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Abstract: In order to improve the performance in the practical engineering applications including
so called low-speed video tracking and large-angle swing scanning imaging at the same time for a
three-axis universal inertially stabilized platform (UISP), we propose an adaptive nonsingular fast
terminal sliding mode control (ANFTSMC) strategy subjected to the uncertain disturbances and
input saturation constraints. First of all, a second-order dynamic model is established with uncertain
disturbances and input saturation constraints. Secondly, a nonsingular fast terminal sliding mode
controller (NTSMC) is constructed to ensure the system error converges to zero fast in a finite time;
meanwhile, a novel reaching law based on a modified normal distribution function is designed to
adjust the control gain. Thirdly, an adaptive control law is designed to online estimate the parameters
of the lumped uncertain disturbances. Additionally, the stability of the control system is proved
by Lyapunov theory. Finally, extensive comparative simulations and experiments are carried out,
the results comprehensively show the effectiveness and superiority of the proposed control method,
which can accelerate convergence, weaken the chattering, and has the better control accuracy and
robust performance both in the low-speed tracking and large-angle swing scanning applications.
Moreover, the exact dynamic model and the prior knowledge of the upper bounds of the disturbances
are not required during the procedure of the controller design, which make it have more extensive
application value in practical engineering.

Keywords: inertially stabilized platform; adaptive control; nonsingular fast terminal sliding mode
control; Lyapunov stability theory; uncertain disturbance; input saturation; novel reaching law;
low-speed tracking; large-angle swing scanning

1. Introduction

Initially stabilized platform is widely used in the field of modern aerial remote sensing [1–3].
Its main function is to isolate payloads from external disturbance and ensure the relative stability of the
line of sight (LOS) in inertial space, so as to implement diverse missions such as battle reconnaissance,
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aerial photography, environmental disaster monitoring, etc. So far, most typical optical stabilized
platforms have integrated multiple payloads to satisfy various surveillance and reconnaissance
purposes [2,3]. However, the total number of payloads is limited by the structural space; on the other
hand, the stacking of multiple payloads is redundant for different customers. In order to broaden
the range of applications, a three-axis universal inertially stabilized platform studied in this work is
designed as an azimuth axis cantilever structure, thanks to the rotation ranges of azimuth, roll and pitch
angles are ±180◦, ±80◦, and ±45◦, respectively, and different payloads can be conveniently installed
and replaced by the standard interfaces, the UISP integrates the common characteristics of payloads
including low-speed video tracking and large-angle swing scanning imaging, which makes it have
advantages of lower cost, higher task efficiency, and wider customer groups.

Due to the influence of external nonlinear factors such as the attitude change of the aviation
platform and the dynamic motion of target, the image quality is easily degraded. At the same time,
different payloads have different masses and centroids which are difficult to accurately measured,
so it is a great challenge to obtain an exact dynamic model and design an effective control algorithm
that takes into account both the two applications under the different payloads. The traditional linear
proportional-integral-derivative (PID) controller [4–6] has been widely used in the motor drives
due to its simplicity in implementation. However, with the increasing requirements of information
task, higher positioning and tracking performances are needed to adapt to some special applications.
At this time, PID controller often hit a bottleneck. Therefore, many advanced control methods
such as adaptive control (AC) [7–10], sliding mode control (SMC) [11–15], neural network control
(NNC) [10,16,17], fuzzy control (FC) [6,18,19], active disturbance rejection control (ADRC) [20,21],
Disturbance Observer-Based Control [22,23], and Extended State Observer (ESO) [7,24,25] have been
studied to deal with nonlinear and uncertain problems. Among them, SMC has been widely praised
in nonlinear control systems because of its good dynamic performance, insensitive to nonlinear
disturbances and robustness to parameter perturbation. After depth analysis, we know that the
traditional linear sliding mode control can only achieve asymptotic control error, and it needs high
gain to achieve fast convergence, which inevitably leads to the high frequency dynamic behavior
and life loss of the actuator, over time, it may lead to the instability. In order to overcome this
weakness, nonlinear functions can be constructed appropriately in the sliding surface and controller,
for example, the terminal sliding mode control (TSMC) of nonlinear sliding surface is developed in [11].
However, due to the existence of negative fractional power term, this kind of method has singular
problems and leads to infinite control input. Subsequently, nonsingular terminal sliding mode control
(NTSMC) is proposed in [12], which can solve the singular problem well by constructing a control
law with constrained fractional power; however, the prior knowledge of the upper bound of the
system uncertainty is required. In the practical applications, it is necessary to conservatively estimate
a sufficiently large constant for the uncertain upper bound, which will increase the control quantity
and cause unnecessary chattering accordingly. Up to now, there are generally two methods to solve
the chattering, one is to employ a continuous function such as smooth hyperbolic tangent function to
replace symbolic function [26], the other one is to adjust switching gain by designing a new reaching
law [3,27,28]; it is worth mentioning that the latter can also shorten the convergence time when the
system state is far away from the equilibrium state.

