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Abstract: Location-Based Services (LBSs) are playing an increasingly important role in people’s daily
activities nowadays. While enjoying the convenience provided by LBSs, users may lose privacy since
they report their personal information to the untrusted LBS server. Although many approaches have
been proposed to preserve users’ privacy, most of them just focus on the user’s location privacy,
but do not consider the query privacy. Moreover, many existing approaches rely heavily on a trusted
third-party (TTP) server, which may suffer from a single point of failure. To solve the problems
above, in this paper we propose a Cache-Based Privacy-Preserving (CBPP) solution for users in
LBSs. Different from the previous approaches, the proposed CBPP solution protects location privacy
and query privacy simultaneously, while avoiding the problem of TTP server by having users
collaborating with each other in a mobile peer-to-peer (P2P) environment. In the CBPP solution,
each user keeps a buffer in his mobile device (e.g., smartphone) to record service data and acts as
a micro TTP server. When a user needs LBSs, he sends a query to his neighbors first to seek for
an answer. The user only contacts the LBS server when he cannot obtain the required service data
from his neighbors. In this way, the user reduces the number of queries sent to the LBS server.
We argue that the fewer queries are submitted to the LBS server, the less the user’s privacy is exposed.
To users who have to send live queries to the LBS server, we employ the l-diversity, a powerful
privacy protection definition that can guarantee the user’s privacy against attackers using background
knowledge, to further protect their privacy. Evaluation results show that the proposed CBPP solution
can effectively protect users’ location and query privacy with a lower communication cost and better
quality of service.
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1. Introduction

With the rapid advances of mobile devices and wireless communication, Location-Based Services
(LBSs) have been a vital part of people’s daily life in recent years. A growing number of people
are downloading location-based applications from the App Store or Google Play Store through their
mobile devices (e.g., smartphones). With such applications, users can easily issue queries to the LBS
servers and obtain the corresponding service data. For example, users can look for the metro stations
or the price information of hotels nearby [1]. Thus, LBSs have greatly changed the way people live.

Although LBSs provide a wide variety of conveniences to users, they also pose a serious threat
to users’ privacy and security. Normally, when a user wants to obtain a service, he needs to submit
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his exact location and queried interest to an untrusted LBS server. As a result, the server has all the
information about the user, and may track the user directly or release his personal information to
others [2]. Such information, however, is extremely sensitive, and may endanger the user’s physical
security if they fall in the wrong hands. Thus, we need to pay more attention to protecting the
user’s privacy.

To address the privacy issue in LBSs, many approaches have been proposed over the past few
years [1–34]. Generally, these approaches can be roughly classified as the:

(a) False locations. Users protect their privacy by sending either fake locations [18] or their real
locations with a set of fake locations, called dummies [1,12,19,20] to the LBSs server.

(b) Spatial cloaking. The basic idea of the spatial cloaking is to blur a user’s exact location into a
cloaked area that satisfies the user’s privacy requirements [11,13,14,17].

(c) Space transformation. A user utilizes a space-filling curve (e.g., Hilbert Curve) to transform his
exact location into another space to protect the user’s privacy [25,26].

Actually, these approaches can always provide privacy preservation to users by using a well-known
privacy metric (e.g., k-anonymity [11–15,19] or entropy [1,2,20,21,23]). Moreover, since the emergence
of blockchain, some works, such as [27–32], combine the LBS and blockchain technology together to
protect users’ location privacy. The combination is now a new trend and has received more and more
attention recently.

Existing works, however, also have some limitations. First, most of them just focus on the user’s
location privacy [1,11–17,19–23]. Actually, user privacy in LBSs includes two aspects, i.e., location
privacy and query privacy, and they are closely related. There is the possibility that compromising one of
them may lead to the failure of the other [26]. Therefore, we need to protect location privacy and query
privacy simultaneously. Secondly, many previous studies [11,13–16,26] introduce a trusted third party
(TTP) server, called the Location Anonymizer, to preserve the user’s privacy in an LBS environment.
However, the TTP server possesses the following shortcomings: (1) The TTP server could suffer from a
single point of failure. If the adversary gains control of it, the privacy of all users will be compromised;
(2) The TTP server may be the performance bottleneck of the system, since all the submitted queries
have to go through the TTP server [20]; 3) In practice, it is impossible to find a third party that can be
fully trusted by all users. Thirdly, many users may query for the same interest in reality, and the LBS
server thus has to answer the same service data to the users repeatedly, which greatly increases the
exposing risk of users’ privacy.

