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Abstract: At present, the state-of-the-art approaches of Visual Question Answering (VQA) mainly
use the co-attention model to relate each visual object with text objects, which can achieve the coarse
interactions between multimodalities. However, they ignore the dense self-attention within question
modality. In order to solve this problem and improve the accuracy of VQA tasks, in the present
paper, an effective Dense Co-Attention Networks (DCAN) is proposed. First, to better capture the
relationship between words that are relatively far apart and make the extracted semantics more
robust, the Bidirectional Long Short-Term Memory (Bi-LSTM) neural network is introduced to
encode questions and answers; second, to realize the fine-grained interactions between the question
words and image regions, a dense multimodal co-attention model is proposed. The model’s basic
components include the self-attention unit and the guided-attention unit, which are cascaded in
depth to form a hierarchical structure. The experimental results on the VQA-v2 dataset show that
DCAN has obvious performance advantages, which makes VQA applicable to a wider range of
AI scenarios.

Keywords: visual question answering; dense co-attention network; Bi-LSTM; deep learning;
natural language processing; computer vision

1. Introduction

Visual Question Answering (VQA) is a multimodal research task that aims to answer questions
related to the given image. Compared with other multimodal learning tasks (e.g., visual description [1],
visual grounding [2–4], multimodal embedding learning [5–8]), VQA requires a fine-grained semantic
understanding of both visual and textual content to predict the correct natural language answer.
Therefore, VQA has recently emerged as an extremely challenging task and drawn considerable
attention from researchers.

The attention mechanism is significant progress in VQA, which is essentially similar to the
attention mechanism of human vision and aims to select what is more critical to the current objectives
from a wide range of information. The attention mechanism has played an important role in
various tasks concerning artificial intelligence since it is proposed in Reference [9], making VQA
applied in intelligent robots [10], driverless cars, and navigation for visually impaired people [11],
early childhood education, sensor technology, and other fields [12]. For example, VQA can be applied
to an environment that is monitored and perceived by sensors. The sensors collect environment
information in real time, such as temperature, pressure, smell, or the exact location of an object.
Then the VQA network takes three kinds of information as input to predict answers: the image of
the current scene, the information collected by the sensors, and questions. Moreover, the attention
mechanism improves the performance of unimodal tasks, such as vision [13], language [14,15], and so
on [16]. In addition to the visual attention model, researchers had also proposed a co-attention model
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[17,18], which can learn visual attention and text attention simultaneously. However, it can only
learn the coarse interactions between multimodalities, and can not infer the relationship between
an image and the keywords of a question. To solve this problem, References [19,20] proposed more
comprehensive co-attention models to capture the complete interactions between words and regions,
and further expanded them to form a deep co-attention model. However, these two models only
have a slight performance improvement compared with the shallow models. Inspired by Transformer
[21] and References [22,23], two deep co-attention networks (e.g., MLIN [24], MCAN [25]) have been
proposed, which significantly outperform the previous approaches.

Despite the excellent performance of the current co-attention models, the interaction within
question modality is insufficient. Complex relationships between words can be learned when
two parallel question self-attention units are used to extract question features, which contributes
to understanding the image and provides complementary and vital information to the image,
thus facilitating more accurate multimodal reasoning. Therefore, we propose an effective Dense
Co-Attention Networks (DCAN), the core of which is the Dense Co-Attention (DCA) layers stacked in
depth. Each DCA layer consists of two parallel question self-attention units, an image self-attention
unit, and a guided-attention unit. The self-attention unit aims to carry out intra-modal interactions,
while the guided-attention unit is used to realize the inter-modal interactions between the image
regions and question words. Compared with the single-layer self-attention unit in MCAN, two parallel
question self-attention units can extract more fine-grained question features. When the question
features are used to guide the image, more accurate image features can be obtained. Experimental
results on the benchmark VQA-v2 dataset [26] demonstrate our model is reasonable and effective.
Additionally, compared with LSTM, Bidirectional Long Short-Term Memory (Bi-LSTM) [27] neural
network can theoretically better capture the bidirectional semantic dependencies. It is beneficial to
feature extraction of the dense co-attention learning module. Therefore, Bi-LSTM is employed to
encode questions. Finally, the ablation studies under one DCA layer proved that Bi-LSTM is slightly
better than LSTM.