As we all know that the adaptive control (AC) can estimate the uncertainty online by constructing
an appropriate adaptive law without prior knowledge of the upper bound of uncertainty [7–10,15],
which can improve the robustness of the control system. Because of this, the hybrid control
of AC and SMC does not need high gain to obtain fast convergence performance, which can
effectively solve the chattering problem and has great potential to deal with nonlinear disturbance
and uncertainty. Based on this point, the adaptive nonsingular fast terminal sliding mode control
(ANFTSMC) integrates all advantages of the AC and NTSMC methods, and becomes a new research
hotspot [8,9,15,16,18,21,23,26,29–38]. Although these algorithms have achieved good results, there are
still some problems to further studied: (i) Most methods [9,15,16,18,21,26,29,31,34] have been
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demonstrated only in the simulations but not applied in the practical systems under input saturation
constraint; (ii) Some methods [8,23,30] depend on the dynamic model, resulting in poor applicability
under disturbances; (iii) The researchers rarely have clarified the convergence time after introducing
adaptive control; (iv) These works are difficult to achieve high performance both in the low-speed
tracking and large-angle swing scanning applications. It is worth noting that a good solution to the
second problem in [7], the authors designed an adaptive sliding mode control based on the ESO for an
electro-mechanical servo system with unknown friction and input saturation constraint.

Motivated by above methods, this paper takes a three-axis UISP which can be conveniently
installed and replaced different payloads as the research object. Aiming at the practical control problems
in the low-speed video tracking and large angle swing scanning imaging applications, a composite
control method based on NFTSMC and AC is proposed to achieve the UISP position tracking of
the reference signal. The control method overcomes the chattering and singularity problems of the
traditional sliding mode, ensures the fast convergence and robustness, and improves the control
accuracy of the servo system. At the same time, considering the input saturation constraint of the
actual system, the effectiveness and robustness of the proposed control method are verified by a large
number of simulations and experiments.

The main contributions of this paper are given as follows:

(i) The proposed method does not rely on an exact dynamic model, where the friction, imbalance
and unmodelled dynamics are regarded as parts of the lumped uncertain disturbance. Then the
lumped disturbance is designed as a function of angular position and speed. The adaptive control
law is designed to online estimate the parameters of the lumped uncertain disturbance. What is
more potential from the practical application point of view is that the prior knowledge in the
upper bounds of the uncertainties is not required during the procedure of the controller design.

(ii) Based on the nonsingular fast terminal sliding mode control theory, a novel reaching law is
designed in this paper, to overcome the chattering and singularity problems in the traditional
sliding mode control; meanwhile, it not only can accelerate convergence in a finite time when
the system state is far away from the equilibrium, especially in the large-angle swing scanning
application, but also further weaken the chattering during the system state maintain on the
sliding surface.

