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Abstract: Proper and accurate mix proportion is deemed to be crucial for the concrete in service
to implement its structural functions in a specific environment and structure. Neither existing
testing methods nor previous studies have, to date, addressed the problem of real-time and full-scale
monitoring of fresh concrete mix proportion during manufacturing. Green manufacturing and
safety construction are hindered by such defects. In this study, a state-of-the-art method based
on improved convolutional neural network multilabel image classification is presented for mix
proportion monitoring. Elaborately planned, uniformly distributed, widely covered and high-quality
images of concrete mixtures were collected as dataset during experiments. Four convolutional neural
networks were improved or fine-tuned based on two solutions for multilabel image classification
problems, since original networks are tailored for single-label multiclassification tasks, but mix
proportions are determined by multiple parameters. Various metrices for effectiveness evaluation of
training and testing all indicated that four improved network models showed outstanding learning
and generalization ability during training and testing. The best-performing one was embedded into
executable application and equipped with hardware facilities to establish fresh concrete mix proportion
monitoring system. Such system was deployed to terminals and united with mechanical and weighing
sensors to establish integrated intelligent sensing system. Fresh concrete mix proportion real-time and
full-scale monitoring and inaccurate mix proportion sensing and warning could be achieved simply
by taking pictures and feeding pictures into such sensing system instead of conducting experiments
in laboratory after specimen retention.

Keywords: multilabel image classification; convolutional neural network; mix proportion; real-time
monitoring; integrated intelligent sensing system; intelligent manufacturing and construction

1. Introduction

Mix proportion refers to the components and their proportions of concrete. Both theoretical
guidance and engineering practice adopt property-based mix proportion design method currently,
leading to a fact that in a specific environment and structure, properties and structural functions of
concrete in service are enormously affected by its mix proportion. A neglectable error of mix proportion
could result in great difference of concrete service behavior [1].

Modern concrete has been, to date, the most widely used building material in all kinds of
construction engineering since its invention because of its irreplaceable and incomparable advantages.
Due to the rapid pace of urbanization and the explosive growth of global infrastructure market,
the consumption of cement-based concrete is considerable. It is estimated that global concrete
consumption exceeds 3.3 × 1010 t annually [1]. On the other hand, China national standards [2,3]
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stipulate that during construction process, on-site sampling test and specimen retention shall not be
less than once every 200 m3 when concrete mixture is continuously poured over 1000 m3 for the same
batch with the same mix proportion, and various items are involved in on-site sampling test such as
mixture test, compressive strength test and durability test, green manufacturing and resource saving
are hindered by such tests.

Moreover, during manufacturing, mechanical and weighing sensors are commonly applied
to ensure accurate quantities of raw materials entering mixing process at present. The failure of
mechanical and weighing sensors is one of the most momentous reasons leading to inaccurate mix
proportions of concrete product. Simultaneously, existing testing methods represented by experiments
after a 28-day standard curing are all posterior approaches, structural deficiency caused by inaccurate
mix proportion usually could not be discovered until concrete is hardened and strength is taken shape.
The joint effect of the delayed testing in production process and the property-based mix proportion
design method prominently raises the risk of engineering accident on construction site. Additionally,
existing testing method is a low-sampling-rate inspection method due to its essential characteristic of
consuming products themselves and human-conducted on-site inspections need appreciable number
of well-educated professional technicians. Therefore, we contend that concrete quality monitoring at
early ages, even fresh concrete is highly desired. There is a pressing need to apply intelligent method
as an effective complement to mechanical and weighing sensors and existing test methods, to achieve
timely, full-scale and nonconsumption monitoring and sensing of fresh concrete mix proportion
during manufacturing.

This paper intends to present a novel deep-learning-based method for real-time and full-scale
monitoring and sensing of fresh concrete mix proportion. The present study is built on a powerful tool
in deep learning community, that is, convolutional neural network (CNN). The novelty of this method
lies in introducing a state-of-the-art technology to conventional and well-developed construction
material field, which could achieve mix proportion monitoring during manufacturing simply by taking
pictures rather than conducting experiment in laboratory and could sensing inaccurate mix proportions
by processing images directly without transforming and coping with numeric data. We aim to (1) train
CNN with desired learning and generalization ability to identify mix proportion and (2) apply the
well-trained CNN to engineering practice and united it with existing mechanical and weighing sensors
to establish integrated intelligent sensing system. As a typical data-driven, learning-based approach,
this will be done by solving the following research questions: (1) how to design and setup experiment
and collect data since an elaborately planned, uniformly distributed, widely covered and high-quality
dataset is crucial for the success of a typical CNN model and (2) how to improve and fine-tune CNN
to simultaneously identify multiple mix proportion parameters since typical CNNs are tailored for
single-label multiclassification tasks.

According to abovementioned framework, in this paper, we discuss related works and current
state of research in Section 2, elaborate on data collection process, the research methodology and
the establishing and improving of CNN models to implement multilabel image classification in
Sections 3 and 4, respectively, the selection of the best-performing CNN and its application in
engineering practice are elaborated in Section 5.

2. Related Works

Much effort has been devoted to detecting concrete properties or identifying mix proportion by
previous studies.

In the past few decades, prediction of concrete mechanical properties seemed poised for
an explosive adoption of machine learning algorithms. Many studies [4–10] dedicated to adopting
various models, including artificial neural network (ANN), genetic algorithm, support vector machine
(SVM), and so forth, to predict properties, especially mechanical properties represented by compressive
strength of concrete. Numeric data such as mix proportions and curing conditions were used by these
studies as inputs of different models.
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With respect to the application of image processing, computer vision and deep learning methods,
Han et al. [11] developed two-dimensional image analysis method based on concrete cross-section
image to evaluate coarse aggregate characteristic and distribution. Başyiğit et al. [12] applied image
processing technique to assess compressive strength. Dogan et al. [13] used artificial neural networks
and image processing together to identify mechanical properties. Wang et al. [14] introduced digital
image processing method to evaluate binary images and predict flowability using cross sectional of
self-consolidating concrete. Hyun Kyu Shin et al. [15] adopted deep convolutional neural network
to develop a digital vision-based evaluating model, so as to predict concrete compressive strength
with surface images. All of these studies were tailored for images of hardened concrete, which would
encounter huge challenges when dealing with the situations that require timely detection.

As for early estimating properties of concrete, some studies and theoretical guidance [16] also
concentrate a significant amount of attention. To date, relatively mature early estimating approaches
include accelerated curing method, microwave heating method, mortar accelerated setting with
pressure curing method, and so forth. These approaches are usually complicated and establishing
empirical equation through experiments is always required. It takes at least 1.5 h to carry out
experiments for these methods, which are not poised for real-time monitoring.