To solve the aforementioned problems, in this paper we propose a Cache-Based Privacy-Preserving
(CBPP) solution for LBSs. Different from the previous approaches, our proposed CBPP solution
preserves the user’s location privacy and query privacy simultaneously, and avoids the problem of
TTP server by having users collaborate with each other in a mobile peer-to-peer (P2P) environment.
The key idea of the proposed CBPP solution is that each user caches the service data obtained from
the LBS server or the neighbors in his mobile device, and uses the cached data to answer the later
queries issued by others. Specifically, when a user wants LBSs, he needs to broadcast a query to his
neighbors first to seek for an answer. The user only contacts the LBS server if he cannot get the required
service information from their neighbors. In this way, a user reduces the number of queries sent to
the LBS server, and remains hidden from the LBS server. Our main contributions in this paper can be
summarized as follows:

• We provide the Cache-Based Privacy-Preserving (CBPP) solution for users in LBSs, which can
protect the user’s location privacy and query privacy simultaneously. Meanwhile, we avoid
the problem of TTP server by having users collaborate with each other in a mobile peer-to-peer
(P2P) environment.

• We reduce the number of queries sent to the untrusted LBS by using the caching, which not only
protects the user’s privacy effectively against the LBSs server, but also improves the user’s query
efficiency and cache hit ratio.
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• We analyze the availability and the security of proposed CBPP solution, which show that the
proposed CBPP solution is a much more practical way to protect users’ privacy in LBSs.

The rest of the paper is organized as follows. We discuss related work in Section 2. Section 3
presents some preliminaries of this paper. We present our CBPP scheme in Section 4. The security
analysis and the evaluation results are shown in Sections 5 and 6, respectively. We describe the
conclusion and future work in Section 7.

2. Related Work

2.1. Present Research Situation

Privacy in LBSs has been one of the most popular research topics recently, and more and more
privacy-preserving solutions have been proposed to ensure the user’s safety. Actually, most solutions
provide anonymity on users’ exact locations to hide their location information. The objective of
anonymity is to separate a user’s identity from his location by using various techniques. Among
various anonymizing techniques, k-anonymity, which was first introduced into LBSs by Gruteser et al.
in [11], is the most widely used metric. To achieve k-anonymity, a trusted middleware (i.e., Location
Anonymizer) was used between the user and the LBS server in [11]. When a query is submitted to the
LBS server, the location anonymizer enlarges the queried location into a cloaking area, which contains
the user and at least k− 1 others. Then the location anonymizer reports this area as the user’s location
to the LBS server. Since any entity inside the cloaking area could be the user, the LBS server cannot
distinguish the real user from others. However, this work assumes a static k value, which cannot
satisfy the users with different privacy requirement (i.e., k value). To address this problem, Gedik et al.
considered a personalized k-anonymity and proposed Clique-Cloak scheme in [14], which can make
users adjust their anonymity degree. Unfortunately, all approaches above require the user to expose
his exact location to the location anonymizer, which may suffer from the single point of failure on either
system performance or user privacy [2].

To avoid the location anonymizer, Kido et al. [12] proposed the dummy locations-based solution to
achieve k-anonymity in LBSs. In this work, a user protects his privacy by reporting his exact location
with a set of fake locations, termed dummies, directly to the LBS server to achieve the k-anonymity.
However, they use a random walk model to generate dummy locations, which cannot ensure the
designed privacy level when the adversary (e.g., the LBS server) has some background knowledge.
For example, some randomly generated dummy locations may fall at some unlikely locations such
as lakes, oceans, swamps, and rugged mountains, and can be easily filtered out by the adversary.
The desired k-anonymity thus fails. Later, Lu et al. [19] proposed two dummy locations generating
algorithms, i.e., CirDummy and GridDummy, which also provide k-anonymity to users by considering
the privacy area. However, this work still cannot really guarantee the desired degree of anonymity
when the adversary has background knowledge. Then, Niu et al. [1,20,21,23] proposed a set of
solutions to address this problem. Actually, all of these solutions choose dummy locations carefully
based on the entropy metric, which significantly improves the privacy level against the adversary who
has background knowledge. Nevertheless, all the above mentioned approaches pay much attention to
the user’s location privacy, but neglect the query privacy.

2.2. Most Related Work to Our Solution

The most related works to ours are shown in [21,22]. Both of the works are based on the caching
technique, and the location privacy is maintained by the user-collaborative approach. The basic idea
of the cache-based schemes is that users only contact the LBS server if they cannot get the required
service data from their neighbors, who cache the used service data in their buffers. However, there are
some drawbacks in these works: (1) Both of them do not preserve the user’s query privacy, which is
also pretty important in LBSs; (2) In [22], it is hard to protect the first user’s privacy for each query,
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because the user has to send a live query to the untrusted LBS server to obtain the required service.
Although [21] solves this problem, it still has lower cache hit ratio.