(iii) A smooth hyperbolic tangent function is designed to approximately replace the non-smooth
input saturation, the approximate error is regarded as part of the total disturbance, makes it more
convenient in practical implementation.

(iv) The proposed method can improve the performance of the low-speed video tracking and
large-angle stepping swing scanning applications at the same time, it has more extensive
application value in practical engineering.

The remainder of this paper is organized in the follow manner. First, in Section 2, the three-axis
UISP studied in this paper is described. Second, in Section 3, the problem statement and preliminaries
about dynamic are introduced. Third, Section 4 is devoted to design the composite controller based
nonsingular fast terminal sliding mode control and adaptive control theory, in addition, stability
analysis based on Lyapunov theory is also given in this section. Then, in Section 5, extensive simulations
and practical experiments are given to analyze the effectiveness of the proposed composite controller.
Finally, conclusions are given in Section 6.

2. System Description

As shown in the Figure 1, the three-axis universal inertially stabilized platform studied in this
paper consists of three gimbals, the A-gimbal, R-gimbal, and P-gimbal. Among them, the P-gimbal is
assembled on the R-gimbal, and can rotate around the OY axis. Similarly, the R-gimbal is assembled
on the A-gimbal, and can rotate around the OX axis. The A-gimbal is assembled on the base, and can
rotate around the OZ axis. A three-axis gyroscope and position and orientation system (POS) are



Sensors 2020, 20, 5785 4 of 23

mounted on the inner P-gimbal of the UISP. And the standard interfaces are assembled on the
pitch shafting in order to realize the installation and replacement of different payloads. In order
to achieve the composite applications of the UISP with various payloads, including video tracking,
swing scanning and attitude compensation, the gyro and encoder are indispensable. Ga, Gr, and Gp

stand for the gyroscopes, which are used to measure the inertial angular rate of the A-gimbal, R-gimbal,
and P-gimbal, respectively. Ea, Er, and Ep stand for the encoders are used measure the relative
angular between the gimbals, respectively. Ma, Mr, and Mp stand for gimbal servo motors that drive
the A-gimbal, R-gimbal, and P-gimbal, respectively. When the aviation platform rotates or jitters,
the control system of the UISP compensates the attitude information measured by the POS to keep the
LOS of imaging sensors relative stable in inertial space.
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3. Problem Statement and Preliminaries

In the three-axis UISP, each gimbal is driven by its own DC torque motor, the motor rotator is
directly mounted on the load shaft, which indicates that the rotator and the load shaft are fixed as a
rigid body and improves the coupling stiffness of the system. Meanwhile, the encoder, gyro and motor
are designed to be coaxial and calibrated during installation. So, the cross coupling effect of the three
axis is small, and the motion of each axis can be decoupled and considered separately.

To facilitate the control design, ignoring the cross coupling between shafting, for each axis of
the UISP, the second-order dynamic model with mass imbalance, gimbal friction, aircraft attitude
turbulence, model uncertainty, and input saturation can be described as below.

J
..
θ =KtΦ(u) −Ke

.
θ− T f − Tg − Td (1)

where θ,
.
θ, and

..
θ are the motor angular position, velocity, and acceleration, respectively. All of them

are bounded, θ and
.
θ can be measured in real-time; J and Ke are the equivalent moment of inertia and

damping coefficients on the motor shaft side; Kt stands for the constant coefficient of motor torque;
T f denotes the friction torque; Tg is the imbalance torque; Tg represents the external disturbances;
and u is the control input to the actuator. Φ(u) denotes the output of the saturation. Without loss of
generality, assuming Φ(u) has symmetry and can be given by

Φ(u) =
{
ϕmaxsign(u) i f |u| ≥ usat

u i f |u| < usat
(2)

where ϕmax is the maximum output of the actuator, usat is the input value of critical saturation,
and sign(·) represents the sign function.
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The above non-smooth saturation dynamic cannot be directly used in the control design and
synthesis, in particular for adaptive control. Hence, the saturation function Φ(u) can be approximated
by the following smooth hyperbolic tangent function g(u) as [7]

g(u) = ϕmax × tan h(
u

ϕmax
) (3)

As shown in Figure 2, the non-smooth saturation can be approximated by a smooth hyperbolic
tangent function tanh (·), then Equation (2) can be expressed as

Φ(u) = g(u) + δ(u) (4)

where δ(u) is bounded satisfying
|δ(u)| ≤ D1 (5)

where D1 is a bounded positive constant.