It is worth noting that aforementioned studies all devoted their efforts on predicting or identifying
concrete properties. In practice, however, the focus is not the properties, but mix proportions, since most
service behaviors always have low level of bias with the properties derived from mix proportion,
that is, to a large extent, properties are determined when mix proportion is fixed because of the
property-based mix proportion design method. However, the mix proportions in practice are not
always keep in line with their calculated values due to the failure of production equipment. Therefore,
monitoring mix proportion is deemed to be crucial for the success of estimating or evaluation concrete
service behaviors.

With respect to mix proportion monitoring or identification, to name a few, Jung et al. [17]
proposed a new fingerprinting method and adopted empirical equation to determine mix proportion
by acid neutralization capacity (ANC) of concrete. Chung et al. [18] presented mathematical models
for monitoring mix proportions based on dielectric constant measurement. Philippidis et al. [19]
adopted acousto-ultrasonics method and time and frequency domain schemes for the evaluation of
water-to-cement ratio. Chung et al. [20] applied microwave near-field noninvasive testing technique to
determine initial water-to-cement ratio. Bois et al. [21] presented a near-field microwave inspection
technique for early determination of water-to-cement ratio of Portland cement-based materials.
The so-called “early ages” in such studies also require two days at the earliest. In line with the
studies aforementioned, these studies also could not address the limitations of timeliness and
product consumption.

When it comes to applying deep learning approaches to mix proportion real-time monitoring of
fresh concrete, only our previous work [22] that introduced pre-trained CNNs to detect water-to-binder
ratio is found, and no further studies are discovered. We therefore contend that using fresh concrete
images for mix proportion real-time monitoring and sensing with deep learning methods has yet to
be solved.

3. Data Collection

3.1. Mix Proportion Design

The present study only focuses on ordinary concrete that consists of water, cement as cementitious
material, sand as fine aggregate and stone as coarse aggregate (i.e., does not contain additional
mineral admixtures, chemical admixtures and other specific components such as recycled aggregate).
Accounting for feasibility and mix proportion design in engineering and manufacturing practice, unit
water dosage was kept at constant value of 200 kg/m3, a fixed mix proportion could be then specified
by unit dosages of other three components. Instead of directly used, proportions or quantities of
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these four components are usually converted into two dimensionless quantities for discussion, namely,
water-to-binder-ratio (w/b) and sand-to-aggregate-ratio (s/a).Meanwhile, given the fact that the density
of ordinary concrete is 2350–2450 kg/m3 [23], unit dosages of three components could be then uniquely
determined by three independent numeric relationships, that is, w/b, s/a and the density. We therefore
contend that one certain specific mix proportion could be determined by w/b and s/a.

In engineering practice, w/b and s/a always exert enormous influences on concrete service
behaviors. Moreover, the nominal maximum particle size of coarse aggregate (NMSCA) also has
considerable influence on fluidity and mix proportion design. Therefore, w/b, s/a and NMSCA are
considered as three variables for mix proportion design, also three labels of concrete mixture images,
classification target objects of CNN models and target objects of mix proportion monitoring.

According to relevant materials [23,24] and engineering practice, maximum and minimum values
of three labels were determined. Compressive strength is significantly impacted by w/b and minimum
w/b to ensure complete hydration is about 0.25–0.3, while large w/b may cause mixtures bleeding,
reasonable w/b is about 0.3–0.7; s/a has enormous implications for fluidity, both too large and small
s/a would lead to the declining of fluidity, recommended range of s/a is about 25%–45%; large coarse
aggregate particles may increase the number of weak links in harden concrete and further affect
mechanical properties, recommended NMSCA is no larger than 31.5 mm.

Within the maximum and minimum values, w/b and s/a were divided into five classes, and NMSCA
was divided into three classes, as shown in Table 1.

Table 1. Classes of mix proportion labels.

Classes of Each Label

w/b 0.3 0.4 0.5 0.6 0.7
s/a (%) 25 30 35 40 45

NMSCA (mm) 10 20 31.5

A total of 75 mix proportions could be obtained by various combinations of w/b, s/a and NMSCA.
A few extreme combinations that could not be adopted in engineering practice were excluded and
67 experiments were conducted. Such exclusions were considered form the perspective of compressive
strength and fluidity, concrete mixtures with small w/b and large s/a always have poor fluidity, and the
ones with large w/b usually have small compressive strength since the latter and the reciprocal of the
former show a close linear relationship when the type of cement is determined. Eight excluded mix
proportions are listed in Table 2.

Table 2. Eight extreme mix proportions excluded from experiments.

w/b s/a (%) NMSCA (mm) w/b s/a (%) NMSCA (mm)

0.3 40 10 0.3 45 31.5
0.3 40 20 0.7 25 31.5
0.3 45 10 0.7 30 31.5
0.3 45 20 0.7 35 31.5

3.2. Materials

Ordinary Portland cement produced in Tangshan, Hebei province was selected in this study.
Its basic physical and mechanical properties are shown in Table 3. After inspection, its basic physical and
mechanical properties and the content of chemical components conform to China national standard [25].
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Table 3. Physical and mechanical properties of cement.

Property Actual Value Accepted Value

Grade P.O. 42.5
Date of production May, 2019

Fineness (in terms of specific surface area, m2/kg) 360 ≥300
Initial setting time (min) 160 ≥45
Final setting time (min) 260 ≤600

Compressive strength (MPa) 3 d 19.9 ≥17
28 d 48 ≥42.5

Flexure strength (MPa) 3 d 4.2 ≥3.5
28 d 9.9 ≥6.5

River sand with moderate fineness produced in Qinhuangdao, Hebei province was selected as fine
aggregate. Its major physical properties conform to China national standard [26], as listed in Table 4.

Table 4. Physical properties of aggregates.

Property Actual Value Accepted Value

Type Fine aggregate Medium sand
Coarse aggregate Crushed stone

Particle size (mm) Fine aggregate 0–4.75
Coarse aggregate 5–31.5

Fineness module
Fine aggregate 2.6 [2.3,3.0]

Coarse aggregate – –

Apparent density (kg/m3)
Fine aggregate 2650 ≥2500

Coarse aggregate 2650 ≥2600

Loose bulk voidage (%) Fine aggregate 41.5 ≤44
Coarse aggregate 45.3 ≤47

Crushed stone was chosen as coarse aggregate. Table 4 indicates its major physical properties.
When NMSCA = 20 mm or 31.5 mm, referring to relevant material [27], continuous size grading was
adopted to improve concrete service behaviors, as listed in Table 5.