3. Preliminaries

In this section, we first introduce the motivation, and then present the basic idea of our solution.

3.1. Motivation

In an LBS environment, when a user wants to enjoy services, he has to send a location-related
query to the untrusted LBS server, and then the latter returns the corresponding service data to the
user based on the location information and query interest of the user. However, there exist some
drawbacks with this pattern. First, due to the fact that each query sent to the LBS server contains
location information and query interest of the user, the LBS server could know where the user is and
what kind of query the user submits, which may threaten user’s privacy and security. Even worse,
the LBS server can infer some private information of the user based on the query, such as his identity,
home location, lifestyle habit, even health condition, etc., [26]. Secondly, in the real world, some users
may query for the same interest, which leads to the LBS server has to reply them with the same answer
repeatly. For example, there may be many people at the same metro station to submit queries with
the same contents to the LBS server (e.g., how to arrive at some metro station or shopping mall). As a
result, the LBS server has to respond to the same service data repeatedly, which obviously leads to
low efficiency.

To solve the first problem, a straightforward method is to use k-anonymity which we mentioned
above, which renders the LBS server unable to distinguish the real user from the other k− 1 users.
However, on the one hand, it is not always easy to find k− 1 users at any time and any place to achieve
k-anonymity, and on the other hand, most existing studies just protect the user’s location privacy by
using k-anonymity, but do not consider the user’s query privacy. Actually, we can protect the user’s
query privacy by having the query content achieving k-anonymity. In other words, we can send the real
query with the other k− 1 queries to the LBS server. However, due to the background knowledge the
LBS server has, k-anonymity does not guarantee the user’s query privacy. Fortunately, TTcloak [2] shows
us an effective method, i.e., l-diversity [35], to protect the user’s query privacy. We employ the l-diversity
to protect the user’s location privacy and query privacy simultaneously. To solve the second problem,
cache technique [22] is introduced into the LBSs. The reason for the adoption of cache includes the
following two aspects, (1) some users may query for the same interest in reality; (2) the LBS related
service data generally has longer lifetime [36]. Thus, users can cache the previous service data in their
mobile device to answer future queries. Moreover, cache techniques also reduce the number of queries
sent to the LBS server, which further enhances the user’s privacy.

3.2. Our Basic Idea

In this paper, we integrate the l-diversity and cache techniques to solve the aforementioned
problems. Actually, our work protects the user’s privacy in LBSs by relying on the collaboration
between users in mobile peer-to-peer (P2P) environments. Through such a user-cooperative approach,
our solution not only improves users’ privacy, but also avoids the problems of TTP server. Specifically,
when a user needs LBSs, he sends a query to his neighbors first. Since each user keeps a buffer in his
mobile device to record the service data, neighbors search their buffers to seek for an answer after they
receive the query.

(1) If the neighbors cache the corresponding service data, then the neighbors pass the data back to
the user. As a result, the user can enjoy the data service directly without contacting the LBS server.
In fact, the neighbors in this case act as reverse proxy servers, by which the user’s request can be
satisfied locally.

(2) If the neighbors do not cache the corresponding service data, then the user has to send a live
query to LBS server to obtain the related service. For such a user, we employ l-diversity to protect his
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privacy. More specifically, each user in our solution receives many queries from his peers. Some of the
queries can be answered by the user. We denote the set of queries that cannot be answered by the user
as Z. To protect user’s privacy, we send the user’s real query Qreal , together with l − 1 other queries
Q1, Q2, · · · , Ql−1 chosen from Z, to the LBS server. Here, each query sent to the LBS server by the user
has the form of

Q = 〈 id, loc, q〉 (1)

where id represents the identity of the user, loc represents the location of the user, and q represents
the query interest of the user. Due to our aim being l-diversity on user’s location privacy and query
privacy, we need to ensure that loc as well as q in all l queries are different from each other. In other
words, for Qreal = 〈 id, locreal , qreal〉 and QN = 〈 id, locN , qN〉 (N = 1, 2, · · · , l − 1), we have loci 6= locj,
qi 6= qj, ∀i, j ∈ {real, 1, 2, · · · , l − 1}. Note that id in each query Q is a pseudonym. For reference
convenience, we provide Table 1 to summarize the important notations.

Table 1. Notation reference table.

Notation Meaning
U User who submits query to neighbors or LBS server
id Identity (pseudonym) of the node in P2P network
loc Location of the node
q Query interest of the node
h Number of hops

QU2N Query sent to Neighbor by the user
QU2S Query sent to LBS server by the user

l Anonymity level
Z Set of queries not answered by U
N Neighbor of the user
M Message sent to U by his neighboring peers

4. The Proposed Solution

We begin this section by presenting the system architecture and attacker model. We then describe
the proposed Cache-Based Privacy-Preserving (CBPP) solution in detail.