Sensors 2020, 20, x FOR PEER REVIEW 5 of 23 

( ) ( )= ×max
max

ug u φ tanh
φ

 (3) 

As shown in Figure 2, the non-smooth saturation can be approximated by a smooth hyperbolic 
tangent function tanh (·), then Equation (2) can be expressed as 

( ) ( ) ( )= +Φ u g u δ u  (4) 

where ( )δ u  is bounded satisfying 

1| ( ) |≤δ u D  (5) 

where 1D  is a bounded positive constant. 

 
Figure 2. Non-smooth saturation and smooth hyperbolic tangent saturation. 

By using the mean-value theorem as [7], for any 0u  there exists a constant 0 1< <ξ , such that 

0 0( ) ( ) ( )= + −
ξug u g u g u u  (6) 

where ( ) |∂
=∂=

ξ ξ

g u
u u uug  is a bounded function of ξu  given by 0(1 )= + −ξu ξu ξ u . By choosing 0 0=u , 

then 0( ) 0=g u , and ( )g u  can be expressed in a linear form as 

( ) =
ξug u g u  (7) 

It comes naturally that Equation (4) can be mathematically formulated as a linear-like system of 
u  with the time-varying gain 

ξug  and a bounded disturbance ( )ε u  given by 

( ) ( )= +
ξuΦ u g u ε u  (8) 

Hence, the dynamic model Equation (1) can be rewritten as 

1= − − − − +T e f g gJθ K u K θ T T T ε   (9) 

where, 
ξT t uK = K g  and 1 ( )= Tε K ε u . 

In practice the dynamic parameters can be expressed in term of a known nominal part and 
unknown or uncertain part, as follows 

0

0

0

= + Δ
= + Δ

= + Δ
T T T

e e e

J J J
K K K
K K K

 (10) 

φ

maxφ

usatu− satu

− maxφ

g(u)

Φ(u)

O

Figure 2. Non-smooth saturation and smooth hyperbolic tangent saturation.

By using the mean-value theorem as [7], for any u0 there exists a constant 0 < ξ < 1, such that

g(u) = g(u0) + guξ(u− u0) (6)

where guξ =
∂g(u)
∂u |u=uξ is a bounded function of uξ given by uξ = ξu + (1− ξ)u0. By choosing u0 = 0,

then g(u0) = 0, and g(u) can be expressed in a linear form as

g(u) = guξu (7)

It comes naturally that Equation (4) can be mathematically formulated as a linear-like system of u
with the time-varying gain guξ and a bounded disturbance ε(u) given by

Φ(u) = guξu + ε(u) (8)

Hence, the dynamic model Equation (1) can be rewritten as

J
..
θ = KTu−Ke

.
θ− T f − Tg − Tg + ε1 (9)

where, KT = Ktguξ and ε1 = KTε(u).
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In practice the dynamic parameters can be expressed in term of a known nominal part and
unknown or uncertain part, as follows

J = J0 + ∆J
KT = K0

T + ∆KT

Ke = K0
e + ∆Ke

(10)

where J0, K0
T and K0

e are the nominal parts, ∆J, ∆KT and ∆Ke are the uncertain parts induced by
unmodelled dynamics and perturbation of the different payloads’ parameters. So, the dynamic model
Equation (9) can be rewritten as

..
θ = A0

.
θ+ B0u + δ1 + δ2 + δ3 (11)

where, A0 = −
K0

e
J0 is the state matrix coefficient, B0 =

K0
T

J0 is input gain, δ1 =
∆KTu−∆J

..
θ−∆Ke

.
θ−T f−Tg

J0 is

the model uncertainty disturbance, δ2 = −
Td
J0 is the external disturbance and δ3 = ε1

J0 is the saturation
approximation error.