Table 5. Size grading of coarse aggregate.

Nominal Particle Size of
Coarse Aggregate (mm)

Proportion of Each Size Grading (%)

5–10 10–20 20–31.5

5–10 100 – –
5–20 50 50 –

5–31.5 30 50 20

3.3. Experiment Setup and Image Collection

All the experiments in this study were conducted in Beijing from May to July in 2019.
HJW60 concrete mixer, produced in Wuxi, was used for concrete mixing. Well-mixed concrete
mixtures were poured into the metal tray with the size of 800 mm × 800 mm.

In order to ensure the evenness of collected images and reduce the influence of light, indoor light
sources were controlled, and a 1-m-high metal plate was fixed on each side of the tray to block uneven
light. Hand-held image acquisition device took pictures at a fixed height of 400 mm from the bottom
of the tray to reduce accidental error. Image collection was completed within 120 s after pouring to
avoid slump loss, maintain freshness and keep in line with manufacturing practice.

The same number of image sets obtained from 67 experiments include a total of 8340 images,
containing 152 images for the set with the maximum number and 82 with the minimum.
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3.4. Image Preprocessing, Data Augmentation and Dataset Segmentation

Few blurred images and images with too much noise were deleted. In each set, one image was
randomly selected as testing image to set up a testing set containing 67 images. Data augmentation
was carried out for the rest images and the number of images in each set was expanded to 200 in order
to improve generalization ability of CNN models and prevent networks from overfitting. Given the
fact that existing ones could cover all poured mixtures in the tray, we did not add more images to avoid
networks memorizing exact details, since more images lead to more detail repetitions. Approaches for
data augmentation include rotation, horizontal shift, vertical shift, shear, zoom and horizontal flip.

200 images in each set were randomly divided into training and validation set after shuffling,
of which training set was made up for 75% and validation set for 25%. Therefore, there are 10,050
images in training set and 3350 in validation set.

4. Methodology

4.1. Deep Learning Theory and CNN

Deep learning methods are representation-learning methods. Multiple levels of representation
were obtained by composing nonlinear, but simple modules that each transform the representation at
one level into a more abstract and complex level [28]. Instead of extracting features manually, deep
learning methods allow a machine to be fed with raw data, and a number of filters then extract the
topological features hidden in input data and needed representations were automatically discovered,
this is also the essence of deep learning methods [28,29].

CNN is a kind of typical, outstanding and most widely adopted basic structure of deep learning
theory. LeCun et al. [30] published a paper establishing basic framework of CNN and later improved it
using gradient-based optimization for document recognition [31,32]. The architecture of a typical CNN
is structured as a series of blocks. The first few blocks are composed of combinations of convolutional
layers and pooling layers, and the last block usually consists of fully connected layers and a classification
model [28,29,33]. Four key insights behind CNN that take advantage of the properties of natural
signals are shared weights, local connections, pooling and the use of many layers [28].

There are also many other approaches with successful applications in deep learning community.
These neural networks are tailored for a variety of different tasks, to name a few, recurrent
neural networks (RNN) [34] and long short-term memory (LSTM) [35,36] are suitable for modeling
sequential data and sequence recognition and prediction, region-based convolutional neural network
(R-CNN) [37] as well as its variants and you only look once (YOLO) [38] are capable of tackling object
detection problems, SegNet [39] is tailored for semantic segmentation tasks. Such models have more
complex structures and modules, such as memory blocks in LSTM, to cope with more complicated
problems [40,41]. Complex structures correspond to considerable computing resources consumptions.
Classification is one of the most basic tasks for deep learning, so neural networks for classification
tasks usually have simple, but effective structures, and computational costs could also be reduced.

Widely used CNNs for our image classification tasks include AlexNet [42], VGGNet [43],
GoogLeNet [44], ResNet [45], and so forth.

4.2. Multilabel Image Classification

Real-world objects always have multiple semantic meanings simultaneously. The paradigm of
multilabel learning emerges to deal with the defect that explicit expression of such multiplicity is
hindered by the simplified assumption of traditional supervised learning that each real-world object
is represented by a single instance and associated with a single label [46]. Compared with single
label classification, more information is asked for multilabel classification, but it is more similar to
human cognition.

To cope with the challenge of exponential-sized output space, it is crucial to effective exploit label
correlations information. Existing strategies could be roughly characterized into three families based
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on the order of correlations. First-order strategy tackles learning tasks in a label-by-label style and thus
ignoring coexistence of the other labels. Second-order strategy considers pairwise relations between
labels. High-order strategy considers high-order relations among labels [46].

In machine learning community, solutions to multilabel image classification are usually considered
from two perspectives. Problem transformation methods include label-based transformation and
instance-based transformation, which fit data to algorithm and transform multilabel tasks into other
well-established learning scenarios, especially single-label classification. Representative algorithms
include binary relevance [47], classifier chains [48], calibrated label ranking [49], random k-labelsets [50],
and so forth. Algorithm adaptation methods fit algorithm to data and adapt successful learning
techniques to deal with multilabel data directly. Typical algorithms include ML-kNN [51], ML-DT [52],
rank-SVM [53], CML [54], and so forth.

Particularly, with respect to deep learning, the application of CNN for multilabel image
classification is rapid widened because of the prominent merits aforementioned. According to
the key philosophy of problem transformation methods, CNN could be directly used for multilabel
classification tasks, such methods were named as “multilabel CNN” [46,55]. CNN could also be
improved or combined with other algorithms, outstanding methods include HCP [56], CNN–RNN [57],
RLSD [58]. Such improved CNNs usually apply a feature selection attention strategy called attention
mechanism. In addition, brand new algorithms represented by GCN [59] are developing recent years.

4.3. Establishing and Improving of Network Models

In this study, according to aforementioned solutions for multilabel image classification
tasks, four CNN models were established for training and comparative study, among which the
best-performing one would be selected and put into manufacturing and engineering application for
mix proportion monitoring.

4.3.1. CNN Models Based on Problem Transformation

Multilabel classification task for w/b, s/a and NMSCA was transformed into multiclassification
task for mix proportion “instance”. Specifically, corresponding to 67 experiments, different classes
of three labels were combined to obtain 67 sets of instances of mix proportion, and concrete mixture
images were classified into 67 classes at the level of mix proportion instances. Two kinds of
original multiclassification-based CNN structures were applied to realize the classification of mix
proportion instances.