In summary, the main contributions of this paper are as follows:

• An improved multimodal co-attention model is proposed by stacking the self-attention unit and
the guided-attention unit. It can not only describe the interactions between multimodalities in a
more effective way but also take account of the dense self-attention in each modality. Compared
with the existing scheme MCAN, DCAN achieves higher precision.

• Ablation studies on VQA-v2 are conducted to explain the effectiveness of DCAN. The qualitative
evaluation results demonstrate how it generates reasonable attention to questions and images.

The rest of this paper is organized as follows—the related work is introduced in Section 2.
Then co-attention layer is described in Section 3. The overall architecture of dense multimodal
co-attention networks is presented in Section 4. The ablation studies are given in Section 5.
The conclusion is provided in the last section.

2. Related Work

2.1. Attention-Based Vqa Model

When looking at an image, the focus is necessarily on a certain part of the image. In other words,
when shifting eyes to another place, attention is also shifting along with the movement of the eyes.
In this sense, when people notice a target or scene, the distribution of attention within the target or at
each spatial location in the scene is different. With reference to the way the human brain processes
information, the attention mechanism is introduced in deep learning, which can quickly select useful
information from large amounts of data. A series of methods based on the attention mechanism came
into being, but these methods are not the same.

Reference [17] had achieved great success in the VQA task. The word features are aggregated
through the image-guided attention mechanism, and the image features of all regions are aggregated
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into global image embedding. This co-attention framework uses concatenation and average pooling
to merge all components. Shih et al. [28] proposed a method of learning to answer visual questions
by selecting image regions related to text query, which maps the text queries and visual features of
different regions into a shared space. Fukui et al. [29] used multiple attention layers or generated
multiple attention maps to realize multi-step reasoning or multiple attention on images. Li et al. [30]
extracted the bounding boxes in the image and scored each bounding box according to the text features.
Anderson et al. [31] proposed to combine bottom-up and top-down attention to calculate attention
at the level of objects and other prominent image regions. It expands the number of object classes
from 200 to 1600, and Visual Genome [32] is utilized for data augmentation. Kim et al. [19] extended
the attention network, in which low-rank bilinear pooling is used to extract joint representations of
multimodal inputs. Reference [20] showed that the dense and bidirectional co-attention mechanism
between two modalities contributes to improving prediction accuracy. In Reference [25], a deep
modular co-attention network was proposed, which associates the keywords in questions with the
critical regions in images.

2.2. Multimodal Feature Fusion

Multimodal feature fusion [33,34] refers to the fusion of visual features from images and text
features from questions. The question is that the abstraction of the real world takes the form of
texts featuring a high semantic level. In comparison, the image exists in the form of pixels, and the
aggregation of pixels produces semantics. The image thus has a relatively low semantic level but
contains rich information to reflect the real world. Therefore, there is an inevitable semantic gap
between images and questions, which requires a complex interaction between image features and
question features.

At present, the fusion methods include the method based on linear fusion and the method based
on bilinear pooling. The former includes feature connection and element multiplication and other
linear operations. The latter is expressed as the outer product of two vectors. However, the dimension
of the feature obtained by the ordinary exterior product is the square of the original feature’s size,
making the subsequent classification model large. Therefore, the academic community has made
various improvements to the bilinear pooling method, which significantly reduces the dimension
of features. Kim et al. [35] put forward a low-rank approximation algorithm of bilinear pooling,
which is easy to operate and very effective. Yu et al. [18] had proposed the Multimodal Factorized
Bilinear (MFB) Pooling and Multimodal Factorized High-order (MFH) [36] Pooling, which have
achieved better performance. Reference [37] expanded the self-attention model for single modality
into a unified attention model, which can describe the complex intra- and inter-modal interactions of
multimodal data, generating excellent results.