Following, we choose the lumped unknown disturbance δ stands for the sum of model uncertain
disturbance δ1, external disturbance δ2, and the saturation approximation error δ3.

Hence, the dynamic model Equation (11) can be rewritten as follows

..
θ = A0

.
θ+ B0u + δ (12)

The objective of our research is to design an appropriate sliding mode controller combining the
adaptive theory for the three-axis UISP, so that the output angular position θ can track the reference θd
in the desired finite time without any singularity and serious chattering, and the robustness of the

system is guaranteed from the initial state [θ(0),
.
θ(0)]

T
. In order to make the remaining work more

rigorous, it is necessary to make the following assumptions.

Assumption 1. The reference angular position θd is twice continuously differentiable in terms of time t.

Then we can define the angular position tracking error e1 = θ− θd and its derivative e2 =
.
θ−

.
θd.

The dynamic model Equation (12) can be represented in the error-state space form as follows .
e1 = e2
.
e2 = −

..
θd + A0

.
θ+ B0u + δ

(13)

Assumption 2. The input gain B0 is non-zero constant.

Assumption 3. The lumped uncertainty disturbance δ is unknown and upper bounded by a positive constant
D as follows

|δ| ≤ D (14)

If we suppose the upper bound of the lumped uncertainty disturbance is a function containing
only angular position θ and velocity

.
θ measurements which have been successfully applied to

manipulators [26,29], in this paper, taking e1 and e2 replace θ and
.
θ, respectively, thus D can be

compressed as the approximate result of second-order Taylor expansion of the system state error.

D =d0 + d1||e1||+ d2||e2||
2 (15)

where d0, d1, and d2 are all positive constants, and ||·|| stands for Euclidean Norm.



Sensors 2020, 20, 5785 7 of 23

Assumption 4. The angular velocity tracking error is assumed to be zero at t =0, i.e., e2(0) = 0.

4. Controller Design

In this section, an ANFTSMC method is proposed to accomplish the control of the UISP system
with unknown uncertainty disturbance and input saturation constraints. Firstly, NFTSMC method is
designed by three steps. Secondly, AC method is introduced to online estimate the parameters of the
lumped uncertain disturbances. Then, in order to accelerate convergence and weaken the chattering,
a novel reaching law is designed based on a normal distribution function is designed to adjust the
switching gain. Finally, stability of the system is proved by the Lyapunov theory.

4.1. Nonsingular Fast Terminal Sliding Mode Controller Design

Generally, the theoretical design of sliding mode controller is based on Lyapunov stability theory.
Programmatically, the design process is divided into three parts, i.e., (i) An appropriate sliding surface
design; (ii) The equivalent control law design; (iii) The switching control law design.

Step 1: Similar to [26], the NFTSMC surface s is selected as follows.

s = k0e1 + k1|e1|
αsign(e1) + k2|e2|

βsign(e2) (16)

where, k0, k1, k2, α, and β are all positive constants, satisfying 1 < β < 2 and α > β.
It can be seen from the surface Equation (16), for any given initial condition [e1(0), e2(0)]

T , [0, 0]T,
the state can converge very quickly to the equilibrium state [0, 0]T in finite time. Moreover, among
the parts of k0e1, k1|e1|

αsign(e1) , and k2|e2|
βsign(e2), it is not difficult to get that, when the state is far

from the equilibrium state, the subitem k1|e1|
αsign(e1) dominates and ensures the faster convergence

rate. Meanwhile, when the state is close to the equilibrium state, the subitem k2|e2|
βsign(e2) also can

guarantee the system convergence in a finite time.
Step 2: From Equations (13) and (16), the first derivative of sliding mode surface s is calculated

as follows.
.
s = k0e2 + k1α|e1|

α−1e2 + k2β|e2|
β−1(−

..
θd + A0

.
θ+ B0u + δ) (17)