AlexNet structure was adopted as the first basic CNN structure since it is a breakthrough in
the development of CNNs that has simple, but efficient network configuration. The advantage of
AlexNet lies in its two independent GPUs for simultaneous training, and actually its layers and
filters are structured in groups. Furthermore, for the second, fourth and fifth convolutional layers,
the convolution kernels deployed on a specific GPU is only connected with the ones on the same
GPU in the previous layer. Evidently, such structures are not applicable to limited hardware facilities.
In addition, it is worth noting that input images were classified into 1000 classes by original AlexNet,
such number is significantly larger than that of mix proportion instances. Therefore, AlexNet structure
was fine-tuned as follows to adapt to mix proportion classification task: (1) Structure about double
parallel-working GPUs was ignored, convolution kernels separately deployed on two GPUs were
merged and local response normalization (LRN) operation was replaced by batch normalization (BN)
and (2) the last fully connected layer and output layer were reset to classify concrete mixture images
into 67 classes. For further discussion, this fine-tuned AlexNet-structure-based CNN was named
as Net-I.

AlexNet has a considerable number of parameters that exceed 61 million since ImageNet
dataset [60] was used for its training, of which the number of classes and images are significantly
larger than that of concrete mixture dataset. Given that training a network which has too many
parameters with a relatively small dataset may lead to overfitting and further resulting in the declining
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of generalization ability, a simpler CNN with fewer parameters was established referring to AlexNet
structure. Input size of images, network depth, the number of layers, the number and size of filters
were comprehensively considered. After a trial-and-error process, detailed structure of the simple
CNN was determined as illustrated in Table 6. This self-established simple network was named as
Net-II for further discussion.

Table 6. Detailed structure of Net-II.

Layer Input Size Kernel Size Stride Number of Filters Processing

Conv1 256 × 256 × 3 11 × 11 4 64 ReLU, BN
Max pooling1 64 × 64 × 64 3 × 3 2 – 25% dropout

Conv2 31 × 31 × 64 5 × 5 1 128 ReLU, BN
Conv3 31 × 31 × 128 5 × 5 1 128 ReLU, BN

Max pooling2 31 × 31 × 128 3 × 3 2 – 25% dropout
Conv4 15 × 15 × 128 3 × 3 1 256 ReLU, BN
Conv5 15 × 15 × 256 3 × 3 1 256 ReLU, BN

Max pooling3 15 × 15 × 256 3 × 3 2 – 25% dropout
Dense1 7 × 7 × 256 – – – ReLU, BN, 50% dropout
Dense2 1 × 1 × 2048 – – – Softmax

4.3.2. CNN Models Based on Algorithm Adaption

Although above-discussed method, adapting dataset to original multiclassification-based CNN,
is simple and convenient to perform, the prominent defect lies in the sample loss. To be specific,
for images of a given class in the corresponding label, such as w/b = 0.3, rather than being gathered up
to enable networks to learn the features of concrete mixture images for such class, they were distributed
to 10 sets of images with different mix proportions. Moreover, network models could only be evaluated
at the level of mix proportion instance, and it could not be estimated that how the networks performed
with regard to each of the three labels.

To tackle such defects, improvement of original CNN tailored for multiclassification tasks is
desirable. First, for one sample, confidence scores of different classes outputted by Softmax activation
function adopted in original CNN are correlated with each other, and all returned values are always
summed up to 1. However, for our multilabel classification task, three labels: w/b, s/a and NMSCA
are not mutually exclusive. Therefore, Softmax function was replaced by Sigmoid function as the
activation of output layer. For the confidence score P

(
y(i) = n

∣∣∣x(i); w
)

of the j–th class being proper label
of the i–th example, Sigmoid and Softmax function are defined as Equations (1) and (2), respectively:

Psigmoid
(
y(i) = n

∣∣∣x(i); w
)
=

1

1 +


e−wT

1 x(i)

e−wT
2 x(i)

...
e−wT

n x(i)



, (1)

Pso f tmax
(
y(i) = n

∣∣∣x(i); w
)
=

1∑n
j = 1 ewT

j x(i)


ewT

1 x(i)

ewT
2 x(i)

...
ewT

n x(i)


, (2)

for i = 1, 2, . . . , m. Where, m is the number of examples at current batch, n represents the number of
classes, w denotes the weights, wT

n x(i) is the output of the previous layer.
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Subsequently, categorical cross entropy was replaced with binary cross entropy as loss function to
consider each output label as an independent Bernoulli distribution. The loss function of binary cross
entropy and categorical cross entropy are defined as Equations (3) and (4), respectively:

Lbinary = −
1
m

m∑
i=1

n∑
j=1

1
{
y(i) = j

}
log

 1

1+e
−wT

j x(i)


+

(
1− 1

{
y(i) = j

})
log

1− 1

1+e
−wT

j x(i)

,
(3)

Lcategorical = −
1
m

m∑
i=1

n∑
j=1

1
{
y(i) = j

}
log

 ewT
j x(i)∑n

k=1 ewT
k x(i)

, (4)

where, the new index k is introduced to indicate that
∑n

k=1 ewT
k x(i) is independent of

∑n
j=1 1{·}. The term

1
{
y(i) = j

}
is a logical expression that returns ones if a predicted class of the i–th example is true for

j–th class and returns zeros otherwise.
Essentially, above two improvements transform the multilabel classification problem to

binary-classification task for each example, that is, CNN models would successively determine
whether each of the total 13 classes is or is not a proper label of a given image. Such transformation is
realized by adapting CNN models to datasets, so these improved CNN models were still recognized as
algorithm-adaption-based models.

It is worth noting that correlations of labels are not considered by above improvements. Specifically,
three classes with the highest confidence scores will be outputted by CNN models, but could not be
guaranteed that they come from three different mix proportion labels. To cope with such shortcoming,
an additional module was added after the output layer to enable network models to select the class
with the highest confidence score separately from w/b, s/a and NMSCA as the final outputs.

Corresponding to Net-I; and Net-II, both AlexNet and self-established structure were improved
for multilabel image classification. Improved AlexNet and self-established structure were named as
Net-III and Net-IV, respectively for further discussion.

Moreover, deep learning tasks usually encounter huge challenges when tuning training
hyperparameters. Manual trail-and-error processes may consume considerable time. Therefore,
Bayesian optimization [61,62] was adopted to search optimal hyperparameters in parameter
space. Bayesian optimization was applied to optimize initial learning rate, batch size and epoch.
Approximate search ranges of three hyperparameters were determined by preliminary training in
advance. In order to accelerate the convergence of CNN models, instead of setting continuous closed
intervals, several discontinuous values were specified within their approximate ranges to form three
sets for searching, as manifested in Table 7. The rest major training options were fixed as listed
in Table 8.

Table 7. Searching sets of hyperparameters to be optimized.