3. Co-Attention Layer

3.1. Scaled Dot-Product Attention

The input of the scaled dot-product attention [21] includes queries, values, and keys of dimension
dk. It should be noted that the value vector and the key vector have the same dimension. The values,
keys, and queries are packed into matrixes V, K, and Q, respectively. The attention function on all
queries is performed simultaneously. The attended feature F is given by:

3.2. Multi-Head Attention

To further enhance the representation capacity of the attended features, multi-head attention is
presented in Reference [25]. Multi-head attention is to perform multiple attention operations, which is
composed of h paralleled heads, and each head corresponds to a scaled dot-product attention function.
On each projection of the values, keys, and queries, the attention function is executed in parallel,
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resulting in output values of dimension dv. Concatenate these attention functions to obtain the final
attended features, as shown in Formulas (2) and (3):

MHAtt(Q, K, V) = Concat(head1, . . . , headh)WO (1)

headi = Att
(

QWQ
i , KWK

i , VWV
i

)
, (2)

where WQ
i , WK

i , and WV
i are the projection matrices of the i-th head, and WO is the learned weight

matrix. In this calculation, h = 8 parallel heads are applied to reduce each head’s dimensionality,
and the total calculation consumption is the same as that of full-dimensional single-head attention.
Additionally, dmodel = 512 is the dimensionality of the embedding layer. In each head:

dk = dv =
dmodel

h
. (3)

3.3. Pointwise Feed Forward Layer

The pointwise feed-forward layer is a forward neural network, which uses several weight
coefficients Wi, and the biased variable bi to perform linear operations and activation operations.
It realizes the transformation of the output features through two fully connected layers with a
ReLU activation and dropout. The Relu activation function makes the output of some neurons
zero, which makes the neural network sparse, reduces the interdependence of parameters, and relieves
the occurrence of the over-fitting problem. Suppose the input feature set is E = [e1, . . . , en] ∈ Rn×de ,
the output can be written as:

FFN (E) = max (0, EW1 + b1)W2 + b2 . (4)

3.4. Self-Attention and Guided-Attention

3.4.1. Self-Attention Unit

Both Self-Attention (SAtt) unit [25] and Guided-Attention (GAtt) unit [25] are based on multi-head
attention. The self-attention unit takes question features or image features as input, which means
question self-attention or image self-attention. As shown on the left side in Figure 1, the self-attention
unit consists of the multi-head attention layer and pointwise feed-forward layer. In this paper, E and
P represent question features and image features respectively. The input feature P = [p1, p2, . . . , pm]

is transformed into three matrices: query matrix QP, key matrix KP, and value matrix VP. In the
self-attention unit, the multi-head attention layer calculates the pairwise relationship between each
region pair

〈
pi, pj

〉
within an image. The attended output features F1 can be expressed as:

F1 = MHAtt (QP, KP, VP)

= Concat (head1, . . . , headh)Wo, (5)

headi = Att
(

QPWQP
i , KPWKP

i , VPWVP
i

)
, (6)

where WQP
i , WKP

i , WVP
i are the projection matrices of i-th head concerning image features.

The feed-forward layer transforms the attended image features further. The final feature is obtained
as follows:

FFN (F1) = max (0, F1W1 + b1)W2 + b2 , (7)

where Wi and bi represent weight coefficients and biased variable respectively.
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3.4.2. Guided-Attention Unit

Guided-attention unit takes the question features and image features as input, which represents
question-guided attention or image-guided attention. Correspondingly, the output feature represents
the image features guided by the question or the question features guided by the image. As shown on
the right side in Figure 1, the image feature is guided by the question feature. The question can help to
understand the image better and capture important image regions relevant to the question. The input
features P = [p1, p2, . . . , pm] and E = [e1, e2, . . . , en] are transformed into three matrices: query matrix
QP, key matrix KE, and value matrix VE. In the guided-attention unit, the multi-head attention layer
models the pairwise relationship between each pair