4.1. System Architecture and Threat Model

As shown in Figure 1, entities in our system can have two roles, i.e., mobile users and the LBS
server. We give a simple explanation for each of them as follows.

Figure 1. The system architecture.

Mobile user: A mobile user is someone who holds location-aware (e.g., GPS) mobile devices (e.g.,
smartphone). In our architecture, each user can position himself and keeps a buffer in his mobile device
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to record the LBS-related service data. Besides, the same as in [15], each mobile user in our system is
equipped with two wireless network interface cards; one of them is dedicated to communicating with
the LBS server through the base station, while the other one is devoted to communicating with other
peers. A similar multi-interface technique has been used to implement IP multi-homing for stream
control transmission protocol (SCTP), in which a machine is installed with multiple network interface
cards, and each assigned a different IP address [37]. Similarly, in mobile P2P cooperation environment,
mobile users have a network connection to access information from the server, e.g., through a wireless
modem or a base station, and the mobile users also have the ability to communicate with other peers
via a wireless LAN, e.g., IEEE 802.11 or Bluetooth [38–40]. Note that users communicate with each
other via single-hop communication and/or via multi-hop routing in a P2P network. Last but not least,
each user is assumed to be trusted and concerned about location privacy and query privacy when he
seeks service data from the LBS server.

LBS server: An LBS server can be any online location-based service provider. When the LBS server
receives queries from users, it searches for the corresponding service data in its database and returns
the data to users. Actually, the LBS server computes an answer set that includes the exact answer to
the user. Moreover, the LBS server is always seen as untrusted and considered as the adversary in
our architecture. Besides, the LBS server can easily get all the background knowledge, and know the
privacy protection algorithms used in our system.

4.2. Proposed Cbpp Solution

In this section, we present the proposed Cache-Based Privacy-Preserving (CBPP) solution in detail.
As we mentioned before, the proposed CBPP solution includes the following two parts.

4.2.1. Query to Neighbors

When a user U needs LBSs, he sends a query with the form of QU2N = 〈 locU , qU , h, tU〉 to his N
neighbors first to seek for an answer. We denote locU as the location of U, qU as the query interest of U,
and tU as the time point at which U broadcasts QU2N . Algorithm 1 gives the pseudo code of the query
to neighbors. Specifically, our query to neighbors algorithm includes the following 4 steps:

(1) U first needs to determine h(=
⌈

Rq
Rh

⌉
), which is related to the user’s query range Rq and the

communication range of a hop Rh. Actually, a bigger h brings higher probability that U obtains the
required service data. Obviously, the greater h is, the more hops U can obtain. As a result, U has
more chances to get the service data from more neighbors. However, a large h also leads to more
communication costs and service delay. Then, U broadcasts the query QU2N to his N neighbors to seek
for an answer. U listens to the network and waits for the reply from his neighboring peers (Line 3–4 in
Algorithm 1).

(2) When N receive the query QU2N , N first search their buffers, which can be seen as a “Q&A
list” in Figure 2, with the keyword qU . If N have the corresponding answer, then they send a message

M = 〈 locU , qU , answer, t〉 (2)

where answer represents the service data U requires, and t represents the time when M is sent by N,
to others. Otherwise, N discard QU2N . Next, N check h. If h = 1, then N stop the algorithm; If h > 1,
then N decrement h and broadcast the query QU2N with the updated h = h− 1 to their neighboring
peers, who repeat the step (2) (Line 5–19 in Algorithm 1).

(3) For peers who receive M, they check whether they are the originator U of the query QU2N .
Let locp denote the current position of peer. If locU = locp and qU ∈ U hold simultaneously, then the
peer is U; Otherwise, the peer continue to broadcast M to others (Line 21–28 in Algorithm 1).

(4) When U receives M, he determines whether M has expired. M is considered to be expired if
the time interval |t− tU | is beyond ∆t, which is a threshold predefined by U. If M has expired, then U
discards M; Otherwise, U gets his required service data (Line 30–35 in Algorithm 1).
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Algorithm 1 : Query to Neighbors Algorithm.