Hyperparameter Set of Search Values

Initial learning rate {0.01,0.001,0.0001}
Batch size {30,40,50,60,70,80,90}

Epoch {80,90,100,110,120,130}
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Table 8. Fixed training parameters and their options.

Training Parameter Option

Optimizer Adam
Learning rate drop period Last 10 epoch
Learning rate drop factor 0.1

Shuffle Every epoch
L2 regularization 0.0001

Execution environment CPU
Validation frequency 1

To summarize, adjustments or improvements of four CNN models are summarized in Table 9.
Four established CNN models are visualized by Figures 1 and 2.

Table 9. Adjustments or improvements of four CNN models.

Item Net-I Net-II Net-III Net-IV

Basic structure AlexNet Self-established AlexNet Self-established

Adjustments on basic
structure

Merge separate kernels;
Replace LRN with BN;

Reset last fully connected
and output layer.

–

Merge separate kernels;
Replace LRN with BN;

Reset last fully connected and
output layer.

–

Activation function of
output layer Softmax Softmax Sigmoid Sigmoid

Loss function Categorical cross entropy Categorical cross entropy Binary cross entropy Binary cross entropy

Additional module – – Select the class with highest
confidence score in each label

Select the class with
highest confidence
score in each label

Hyperparameter tuning Bayesian optimization Bayesian optimization Bayesian optimization Bayesian
optimization

Essence Multiclassification model Multiclassification model Multilabel classification model Multilabel
classification model
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5. Results

All programs in this study were performed with MatlabR2020a and Python3.8, on a desktop
computer equipped with 2.6 GHz Intel i7-4720 CPU, 16 GB RAM, x-64-based processor and NVIDIA
GeForce GTX960M GPU.
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5.1. Optimal Hyperparameters Selected by Bayesian Optimization

Bayesian optimization was performed by minimizing classification error of validation set
during training, that is, the best-performing CNN model was selected based on validation accuracy.
Optimal training hyperparameters selected by Bayesian optimization are illustrated in Table 10.

Table 10. Optimal hyperparameters obtained by Bayesian optimization.

Batch Size Epoch Initial Learning Rate

Net-I 50 110 0.0001
Net-II 70 90 0.001
Net-III 80 100 0.001
Net-IV 60 100 0.001

5.2. Metrics and Evaluations of Training and Validation Set

Training with the optimal hyperparameters, training and validation accuracies achieved by four
CNN models are listed in Table 11.

Table 11. Training and validation accuracies of four CNN models.

Training Accuracy (%) Validation Accuracy (%)

Net-I 99.31 99.01
Net-II 99.78 99.88
Net-III 99.92 100
Net-IV 99.94 100

Evidently, accuracies on both training and validation set is higher than 99% for all the four CNN
models, validation accuracies of Net-III and Net-IV even reached 100%. It is worth noting that both
training and validation accuracies of two improved CNN models based on algorithm adaption, Net-III
and Net-IV, are higher than that of Net-I and Net-II. Moreover, Net-II and Net-IV—which applied
self-established network structures—higher accuracies compared with Net-I and Net-III.

Furthermore, refer to accuracy curves shown in Figure 3, compared with multiclassification-based
Net-I and Net-II, Net-III and Net-IV had higher initial training and validation accuracies. Net-I and
Net-III converged slower and their curves have more significant fluctuations. Meanwhile, time elapsed
during training of two CNNs with self-established structure is much shorter than that of Net-I and
Net-III, since the number of parameters of self-established CNNs is only 27 million, less than half of
AlexNet structure.

For images in the validation set, confusion matrices were drawn to visually illustrate classification
results. Figures 4 and 5 show partial confusion matrices of Net-I and Net-II, it is unnecessary to draw
confusion matrices for Net-III and Net-IV because they are not essentially multiclassification models and
their validation accuracies reached 100% (name of classes are shown in the form of w/b_s/a_NMSCA,
for example, 0.3_25_10 could be interpreted as w/b = 0.3, s/a = 25%, NMSCA = 10 mm, the same
hereinafter). Two confusion matrices only show corresponding classes of misclassified images, classes
in which all images are correctly classified are not shown here. The element ai j in each cell of the
matrix could be interpreted as the number of images classified to the i-th class but belong to the j-th
class. The color of each cell represents its proportion in the sum of all elements in corresponding
column, that is, its proportion in the total number of images of corresponding ground truth label
and the proportion of correct or incorrect classification. As shown in Figures 4 and 5, most images
are in the diagonal of matrices which means correct classification. In the total of 3350 validation
images, Net-I misclassified 33 images in seven classes, and four images distributed in two classes
were misclassified by Net-II, such classification ability is acceptable in engineering and manufacturing
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practice. Meanwhile, it is also clarified by such data that Net-II performs better on validation set
than Net-I.Sensors 2020, 20, x FOR PEER REVIEW 12 of 24 
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In summary, four CNN models showed undoubted learning ability on training and validation set
and Net-IV had the best performance during training and validation.

5.3. Metrics and Evaluations of Testing Set

Generalization ability of CNN models was evaluated and compared using testing set composed
of 67 images.

5.3.1. Evaluations and Comparisons of Net-I and Net-II

Net-I and Net-II are evaluated using F1 value which is commonly applied to multiclassification
tasks. F1 is defined based on two parameters: precision and recall, which are defined as follows:

Precisionh =
1
n

n∑
j = 1

∣∣∣∣{x(i)∣∣∣∣y j ∈ Y(i)
∧ y j ∈ h

(
x(i)

)}∣∣∣∣∣∣∣∣{x(i)∣∣∣∣y j ∈ h
(
x(i)

)}∣∣∣∣ , (5)

Recallh =
1
n

n∑
j = 1

∣∣∣∣{x(i)∣∣∣∣y j ∈ Y(i)
∧ y j ∈ h

(
x(i)

)}∣∣∣∣∣∣∣∣{x(i)∣∣∣y j ∈ Y(i)
}∣∣∣∣ , (6)

for 1 ≤ i ≤ m. Where, n is the number of classes, m is the number of examples, x(i) denotes the feature
vector extracted from the i-th example, Y(i) denotes the set of the ground truth label associated with x(i),
y j is the j-th class label, |·| is interpreted as the operation that returns the cardinality, h(x) is the classifier
that returns the set of proper label of x. precision and recall are usually comprehensively considered
and jointly used in practice. Fβ is an integrated version of precision and recall with the balancing factor
β > 0. Fβ is defined as Equation (7):

Fβ =

(
1 + β2

)
· Precisionh ·Recallh

β2·Precisionh + Recallh
, (7)

when β = 1, Fβ returns the harmonic mean of precision and recall recognized as F1:

F1 = 2×
Precisionh ·Recallh

Precisionh + Recallh
. (8)

The values of precision, recall and F1 of Net-I and Net-II are listed in Table 12.
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Table 12. Precision, recall and F1 of Net-I and Net-II.