〈
pi, ej

〉
from image and question. The attended

feature F2 is described as follows:

F2 = MHAtt (QP, KE, VE)

= Concat (head1, . . . , headh)Wo (8)

headi = Att
(

QPWQP
i , KEWKE

i , VEWVE
i

)
. (9)

Input feature F2 to the feed-forward layer:

FFN (F2) = max (0, F2W1 + b1)W2 + b2. (10)

F = Att (Q, K, V) = so f tmax
(

QKT
√

dk

)
V, (11)

where the softmax function is a generalization of logistic function and represents normalization.
Att (·) represents an attention function, which is essentially the same as dot-product attention. It has
two significant advantages in taking up less space and having a higher speed.
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LayerNorm
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LayerNorm

K V Q

Multi-head 
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LayerNorm
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LayerNorm

K V Q

E P

Z

Self-Attention 

(SAtt)

Guided-Attention 

(GAtt)
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Scaled Dot-Product Attention
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h
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Figure 1. The composition of two basic components. The self-attention unit takes image features
or question features as input, and the output feature is Z; the guided-attention unit adopts image
features and question features as input, where image features are guided by the question features,
and Z represents the output feature.

4. Network Architecture for Vqa

This section demonstrates DCAN in detail, the main structure of which is shown in Figure 2.
Firstly, the initial feature representation of the question and image is described, then the dense
multimodal co-attention model is presented. Finally, multimodal fusion and answer prediction
are provided.
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Figure 2. Overall flowchart of the improved dense multimodal co-attention network.

4.1. Feature Extraction

4.1.1. Question and Answer Representation

The questions and answers are encoded by Bi-LSTM. In Figure 3, the network structure of
Bi-LSTM is shown. The question is tokenized and divided into words with a maximum of 14, and the
excess is left out. Each word will be transformed into a vector representation and pre-trained by
Glove [38]. Specifically, a question is first transformed into a sequence

{
wQ

1 , . . . , wQ
n

}
, and then input

into Bi-LSTM with the residual connection.

−→qn = Bi-LSTM
(−−→qn−1, wQ

n

)
(12)

←−qn = Bi-LSTM
(←−−qn+1, wQ

n

)
, (13)

where −→qn is the output value of the forward hidden layer, and←−qn is the output value of the backward
hidden layer.

It is assumed that Q = [q1, . . . , qN ] ∈ Rd×N is the feature representation matrix of the question,

where qn =
[−→qn

T ,←−qn
T
]T

(n = 1, . . . , N). We use SQ =
[−→qN

T ,←−q1
T
]T

to connect the last hidden states

in the forward and backward paths, where −→qN is the final output of the forward hidden layer, and←−q1 is
the final output of the backward hidden layer.

When encoding the answers, a similar method as the question encoding method is adopted.
Supposing that an answer has words with the number of M, it can be encoded as

{
wA

1 , . . . , wA
M
}

and

then inputted to the same Bi-LSTM, resulting in the hidden states−→aM and←−a1 . We use SA =
[−→aM

T ,←−a1
T
]T

to connect the last hidden states in the forward and backward paths.

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

What are animals ？

x1 x2 

 

xn-1 xn

h1 h2 hn-1 hn

The input of 

LSTM
Transmission of 

hidden layers

The output of 

LSTM

LSTM

LSTM

Figure 3. Structure of bidirectional long short term memory (LSTM).
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4.1.2. Image Representation

Inspired by bottom-up attention [31], Faster R-CNN in conjunction with ResNet-101 CNN [39] is
used to obtain the target-level image representation. Faster R-CNN is an object detection model used
to identify object regions about specific classes and localize them with bounding boxes. It is mainly
composed of two modules: Region Proposal Network (RPN) and the detection module. It can be
further divided into four parts: convolution layers, RPN, RoI (Region of Interest) pooling, classification
and regression.