1: Function User’s query is answered locally by neighboring peers

2: // Phase 1: Broadcast user’s query to neighbors

3: U determines a proper h =
⌈

Rq
Rh

⌉
;

4: U broadcasts a query with the form of QU2N = 〈 locU , qU , h, tU〉;

5: for N receiving QU2N do

6: while h > 1 do

7: N searches their buffers;

8: if N has the corresponding service data then

9: Send M = 〈 locU , qU , answer, t〉 to neighboring peers;

10: else

11: N discards QU2N ;

12: end if

13: h← h− 1;

14: N broadcasts the query QU2N = 〈 locU , qU , h, tU〉;

15: end while

16: if h == 1 then

17: Run lines 7–12;

18: end if

19: end for

20: // Phase 2: Broadcast neighbors’ found data to U

21: for peers receiving M do

22: if locU = locp & qU ∈ U then

23: Peer is U;

24: Break;

25: else

26: Continue broadcasting M to others;

27: end if

28: end for

29: // Phase 3: Check the validity of M

30: U checks t in M

31: if t− tU ≤ ∆t then

32: M is valid;

33: else

34: U discards the message M;

35: end if
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Figure 2 gives a simple running example for the query to neighbors algorithm. In Figure 2,
we suppose that there are 10 mobile users who are represented by smartphones, and set the number of
hops of neighbors allowed to spread within the P2P network equals to two, i.e., h = 2. U represents
the user who issues a query to neighboring peers, and Ni represents the neighbors of U. The dotted
circle with the same color as the smartphone represents the communication range of this node, and the
smartphones with green stars (N1, N2, N5, N7, N9) represent the neighbors who have the corresponding
service data U requires.

Figure 2. Query to neighboring peers.

4.2.2. Query to LBS Server

When a user U cannot receive the required service data from his neighboring peers, or the
messages U received from neighbors are invalid, he has to send a live query to the LBS server. As a
result, the LBS server knows some personal information about U, such as where he is, what kind of
query he submits, etc. However, as we mentioned above, the LBS server is untrusted, and it may
threaten U′s privacy and security. Therefore, in order to protect the user’s location privacy and query
privacy from the LBS server, we propose the query to the LBS server algorithm, the basic idea of which
is to utilize l-diversity. Algorithm 2 gives the pseudo code of the query to the LBS server, and the
technical details are shown as follow.

(1) U first needs to decide a proper degree of anonymity l, which is closely related to U′s location
privacy and query privacy. Actually, the greater l is, the higher anonymity degree U can get. However,
a greater l can also incur higher communication cost due to the transmission of l queries (Line 3 in
Algorithm 2).

(2) Generally, U receives many queries from his neighboring peers. For these queries, some of
them can be answered by U utilizing the caching data in his buffer, while the other cannot. U then
derives a set Z of queries that cannot be answered by himself. More specifically, when U receives
a query QN2U from his neighbor, U first searches his buffer and seeks for the corresponding service
data to QN2U . If U does not have the corresponding service data, then U puts the query QN2U into Z
(Line 4–12 in Algorithm 2).

(3) Each query Q sent to the LBS server includes (id, loc, q). To protect users’ sensitive information
from the LBS server, we design a query to the LBS server algorithm, which provides l-diversity for
user’s location information and query interest simultaneously. Specifically, U sends the real query
QU , together with l − 1 other dummy queries (Q1, Q2, · · · , Ql−1) chosen from Z, to the LBS server.
We denote the final requiring message sent to the LBS server by U as QU2S, then we have

QU2S = (QU , Q1, Q2, · · · , Ql−1) (3)
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Algorithm 2 : Query to LBS Server Algorithm.

1: Function User’s query is answered by LBS server

2: // Phase 1: U derives the set Z of queries not answered by U

3: U determines a proper l;

4: U derives a set Z = ∅;

5: The number of elements in Z is z = |Z| = 0;

6: for query QN2U received by U from neighbor do

7: U searches his buffer;

8: if U does not have the answer to QN2U then

9: U puts QN2U into Z;

10: z← z + 1;

11: end if

12: end for

13: // Phase 2: U protects privacy by achieving l − diversity

14: if z ≥ l − 1 then

15: U constructs set H which contains all loc of Z, i.e., H = (loc1, loc2, · · · , locz);

16: U constructs set I which contains all q of Z, i.e., I = (q1, q2, · · · , qz);

17: U constructs set J = (locU) and K = (qU);

18: for i = 1; i ≤ z; i ++ do

19: if loci 6∈ J then

20: Insert loci into J;

21: end if

22: end for

23: for j = 1; j ≤ z; j ++ do

24: if qj 6∈ K then

25: Insert qj into K;

26: end if

27: end for

28: U selects a subset J′ from J\{locU} such that |J′| = l − 1; *J\{locU} is a set whose elements are in J but

not in {locU}*

29: U selects a subset K′ from K\{qU} such that |K′| = l− 1; *K\{qU} is a set whose elements are in K but not

in {qU}*

30: for each (J′[i], K′[i]) ∈ (J′, K′) do

31: Qi = (idU , J′[i], K′[i]);

32: end for

33: U replaces idU ∈ QU and idi ∈ Qi with a pseudonym id;

34: U sets QU2S = (QU , Q1, Q2, · · · , Ql−1);

35: else

36: U waits for more queries and repeats line 15–34;

37: end if

38: U sends required message QU2S to LBS server;
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To effectively achieve l-diversity on U′s location information and query interest, dummy queries
Qi=1,2,··· ,l−1 need to be chosen based on the given regulation as follows.