Precision Recall F1

Net-I 0.8433 0.8955 0.8686
Net-II 1 1 1

Apparently, precision, recall and F1 of Net-II are all equal to 1, the reason is this network correctly
classified all testing images. Such three indices of Net-I are a little lower than that of Net-II.

Specifically, top-3 confidence scores and corresponding classes of testing images which were
misclassified and images which network models returned low confidence score of ground truth label
being the proper label are illustrated in Tables 13 and 14 (corresponding labels of the specific confidence
score are listed in bracket).

Table 13. Testing images which were misclassified by Net-I and images which Net-I returned low
confidence score of ground truth label being the proper label.

Ground Truth Label
Top-3 Confidence Score (%) and Corresponding Class

w/b s/a (%) NMSCA (mm)

0.3 35 20 76.78 (0.4_30_10) 11.85 (0.3_35_20) 8.92 (0.4_30_31.5)
0.4 25 10 48.56 (0.3_25_10) 42.90 (0.4_25_10) 7.60 (0.6_30_10)
0.4 30 31.5 86.61 (0.4_30_20) 13.39 (0.4_30_31.5) –
0.5 30 20 87.34 (0.3_30_10) 12.63 (0.5_30_20) 0.01 (0.5_40_10)
0.5 35 10 70.58 (0.5_30_10) 28.30 (0.5_35_10) 1.12 (0.3_25_10)
0.5 40 20 74.93 (0.5_25_31.5) 22.89 (0.5_40_20) 1.09 (0.3_25_31.5)
0.6 35 20 94.27 (0.6_40_10) 5.68 (0.6_35_10) 0.02 (0.3_30_20)
0.3 30 20 53.31 (0.3_30_20) 27.09 (0.4_40_10) 18.39 (0.3_25_31.5)
0.6 40 20 37.61 (0.6_40_20) 34.83 (0.6_35_20) 12.57 (0.6_45_10)
0.7 45 10 57.67 (0.7_45_10) 16.77 (0.7_35_10) 7.28 (0.6_30_10)

Table 14. Testing images which Net-II returned low confidence score of ground truth label being the
proper label.

Ground Truth Label
Top-3 Confidence Score (%) and Corresponding Class

w/b s/a (%) NMSCA (mm)

0.3 35 20 46.17 (0.3_35_20) 40.45 (0.6_35_20) 8.37 (0.4_30_31.5)

It is evidently illustrated by above two tables that seven out of 67 testing images were misclassified
by Net-I and there exists three images that Net-I returned low confidence score (lower than 60%) of
ground truth label being the proper label; all the testing images were correctly classified by Net-II and
there only exists one image that gained the confidence score lower than 60% of ground truth label
being the proper label. The ground truth labels of aforementioned two kinds of images are highly
consistent with that of misclassified validation images.

To summarize, compared with Net-I, generalization performance of Net-II is much better.
Overfitting phenomenon appeared on CNN model which applied AlexNet structure, this is also in line
with the consideration we discussed in Section 4.3 when establishing network models.

5.3.2. Evaluations and Comparisons of Net-III and Net-IV

Multilabel classification tasks usually cannot directly use existing evaluation metrics for
multiclassification problems, here we introduce mean interpolated average precision (MiAP) which
is commonly applied in information retrieval community. The definition of MiAP is also based on
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precision and recall, but it is worth noting that such two indices are defined differently here from those
in Section 5.3.1. We redefine precision and recall as Equations (9) and (10):

Precision f =

∣∣∣∣∣{x(i)
∣∣∣∣∣rank f

(
x(i), y(i)j

)
≤ rank f

(
x(k), y(k)j

)}
∩

{
x(i
′)
∣∣∣y j ∈ Y(i′), 1 ≤ i′ ≤ m

}∣∣∣∣∣∣∣∣∣∣{x(i)
∣∣∣∣∣rank f

(
x(i), y(i)j

)
≤ rank f

(
x(k), y(k)j

)}∣∣∣∣∣ , (9)

Recall f =

∣∣∣∣∣{x(i)
∣∣∣∣∣rank f

(
x(i), y(i)j

)
≤ rank f

(
x(k), y(k)j

)}
∩

{
x(i
′)
∣∣∣y j ∈ Y(i′), 1 ≤ i′ ≤ m

}∣∣∣∣∣∣∣∣∣{x(i′)∣∣∣y j ∈ Y(i′), 1 ≤ i′ ≤ m
}∣∣∣∣ , (10)

for i = 1, 2, . . . , k and k = 1, 2, . . . , m. Where, m is the sample size, y(i)j denotes the label with

one-hot encoding label with one-hot encoding for x(i) of the j-th class, y(i)j ∈ {0, 1}, f
(
x(i), y(i)j

)
returns the confidence score of y(i)j being a proper label of x(i), rank f

(
x(i), y(i)j

)
returns the rank of

confidence score deduced from f
(
x(i), y(i)j

)
based on descending order. For the j-th class label y j,{

x(i
′)
∣∣∣y j ∈ Y(i′), 1 ≤ i′ ≤ m

}
is actually the set of examples of which class j is one of their labels. For the

j-th class,
{
x(i)

∣∣∣∣∣rank f

(
x(i), y(i)j

)
≤ rank f

(
x(k), y(k)j

)}
include the examples with top-k confidence scores.

Rather than recognizing examples with the highest confidence score or with the confidence score
higher than a specific fixed threshold as positives, this operation in fact specifies changing threshold of
confidence score as k varies from 1 to m, examples with confidence scores higher than that of the k–th
example is recognized as positives after the descending ordering of confidence scores.

The number of the recall values we obtained from j-th class is
∣∣∣∣{x(i′)∣∣∣y j ∈ Y(i′), 1 ≤ i′ ≤ m

}∣∣∣∣, various
precision values correspond to one recall level. Interpolation method is used to calculate average
precision to simplify calculation and comprehensively consider the performance of models reflected
by precision and recall. The interpolated precision Pinterp at each certain recall level R is defined as the
highest precision value P retrieved for any recall level R′ ≥ R :

Pinterp(R) = max
R′≥R

P(R′), (11)

for R = 1∣∣∣∣{x(i′) ∣∣∣y j∈Y(i′),1≤i′≤m
}∣∣∣∣ , 2∣∣∣∣{x(i′) ∣∣∣y j∈Y(i′),1≤i′≤m

}∣∣∣∣ , . . . , 1.