The output feature is P ∈ Rc×d, where c ∈ [10, 100] denotes the total number of object detection
features, and d represents the dimensionality of each feature in each image. Considering better
performance, lower cost and computational efficiency, c = 36 is set.

4.2. Dense Co-Attention Model

As can be seen in Figure 4, the dense co-attention model consists of six DCA layers. In other
words, six layers of SAtt (E)-SGAtt (P, E+E) are stacked to realize the dense intra- and inter-modal
interactions. Each DCA layer contains two parallel question self-attention units, an image self-attention
unit, and a question-guided unit. The process of dense co-attention learning is defined as follows:

Firstly, taking the original question features E(0) as input and output E(1) through a layer of the
self-attention unit. For each SAtt unit, the input of each layer is the output of the previous layer. It can
be defined as follows:

E(t) = SAtt
(

E(t−1)
)

, (14)

where t ∈ [1, 6]; add up the question features obtained from the two parallel question self-attention
units, and then input them into the subsequent guided-attention unit to guide the image.

Secondly, the original image features are input to a layer of the self-attention unit to model
self-attention of the image. Then the obtained image features are fed to the guided-attention unit
together with the question features in the above step. For each SGAtt unit, the output feature of each
layer is defined as Equation (15):

P(t) = SGAtt
(

P(t), E(L) + E(L),
)

(15)

where t ∈ [1, 6]; the number of DCA layers L is set to 6. SGAtt means the image self-attention is carried
out firstly, then the question-guided attention is performed.

SAtt

SAtt

SAtt

SAtt

SAtt

SAtt

SAtt

SAtt

SAtt

SAtt

SAtt

SAtt

SAtt GAtt

E(0) E(1) 

E(1) 

E(6) 

P(0) P(1) P(6) 

  DCA

E(6) 

SAtt GAtt SAtt GAtt SAtt GAtt SAtt GAtt SAtt GAtt

Figure 4. Dense multimodal co-attention model. ⊕ denotes adding up the question features.

4.3. Multimodal Fusion and Answer Prediction

After co-attention learning, the question features and image features contain abundant information
about the attention weights of words and regions. Therefore, a two-layer multi-layer perceptron (MLP)
is designed as an attention reduction model, which can obtain the attended features of both the
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question and the image. If the image feature P is taken as an example, the final attended feature P̄ can
be expressed as follows:

λ = so f tmax
(

MLP
(

P(L)
))

(16)

P̄ =
n

∑
j=1

λj pj
(L), (17)

where λ = [λ1, . . . , λn] ∈ Rn is the learned weight, and L is the number of layers stacked by DCA
layers, namely L = 6. The softmax function is used to standardize the weights of attention on all
regions. Then, image features from all regions are weighted and added into a single vector P̄ as the
representation of image features.

After calculating the final image features P̄ and text features Ē, they are fused with linear
multimodal fusion function. The fused feature is expressed by Formula (18):

C = LayerNorm
(

WT
E Ē + WT

P P̄
)

, (18)

where C is the joint representation of question and image. In this paper, C is input into a non-linear
layer, and the score of each candidate answer is predicted by linear mapping.

s = sigmoid
(

W0Relu
(

W f C
))

, (19)

where s is the score of the candidate answer, W0 and W f are linear projection matrix. The most
popular approach to answer prediction is to model answer prediction as a classification problem.
Firstly, the most common answers are selected to form the answer candidate sets according to the
training set. Then by seeing each candidate answer as a class, the probability distribution of the
correct answer on the answer candidate set is predicted. Finally, the candidate answer with the highest
probability is selected as the prediction result.

The binary cross-entropy (BCE) is employed as the loss function to train the classifier of N answers.

L =
N

∑
i=1

γi log (si) + (1− γi) log (1− si) , (20)

where r ∈ RN represents the matching degree between the question and prediction.