When U selects a dummy query Qi in Z, due to our aim being l-diversity on user’s location privacy
and query privacy, we need to ensure that loc as well as q in all l queries are different from each
other. In other words, for QU = (idU , locU , qU) and Qi = 〈 idi, loci, qi〉 (i = 1, 2, · · · , l − 1), we have
loci 6= locj, qi 6= qj, ∀i, j ∈ {U, 1, 2, · · · , l − 1} (Line 14–32 in Algorithm 2).

Last but not least, U replaces his real identity idU , as well as all dummy identities idi in Qi, with a
pseudonym id. Finally, U sends the required message

QU2S = (QU , Q1, Q2, · · · , Ql−1) (4)

to LBS server (Line 33–38 in Algorithm 2).
We illustrate our query to the LBS server algorithm based on the example shown in Figure 3.

In Figure 3, there are 5 mobile users represented by smartphones. U represents the user who issues
a query to the LBS server, and Ni=1,2,3,4 represent the neighbors of U. The dotted circle represents
the communication range of U. As shown in Figure 3, suppose l = 4, which means that U needs to
satisfy 4-diversity for his location information and query interest. Thus, U selects the other 3 dummy
queries Q1, Q2, Q4 received from N1, N2, N4 respectively according to proposed query to the LBS server
algorithm. Finally, the required message sent to the LBS server by U is QU2S = (QU , Q1, Q2, Q4).
When the LBS server receives QU2S, it searches its database and transmits the answers set, which
includes the answer DU to QU as well as the answer Di=1,2,4 to Qi=1,2,4, back to U.

Figure 3. Query to the LBS server.

5. Solution Analysis

In this section, we first provide the security analysis to proposed CBPP solution. Then, we analyze
the impact of the cache hit ratio of the proposed CBPP solution.

5.1. Security Analysis

The aim of the adversary in the LBS environment is to obtain a user’s sensitive information,
such as his location information and query interest. In our work, we assume that the adversary has
compromised and controls the LBS server, thus it knows all the information of the user. We also
assume that the adversary knows the algorithm we use. Our analysis focus on how the proposed CBPP
solution can prevent the possible privacy leakage from the LBS server and other users in the system.

Case 1: The LBS server does not know the location information and the query interest of the user.
On the one hand, a user sends a query to his neighbors first to seek for an answer when he needs

LBSs. If the neighbors have the corresponding service data, then they send the answer back to the user.
In this way, the user can enjoy the LBSs without contacting the LBS server. Thus, the LBS server cannot
obtain any information about the user. On the other hand, if the user cannot get the corresponding
data service from his neighbors, then he needs to send a live query to the LBS server. In this case,
we employ the l-diversity on both the location information and the query interest of the user. Due to
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the l-diversity principle, the LBS server cannot deduce the exact location information and the exact
query interest of the user with a probability larger than 1

l . As a result, the LBS server does not know
the location information and the query interest of the user.

Case 2: The user does not disclose other users’ location information and query interest.
In our work, when a user wants LBSs, he first sends the query message to his neighbors to seek

for the answer. In this way, neighbors can obtain some sensitive information of the user, such as his
location information and query interest. However, as we just mentioned above, each node in the P2P
network of our work is assumed to be trusted. Therefore, each user cannot disclose the sensitive
information to others. Actually, when neighbors receive the query message from the user, they just
search the buffer with the keyword. If they have the corresponding answer, they then correctly return
the answer to the user. Otherwise, they continue to transmit the message to others.

5.2. Cache Hit Ratio Analysis

In our work, a cache hit occurs when the requested service data of a user can be found in his
neighbors’ caches. In other words, if a user can get the service data from his neighbors, then a cache
hit occurs. Otherwise, if a user cannot enjoy the LBSs locally and needs to send a live query to the LBS
server to get the service data, then a cache miss occurs. To protect the user’s privacy against the LBS
server, we need to improve the cache hit ratio. A high cache hit ratio means that a user can get the
requested service data from his neighbors directly with a higher probability. By improving the cache
hit ratio, the user reduces the number of queries sent to the LBS server, which makes the LBS server
know less information about the user. We analyze the cache hit ratio of proposed CBPP solution from
the following two aspects.