Therefore, for the j-th class, interpolated average precision (iAP) could be calculated as
Equation (12):

iAP =
1∣∣∣∣{x(i′)∣∣∣y j ∈ Y(i′), 1 ≤ i′ ≤ m

}∣∣∣∣
|{x(i

′)
|y j∈Y(i′),1≤i′≤m}|∑

i = 1

Pinterp(R). (12)

MiAP of CNN models can be then calculated from the mean values of all classes:

MiAP =
1
n

n∑
j = 1

iAP. (13)

Figure 6 illustrates the P–R curves of Net-III and Net-IV. MiAP and iAP of each class are
manifested in Table 15. Definitely, both two CNNs achieved high MiAP and iAP, classification task
was accomplished. Compare from the perspective of labels, the label NMSCA had higher P–R curves,
indicate that networks had the best generalization ability with respect to NMSCA and two networks
were of slightly inferior performance when identify w/b and s/a. With respect to comparation CNN
models, MiAP and iAP of Net-III is lower than that of Net-IV, generalization ability of networks
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with AlexNet structure is relatively poor and there may be an overfitting phenomenon which is also
consistent with the considerations discussed in Section 4.3.Sensors 2020, 20, x FOR PEER REVIEW 16 of 24 
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Table 15. MiAP and iAP of each class and label.

Label Class
Net-III Net-IV

iAP iAP of Labels MiAP iAP iAP of Labels MiAP

w/b

0.3 0.959

0.954

0.942

0.991

0.998

0.999

0.4 0.881 1.000
0.5 0.988 1.000
0.6 0.948 1.000
0.7 0.994 1.000

s/a

25 0.825

0.886

1.000

0.998
30 0.971 1.000
35 0.833 1.000
40 0.883 0.990
45 0.917 1.000

NMSCA
10 0.989

0.985
1.000

1.00020 0.969 1.000
31.5 0.996 1.000

MiAP is actually a label-based ranking metric only focusing on classification performance of classes
of a model. However, in manufacturing and engineering practice, for a given sample, more attention
is usually concentrated on error between the result identified by models and the actual situation.
Although the essence of two CNNs are classifiers which output the confidence score of a specific class
being proper label of a given image, three labels for classification in the present study are quantifiable
indices. Hence, “identified values” of w/b, s/a and NMSCA of each testing image could be calculated
by weighted average calculation using confidence scores and corresponding numeric values of classes
in one mix proportion label. Correspondingly, “actual values” refer to the real w/b, s/a and NMSCA
values reflected by ground truth label. Identified values could be compared with actual values by
various indices to evaluate their errors. In this study, mean absolute percentage error (MAPE), absolute
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fraction of variance (R2) were applied for error evaluation. For each class, MAPE and R2 are defined as
Equations (14) and (15):

MAPE =
1
m

m∑
i = 1

ai − pi

ai
× 100%, (14)

R2 = 1−

∑m
i = 1(pi − ai)

2∑m
i = 1 ai2

, (15)

where, ai and pi denote the actual value and identified values of the i-th example, m is the sample size.
Actual and detected values of each testing image are illustrated in Figure 7. Undeniably, most

images are on or close to the diagonal of the diagram. MAPE and R2 of each label and average MAPE
and R2 of two networks are listed in Table 16. Apparently, MAPE of each label and two CNNs are small,
even close to 0, R2 values are close to 1. In contrast to MiAP, compared with w/b and s/a, the NMSCA
label did not have the best performance when evaluating with MAPE and R2, this is because the
numeric difference of three classes in NMSCA label is larger than that in w/b or s/a label. When it
comes to the performance of networks, comparison results are in line with that of MiAP, that is, Net-IV
had better generalization ability.
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Figure 7. Identified: (a) w/b, (b) s/a, (c) NMSCA values of each testing image calculated with the
outputs of Net-III and identified (d) w/b, (e) s/a, (f) NMSCA values of each testing image calculated
with the outputs of Net-IV.

Table 16. MAPE and R2 of each label and two network models.

MAPE (%) R2

w/b s/a NMSCA Average w/b s/a NMSCA Average

Net-III −2.037 −3.014 −0.710 −1.920 0.989 0.987 0.991 0.989
Net-IV 0.141 −0.204 0.287 0.075 1.000 0.999 0.998 0.999

Aforementioned research methodology and results evaluations and comparations are visualized
in the form of flow chart in Figure 8.



Sensors 2020, 20, 4638 18 of 23

Sensors 2020, 20, x FOR PEER REVIEW 18 of 24 

 

 
Figure 8. Flow chart of research methodology and results evaluation. 

5.4. Comparative Study 

Above arguments indicate that all the four CNN models have learned the features of mix 
proportion in fresh concrete images, presenting outstanding learning and generalization ability. 
Moreover, identification time of testing images is within 1 s, realizing real-time monitoring of mix 
proportion. Demonstrated by comprehensive comparisons, Net-Ⅳ was chosen as the representative 
achievement of the present study since it had undeniable the best performance. Net-Ⅳ was further 
named as ConcMPNet. 

ConcMPNet was compared with methods proposed by Ref. [17,18,19,20] and existing testing 
method, as manifested in Table 17. Visibly, ConcMPNet requires the simplest approach. Real-time 
monitoring could be realized, green manufacturing could be implemented, and resource wasting 
problem was addressed only by ConcMPNet. Prominent merit and effectiveness of presented 
multilabel image classification and CNN-based monitoring method are highlighted by comparative 
studies. 

Table 17. Comparative study of ConcMPNet, method proposed by references and existing testing 
method. 

Method Approach Time required Evaluation 
2 Concrete waste 

ConcMPNet Taking photos Real time 0.998 × 
Ref. [17] pH measurement by ANC 100 d 0.990 √ 

Ref. [18] 
Microwave permittivity 

measurement 2 d 0.88 √ 

Ref. [19] 1 Acousto-ultrasonic 2–90 d ≥90% √ 

Ref. [20] 1 Microwave near-field 
noninvasive testing 

2–9 d 0.966 √ 

Existing method Mechanical experiment in 
laboratory 

≥28 d ≥95% √ 

1 Corresponding method only applied to measuring w/b, here the results of w/b measurement are compared 
with other methods; 2 For ConcMPNet and references [17,18], R2 is compared as evaluation metric; for 
reference [19], percentage of successful classification is adopted and more details could be referred in this 
study; reference [20] used R for evaluation; for existing testing method in laboratory, assurance rate no less 
than 95% is required for concrete compressive strength. 