5. Experiments and Results

In this section, DCAN is evaluated on the VQA-v2 dataset. Firstly, the dataset is introduced,
and then experimental demonstrations and results are highlighted. Finally, the qualitative analysis
is presented.

5.1. Dataset

The VQA-v2 dataset is based on MSCOCO [40], which contains 1,105,904 questions raised by
humans and 204,721 images from the COCO dataset. The dataset can be divided into 40%, 20%,
and 40% for the training set, validation set, and test set. All the questions are divided into three
categories: Yes/No, Number, and Others. Compared with the VQA-v1 dataset, VQA-v2 collects more
samples. Besides, the more balanced VQA-v2 can cope with the possibility of accuracy improvement
caused by overfitting. It emphasizes visual understanding by reducing text deviation. Specifically,
each question in the dataset corresponds to two images, so that each question has two different answers.

5.2. Experimental Setup

The question feature E ∈ R14×512 is extracted with one-layer Bi-LSTM, and the number of nodes
in the hidden layer is set to 512. Images are expressed as a collection of 36 local areas by using
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bottom-up and top-down attention. To train DCAN, we use Adam solver with β1 = 0.9 and β2 = 0.99.
Since the large-scale Visual Genome is used to augment the training set in this paper, training is
stopped at 200,000 iterations. To predict the answer, we use the most common N answers as N classes
and set the number of answers to 3000. The dropout ratio in each fully connected layer is set to
0.1 to prevent overfitting. Due to GPU memory limitation, the batch size of the model is set to 64,
and 13 epochs of training are performed. Finally, the best epoch is chosen in the validation set.

5.3. Ablation Analysis

In this section, some ablation experiments are conducted on the VQA-v2 dataset to verify the
effectiveness of DCAN. For a fair comparison, all models use bottom-up object features, which are
extracted from Faster R-CNN. The ablation studies are trained on the train set to save the training time,
and the results are evaluated on the validation set.

5.3.1. Effectiveness of Dca

As shown in Table 1, we conduct ablation studies to explore the effectiveness of different
attention models. ID(E)-GAtt (P, E) denotes taking the original question features as input,
and modeling question-guided image attention. SAtt(E)-GAtt (P, E) means question self-attention
and question-guided attention. It can be seen that SAtt(E)-GAtt (P, E) outperforms ID(E)-GAtt
(P, E), which proves that it is beneficial to set self-attention for questions. Besides, the result of
SAtt(E)-SGAtt(P, E+E) is better than that of SAtt(E)-SGAtt(P, E), which indicates that compared with the
single-layer question self-attention unit, two parallel self-attention units can extract more fine-grained
question features. When the more fine-grained question features to guide the image, it can provide
supplementary and rich information to help better understand the image, facilitating more accurate
multimodal reasoning, thus improve the performance of VQA.

Table 1. Ablation studies of the question encoding, the single-layer attention model, and the number
of heads on Visual Question Answering (VQA)-v2 Validation set.

Module Setting Accuracy

Question encoding
Bi-LSTM 65.71

LSTM 65.6

Number of heads

h = 2 65.38

h = 4 65.51

h = 8 65.67

h = 16 65.67

Attention model

ID(E)-GAtt(P, E) 64.8

SAtt(E)-GAtt (P, E) 65.2

SAtt(E)-SGAtt (P, E) 65.4

SAtt(E)-SGAtt (P, E+E) 65.6

5.3.2. Number of Heads

To explore the effect of the number of heads in multi-head attention on the accuracy, we set the
number of heads h ∈ {2, 4, 8, 16} . In our best model, the default number of heads is set to 8. As shown
in Table 1, the accuracy of the model also continues to improve as the number of head increases.
When h is 16, accuracy is no longer improved. Considering the training time, we set h = 8 in our
bes model.
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5.3.3. Question Representation

As shown in Table 1, the effectiveness of Bi-LSTM is explored under one DCA layer, which shows
that the performance of Bi-LSTM is slightly better than that of LSTM. The reason is that it can capture
rich semantic information during the question encoding phase, which is beneficial to feature extraction
in the dense co-attention learning module. Therefore, Bi-LSTM is adopted to encode questions in
this paper.

