400) and
Nw (64,128,256,512). The parameters are in line with findings from Startsev et al. [87].

Appendix A.4. Grid search results of Baseline IV, DL II, C/RNN.

C/RNN grid search parameters: solver: Adam; β1, β2 = 0.01; momentum = 0.9; B/LSTM layers =
2; LSTM cells per layer = 128; initial learning rate, LR = 0.01; LR drop period = 10 epochs; LR drop rate
per epoch = 0.9; patience = 100 epochs; batch size = 512; shuffle ∈[no,per epoch]; gradient clipping
= max(input); dp ∈[10,20,50,75]%; CNN Fs = d× N with d = 2 dimensions and N = 3; CNN s = 1×N
with N = 2; For every combination of fs (50,100,200,400) and Nw (64,128,256,512).
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Appendix A.5. Grid search results of our novel approach, DL III, Hybrid.

We evaluated different sample rates (50, 100, 200, and 400 Hz) and window lengths (64, 128, 256,
and 512 Hz) on either 1D or 2D SMVs (best configuration in bold). The input sequence length of Nw =
128 holds a maximum of 1.28 s (128/100 Hz) of motion data. Hybrid grid search parameters: solver
∈[SGD, Adam, rmsprop]; β1, β2 = 0.01, momentum = 0.9; B/LSTM layers = 2 [1,2,3,4], cells/layer =
128 [16,32,64,128,256], initial learning rate (LR) = 0.01 ∈[1.0:0.1:0.00001]; LR drop period ∈[0,10,50,100]
epochs; LR drop rate = 0.9; patience = 100 epochs; batch size ∈[128,256,512,1024,2048]; ResNet Fs =
d× N with d ∈[1,2] dimensions and N = 7 ∈[3,4,...,9,10]; ResNet s = 1×N with N ∈[1,2,...,9,10]; shuffle
∈[no,per epoch]; gradient clipping = max(input); dp ∈[10,20,50,75]%; For every combination of fs

(50,100,200,400) and Nw (64,128,256,512).
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