5.5. Establishing of Mix Proportion Monitoring and Integrated Intelligent Sensing System 

ConcMPNet was embedded into executable application, visual interactive interface was 
designed and laid out, then the executable application was packaged and equipped with certain 
hardware facilities such as high-definition camera and deployed to terminals to establish fresh 

Figure 8. Flow chart of research methodology and results evaluation.

5.4. Comparative Study

Above arguments indicate that all the four CNN models have learned the features of mix
proportion in fresh concrete images, presenting outstanding learning and generalization ability.
Moreover, identification time of testing images is within 1 s, realizing real-time monitoring of mix
proportion. Demonstrated by comprehensive comparisons, Net-IV was chosen as the representative
achievement of the present study since it had undeniable the best performance. Net-IV was further
named as ConcMPNet.

ConcMPNet was compared with methods proposed by Ref. [17–20] and existing testing method,
as manifested in Table 17. Visibly, ConcMPNet requires the simplest approach. Real-time monitoring
could be realized, green manufacturing could be implemented, and resource wasting problem was
addressed only by ConcMPNet. Prominent merit and effectiveness of presented multilabel image
classification and CNN-based monitoring method are highlighted by comparative studies.

Table 17. Comparative study of ConcMPNet, method proposed by references and existing
testing method.

Method Approach Time Required Evaluation 2 Concrete Waste

ConcMPNet Taking photos Real time 0.998 ×

Ref. [17] pH measurement by ANC 100 d 0.990
√

Ref. [18] Microwave permittivity measurement 2 d 0.88
√

Ref. [19] 1 Acousto-ultrasonic 2–90 d ≥90%
√

Ref. [20] 1 Microwave near-field noninvasive testing 2–9 d 0.966
√

Existing method Mechanical experiment in laboratory ≥28 d ≥95%
√

1 Corresponding method only applied to measuring w/b, here the results of w/b measurement are compared with
other methods; 2 For ConcMPNet and references [17,18], R2 is compared as evaluation metric; for reference [19],
percentage of successful classification is adopted and more details could be referred in this study; reference [20]
used R for evaluation; for existing testing method in laboratory, assurance rate no less than 95% is required for
concrete compressive strength.

5.5. Establishing of Mix Proportion Monitoring and Integrated Intelligent Sensing System

ConcMPNet was embedded into executable application, visual interactive interface was designed
and laid out, then the executable application was packaged and equipped with certain hardware
facilities such as high-definition camera and deployed to terminals to establish fresh concrete mix
proportion monitoring system, which could also be recognized as an intelligent sensor. The monitoring
system has two parallel operation processes for sensing: taking real-time pictures and loading stored
images in terminals. The user interface of established monitoring system is shown in Figure 9.
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Such a system cooperated with existing mechanical and weighing sensors to establishing integrated
intelligent sensing system. When production equipment fails to produce concrete mixture with proper
calculated mix proportion, our integrated intelligent sensing system could send warning messages to
fixed and mobile terminals. Real-time and full-scale mix proportion monitoring and inaccurate mix
proportion sensing and warning during manufacturing could be achieved.

To summarize, according to aforementioned series processes of CNN model establishing,
improving, training, testing, selection, as well as the establishing of integrated intelligent sensing
system, working flow and research process of the present study are illustrated in Figure 10.
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6. Conclusions

In the present study, a novel deep-learning-based method was presented for mix proportion
real-time and full-scale monitoring of fresh concrete. As a typical data-driven, learning-based approach,
the key insight of this method lies in feeding elaborately planned, uniformly distributed, widely
covered and high-quality data to CNN models which are enabled to extract implicit features and
generalizing such features to newly fed data for identification. Accounting for engineering and
manufacturing practice, w/b, s/a and NMSCA were selected as variables of mix proportion, also the
labels of concrete mixture images and the target objects of classification and mix proportion monitoring.
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A total of 67 experiments were conducted, and the same number sets of images were collected which
were annotated with different combinations of classes in above three mix proportion labels. Four CNN
models, based on problem transformation and algorithm adaption, respectively, were established,
improved, trained and tested. Training and validation accuracies of four networks are all above 99%.
As for testing set, F1 value of Net-I is above 0.85, and Net-II even reaches 1; MiAP of Net-III and Net-IV
are all above 0.9, MAPEs are small enough and R2 values are close to 1. All the four networks showed
outstanding learning and generalization ability. Net-IV was chosen as the representative achievement
and named as ConcMPNet after comparison. ConcMPNet was embedded into executable application
and equipped with hardware facilities to establish fresh concrete mix proportion monitoring system.
Such system was deployed to terminals and cooperated with existing mechanical and weighing sensors
to establish integrated intelligent sensing system, real-time and full-scale mix proportion monitoring
and inaccurate mix proportion sensing and warning during manufacturing could be achieved.

The contributions of this research lie in:

• The improved CNN model was embedded in executable application for fresh concrete mix
proportion monitoring, overcoming the defects of real-time and full-scale monitoring that have
not been, to date, addressed by existing testing method and other studies;

• The presented CNN model could likely be scaled up for other concrete mixture identification
tasks. Our well-trained CNN model could be applied for transfer learning which received much
attention recent year because it effectively reduces computational costs. It is crucial for the
success of transfer learning that the dataset of target task is similar with original training dataset,
but existing successful CNNs did not apply professional concrete mixture dataset for training.
Therefore, transfer learning using our CNN model provides a potential way for future similar
concrete identification tasks. For a specific kind of concrete mixture such as recycled concrete or
environmentally friendly concrete, monitoring could be implemented by simply feeding collected
dataset to our CNN models and carrying out transfer learning;

• As a multi-disciplinary research, this study introduced a state-of-the-art method to ancient and
traditional engineering manufacturing community and widened application fields of intelligent
methods and deep learning techniques. The present study provides a solid foundation for future
works in both disciplines.

The prominent merit of presented method lies in that it can realize real-time monitoring of fresh
concrete mix proportion only by taking pictures which could not be achieved by previous studies
and existing methods. However, the proposed multilabel-image-classification-based method does not
intend to be a cure-all. The convenience of monitoring is bought at the expense of huge number of
previous experimentations and onerous work of data collection. This is also the shortcoming of all
data-driven methods. More precise identification requires more data and larger datasets.

Future works could be built on the united application of CNN and other intelligent algorithms,
such as ANN, to realize concrete property especially mechanical property prediction with the route of
“image–mix proportion–property” and moreover, it is promising to cooperate the proposed system with
series of other approaches, such as chemical composition sensors, to promote the establishing of a more
intelligent and precise sensing system for concrete early properties monitoring stepping forward.
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