5.3.4. Depth of DCA

To explore the effect of the depth of DCA on the accuracy, we set the number of DCA layer
L ∈ {2, 4, 6, 8}. As can be seen from the results in Table 2, as the number of stacked DCA layers
increases, the accuracy of the model also continues to improve. The attention of the model gradually
focuses on the most critical regions. It will eventually approach saturation, so it can be seen that the
improvement is no longer evident from the eighth layer. Considering the overall efficiency of the
model, we set the depth of DCA to 6.

Table 2. Ablation studies of the number of Dense Co-Attention (DCA) layer L on VQA-V2 validation
set, where L ∈ {2, 4, 6, 8}.

L Y/N Number Other All

2 84.36 47.98 57.92 66.55

4 84.74 49.01 58.37 67.05

6 84.96 49.20 58.30 67.13

8 84.93 49.45 58.28 67.14

5.4. Comparisons with Existing Methods

In this section, DCAN is compared with state-of-the-art methods under the same experimental
settings. We use the train set, vg set, and validation set to train all models, where vg represents the
augmented training samples from Visual Genome. Table 3 has two parts, which shows the results
of the comparison with the latest methods. The first part is the results of its comparison with other
attention models. The second part shows the results of its comparison with the state-of-the-art method
MCAN and MCAN is regarded as the baseline of this paper.

First of all, the first part of Table 3 is the results of its comparison with other attention models.
Among them, Bottom-up is the winner of the VQA challenge 2017 and is the first to employ detected
object features instead of grid features. MFH presents a generalized multimodal factorized high-order
pooling by cascading multiple MFB modules. BAN uses bilinear interactions to make the most use
of visual and text information. BAN + counter means introducing the counting mechanism based
on the BAN network architecture. The core of DCN is to improve the fusion ability of vision and
language by the dense symmetric interaction between question and image. Reference [41] proposes a
new framework for dynamic fusion with intra- and inter-modality. MCAN consists of a cascade of
modular co-attention layers.

It can be seen from Table 3 that the approach proposed in this paper outperforms BAN, MFH,
and DCN by a large margin of 1.37%, 2.13%, and 4.02%, respectively. The prime reason is that they
neglect the dense self-attention in each modality, which in turn shows the importance of self-attention
modeling. In terms of the overall accuracy, our network is 0.67% higher than DFAF. The reason is that
DFAF learns redundant question features during the intra-modality interaction. Since the information
inside image features are dynamically conditioned on the question features, irrelevant image features
are acquired.
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Table 3. Comparison with the state-of-the-art methods on the VQA-v2 dataset.

Model
Test-Dev Test-Std

All Y/N Num Other All

Bottom-up [31] 65.32 81.82 44.21 56.05 65.67
MFH [36] 68.76 84.27 49.56 59.89 -
BAN [19] 69.52 85.31 50.93 60.26 -

BAN+counter [19] 70.04 85.42 54.04 60.52 70.35
DCN [20] 66.87 83.51 46.61 57.26 -
DFAF [41] 70.22 86.09 53.32 60.49 70.34