Case 1: Query to neighbors algorithm can improve the cache hit ratio.
When a user needs LBSs, he first sends a query message to his neighbors. If neighbors store the

corresponding service data in their buffers, then they correctly broadcast the data to the neighboring
peers. In this way, a large number of peers (including the user) in the P2P network can obtain the
service data. We argue that, the more data a peer in the P2P network stores in his buffer, the higher
cache hit ratio other peers can get, because other peers have greater chance to get the requested service
data from this peer. In the extreme situation, if a peer has all the global data, then he is equivalent to
the LBS server. Thus, the query to neighbors algorithm in our solution can effectively improve the
cache hit ratio.

Case 2: Query to LBS server algorithm can improve the cache hit ratio.
When a user cannot get the requested service data from his neighbors, he must contact the

LBS server to obtain the data. To protect the user’s privacy, in our solution, the user sends a set of
query QU2S = (QU , Q1, Q2, · · · , Ql−1), which includes U′s real query QU and l − 1 dummy queries
Qi=1,2,··· ,l−1, to the LBS server. Actually, the Qi=1,2,··· ,l−1 are the queries that come from the other peers
and cannot be answered by the user. In other words, when a user needs to contact the LBS server, he
selects l − 1 dummy queries from all his received queries to achieve the l-diversity. More importantly,
the user cannot find the corresponding service data in his buffer for the l − 1 dummy queries. When
the user receives the answers set from the LBS server, he not only gets his requested answer, but also
the answers of the l − 1 dummy queries. In this way, the user can answer the same queries as the l − 1
dummy queries in the future, which means that the query to the LBS server algorithm in our solution
can improve the cache hit ratio.

6. Performance Evaluation

6.1. Simulation Setup

To evaluate the performance of CBPP, we implement its algorithms in a Windows 10 desktop
computer. Each result in our experiments is an average of 100 iterations to make them more exact.
We deploy 1000 mobile users in the P2P network. We also choose 10 users to seek the same service
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information every 1 minute, the query radius is 1km and the system is run for 2 h. Moreover, in our
following experiments, l is related to the l-diversity and is set by the user, t is the evaluation time, h
is the maximal number of hops in the P2P network. We compare CBPP with three existing schemes:
DLS [20], Mobicache [21], and MobiCrowd [22]. Note that DLS does not use the caching but the other
two schemes do.

6.2. Evaluation Results

Table 2 presents a simple comparison of our solution with several previous works on some
privacy properties. Clearly, most existing works fail to protect users’ location and query privacy
simultaneously, and most of existing works do not use the caching. In the following, we present our
evaluation results in detail.

Table 2. Comparison of privacy properties.

DLS [20] TTcloak [2] PPCP [26] MobiCrowd [22] MobiCache [21] CBPP

TTP server × × X × × ×
Location privacy X X X X X X
Query privacy × X X × × X
Use cache × × × X X X
Improve cache hit ratio × × × × X X

(1) Effects of l on privacy. We use the l-diversity to measure the location privacy for users who
send live queries to the LBS server. Actually, the principle of l-diversity and k-anonymity is the same,
they both utilize some dummy locations to confuse the LBS server. Moreover, we let h = 5 and
t = 15 min. As shown in Figure 4a, the privacy degree of DLS [20] is the worst since it does not use
the caching. MobiCrowd [22] performs better since it caches the obtained service data to serve others.
However, MobiCrowd always submits users’ real locations to the LBS server, and it fails to protect
location privacy of the users who have to send live queries. Thus, we can see from Figure 4b that
the real locations of users are always exposed and the probability of exposing the real location is 1.
We can also find in Figure 4a that our proposed CBPP solution has the highest privacy degree in the
four schemes. Although the probability of exposing real location in proposed CBPP solution, DLS and
Mobicache [21] are very close in Figure 4b, we protect the location privacy and the query privacy of
users simultaneously.

(a) Privacy Degree vs. l (b) Location Exposure vs. l

Figure 4. Privacy vs. l.

(2) Effects of l on cache. Figure 5 illustrates how l affects the cache hit ratio when h = 5, t = 15 min.
DLS [20] does not consider caching, thus its cache hit ratio is equal to 0. Since MobiCrowd [22] does not
consider dummy locations, thus its cache hit ratio stays at a fixed level (around 30%). Mobicache [21]
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uses dummy locations, which result in a higher cache hit ratio. This is because dummies can make
more contributions to improve the chance that the other users get the requested service data. In our
solution, we carefully select dummy locations and achieve the highest cache hit ratio.