MCAN [25] 70.63 86.82 53.26 60.72 70.9
DCAN (ours) 70.89 88.02 53.40 60.88 71.21

Secondly, to further verify the effectiveness of DCAN, the second part of Table 3 shows the results
based on its comparison with MCAN, the champion of the VQA challenge in 2019. It is observed
that the proposed approach outperforms MCAN by a large margin of 0.26 and 0.31 points on both
test-dev and test-standard sets. It is worth noting that the improvements can be seen in all of the entries
(Yes/No with 1.2%, Number with 0.14%, Other with 0.16%). The reason is that in MCAN, a single-layer
self-attention unit is used to learn the relationship between words in the question. While in DCAN,
more fine-grained question features can be obtained by adding up the features obtained by performing
question self-attention twice. The image is guided by the question, thus resulting in more accurate
image features. Besides, Figure 5 shows the validation course of 13 epochs, from which it can be seen
that the accuracy of DCAN on the validation set is far better than that of MCAN and MFB in every
epoch. Moreover, since the seventh epoch, the loss value decreases faster than MCAN, which indicates
that DCAN has a stronger learning ability.
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Figure 5. (a) The training loss and validation accuracy vs. epoch of MCAN and DCAN. BCE loss is
used for all methods; (b–d) the overall and per-type accuracies of DCAN, MCAN, and MFB.
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5.5. Qualitative Analysis

In this section, some results of the DCAN are visualized in Figure 6. Four examples are given,
which are randomly selected from the validation set. The first row shows two examples of successful
predictions, while the second row shows two incorrect predictions. The brightness of the text and
the probability value of the object proposal box represent their importance in the attention weights.
The probability value of the attention is shown on the top left corner of each bounding box. The larger
the probability value, the higher the corresponding attention weight. In the first row, it can be seen that
DCAN accurately locates the most relevant object proposal box, and then outputs the corresponding
score. The red object bounding box corresponds to the highest probability. It can be seen from the left
side of the second row that six people are catching something. The more relevant the word in question
is to the image, the brighter the word is, so the words “all”, “people”, and “shorts” are highlighted.
For image attention, the red bounding box has the highest attention probability of 0.33, but it does not
include everyone. The prediction is “no”, which is not consistent with the correct answer.

0.16 0.35

0.09

Q: What color is his hat?

A:red          

 What color is his hat?

 P:red    

0.18

0.45

0.25

Q:How many elephants are？
A:three           

How many elephants are ?

P:three    

0.29

0.33

0.18

Q:Are all the people in the photo wearing 

shorts?

A:yes                     

Are all the people in the photo 

wearing shorts?

 P:no ×

0.12
0.23

0.17

Q:What color is the girl in the center s 

shorts?

A:black       

What color is the girl in the center s 

shorts?

 P:blue     ×

Figure 6. Typical examples of the learned image and question attention. The (top row) shows two
examples of the correct prediction while the (bottom row) shows two incorrect predictions. For each
example, the image, question (Q), answer (A) and prediction (P) are displayed in turn, followed by the
learned image and question attentions. The brightness of the text and the score of the object proposal
box represent the corresponding attention weight.

6. Conclusions

This paper focuses on fine-grained interactions between multimodalities in VQA tasks.
An effective Dense Co-attention Networks (DCAN) for the VQA task is developed, the core of which
is a dense co-attention model. It consists of six layers of self-attention units and guided-attention
units, namely, six layers of SAtt (E)-SGAtt (P, E+E), which achieves the fine-grained and simultaneous
understanding of both images and questions. Moreover, to better capture the relationship between
words that are relatively far apart and make the extracted semantics more robust, Bi-LSTM is adopted
in the question encoding phase to encode the bidirectional semantic features of the question. Compared
with the existing method MCAN, DCAN can make use of the complex correlation between multimodal
features in a more effective way and extract more discriminative features for images and questions.
This exploration of modeling dense intra- and inter-modality interactions has been applied to intelligent
transportation [42], intelligent robot [43], and other fields [44–46]. Applying it to a wider range of
scenarios will be an inevitable trend in the future.



Sensors 2020, 20, 4897 13 of 15

Author Contributions: Conceptualization, methodology, investigation and resources, S.H. and D.H.;
writing—original draft preparation and software, S.H.; formal analysis, writing—review and editing, D.H.;
validation, data curation and visualization, S.H.; supervision, project administration, D.H. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China under Grant
61672338 and Grant 61873160.

Acknowledgments: We could like to thank all the reviewers for their constructive comments and helpful suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

VQA Visual Question Answering
Bi-LSTM Bidirectional Long Short-Term Memory
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