Figure 5. Cache Hit Ratio vs. l.

(3) Effects of t on cache. We present how cache hit ratio changes with the simulation time t in
Figure 6. In this experiment, we let the number of hops h = 5, and let l = 10. We can find in Figure 6
that the cache hit ratio of Mobicache [21], MobiCrowd [22] and proposed CBPP solution increases with t
since more service data is cached as time goes by. However, the cache hit ratio of DLS [20] is 0. This is
because the DLS scheme does not utilize the caching. We can also see that in all schemes, proposed
CBPP solution has the highest cache hit ratio.

Figure 6. Cache Hit Ratio vs. t.

(4) Effects of t on privacy. We evaluate the impact of the simulation time t on privacy degree, which
is shown in Figure 7. We also let the number of hops h = 5, and let l = 10. Generally, the privacy
degree in Mobicache [21], MobiCrowd [22] and proposed CBPP solution increases with the simulation
time t. The DLS [20] stays an almost fixed value (around 3). Actually, as time goes on, more data is
cached and fewer queries are sent to the LBS server, which greatly enhances user privacy. Proposed
CBPP solution outperforms all other schemes since it can cache more service data as time goes by.

(5) Effects of h on cache. Figure 8 shows the relationship between the cache hit ratio and the number
of hops h. In this case, we let l = 10 and t = 15 minutes, and we evaluate the number of hops form 1 to
5. Obviously, in most cases, the more hops a user can obtain, the higher cache hit ratio the user can get.
The reason is that, when increasing h, a user has more opportunities to get his requested service data
from his neighboring peers in the P2P network. We can also see that the cache hit ratio of DLS [20] has
nothing to do with the number of hops h, and the cache hit ratio of DLS is 0 because of its ignorance
of caching.



Sensors 2020, 20, 4651 14 of 17

Figure 7. Privacy Degree vs. t.

Figure 8. Cache Hit Ratio vs. h.

7. Conclusions and Future Work

7.1. Conclusions

In this paper, we proposed a Cache-Based Privacy-Preserving (CBPP) solution for users in
LBSs. Different from the previous approaches, CBPP considers location privacy and query privacy
simultaneously, and also avoids the problem of a TTP server by having users collaborating with each
other to improve the privacy. The key idea of CBPP is that each user caches the service data obtained
from the LBS server or the neighbors in his mobile device, and uses the cached data to answer the
later queries issued by others. Specifically, when a user wants LBSs, he needs to broadcast a query to
his neighbors first to seek for an answer. The user only contacts the LBS server if he cannot get the
required service information from the neighbors. Actually, each user now can be seen roughly as a
micro TTP server. In this way, a user reduces the number of queries sent to the LBS server, and remains
hidden from the LBS server. To users who have to send live queries to the LBS server, we employ
l-diversity to further protect their privacy. Evaluation results show that CBPP can effectively protect
users’ location privacy and query privacy with a higher cache hit ratio and better quality of service.

7.2. Future Work

This section discusses some potential challenges and future directions of our work. As mentioned
before in this paper, users are assumed to be trusted and directly share location information with each
other. We argue that, however, this assumption is unrealistic since users could not be fully trusted
in practice. Typically, a malicious user may pretend to be a normal one and collect the locations of
the neighboring peers, which leads to the malicious user tracking peers directly or releasing their
personal information to third parties. Actually, we argue that the exposure of user’s exact location
to any entity would reveal his personal sensitive information. In this sense, the proposed solution
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has limited applications, and location cloaking without exposing the accurate user location to his
neighboring peers is urgently needed.

In order to solve this problem, we propose a sketchy solution, which is used against the untrusted
neighboring peers in mobile peer-to-peer (P2P) environment. In our sketchy solution, no trust
relationship is assumed among users. The main idea of it is that a user hides his exact location
in the request within a cloaking region (CR), which is transformed by the user with the Hilbert curve,
and broadcasts the request to his neighbors to seek for an answer. In this way, neighbors just realize
that the user is in the CR, but cannot pinpoint his accurate location, which greatly improves the user’s
location privacy. After receiving the request from the user, neighbors utilize the Voronoi Diagram (VD)
to find the corresponding service data based on the query interest, and then send the service data back
to the user. The user only contacts the LBS server when he cannot obtain the required service data
from his neighbors.

Actually, we are now in the middle of this work, i.e., we are now utilizing the Hilbert curve and
Voronoi Diagram to protect user’s location privacy and execute the KNN query on an area. Security
analysis and evaluation results show that not only can the proposed sketchy solution effectively protect
users’ location privacy, but it can also provide better quality of service (QoS) for KNN query without
the accurate location information of the user.
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