It is clear that the condition
.
s =0 is necessary for the state trajectory to stay on sliding surface

s = 0. Thus, from Equation (17), do not consider the lumped disturbance, the equivalent control law
can be obtained as

ueq =
1

B0
[

..
θd −A0

.
θ−

1
k2β
|e2|

2−β(k0 + k1α|e1|
α−1)sign(e2)] (18)

Step 3: In fact, the equivalent control law ueq only can make the system state stay on the sliding
surface if the dynamic model is known exactly. However, due to the presence of the unmodelled parts
and uncertain external disturbances in practical applications, the accuracy of the control system is
impossible to guarantee only by the equivalent control.

So, after choosing the equivalent control law, the next step is to design the switching control law
which handles the lumped disturbances, here, an exponential reaching rate is selected as follows.

.
s = −ks− (D + η)sign(s) (19)

where the switching gain k is a positive constant, and η is a small positive constant.
Then, from Equations (15) and (17), the switching control law is derived as

usw =
1

B0
[−ks− (d0 + d1||e1||+ d2||e2||

2 + η)sign(s)] (20)
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Hence, the total control law uNFTSMC of the NFTSMC is the sum of the equivalent control law ueq

and the switching control law usw by the Equations (18) and (20).

uNFTSMC = 1
B0
[

..
θd −A0

.
θ− 1

k2β
|e2|

2−β(k0 + k1α|e1|
α−1)sign(e2)

−(d0 + d1||e1||+ d2||e2||
2
+ η)sign(s) − ks]

(21)

4.2. Adaptive Controller Design

Generally, in the procedure of the designation for NFTSMC, in order to guarantee the robustness of
the control system, a lager switching gain should be selected conservatively. Although a larger gain can
ensure the system convergence, it often inevitably causes chattering. Thus, based on adaptive control
theory, we can choose d̂0, d̂1, and d̂2 to estimate the uncertain parameters d0, d1, and d2, respectively.
Then, from Equation (20) the adaptive switching control law uasw is derived as follows.

uasw =
1

B0
[−ks− (d̂0 + d̂1||e1||+ d̂2||e2||

2 + η)sign(s)] (22)

Meanwhile, from Equation (21), the total control law uANFTSMC of the ANFTSMC is concluded
as follows.

uANFTSMC = 1
B0
[

..
θd −A0

.
θ− 1

k2β
|e2|

2−β(k0 + k1α|e1|
α−1)sign(e2)

−(d̂0 + d̂1||e1||+ d̂2||e2||
2 + η)sign(s) − ks]

(23)

Let define the adaptation error as d̃0 = d̂0 − d0, d̃1 = d̂1 − d1, d̃2 = d̂2 − d2, the update laws of the
estimation parameters d̂0, d̂1, and d̂2 can be designed as follows.

.
d̂0 = µ0|s|·|e2|

β−1 (24)

.
d̂1 = µ0|s|·|e2|

β−1
||e1|| (25)

.
d̂0 = µ0|s|·|e2|

β−1
||e2||

2 (26)

where µ0, µ1, and µ2 are all positive constants.

4.3. A Novel Reaching Law Design

Generally, in the Equation (23), since a larger gain k is required to obtain a faster reaching
performance, when a larger gain is inappropriately selected, it is usually lead to excessive speed when
reaching the sliding surface, which probably causes serious chattering.

For this reason, we redesign the reaching law Equation (19), in which the constant gain k is
replaced by a modified normal distribution function k >0 as follows.

k =

{
λka i f |e1| ≥ σ1 or |e2| ≥ σ2

ka[1− exp(−e2
1/σ)] i f |e1| < σ1 and |e2| < σ2

(27)

where ka, λ, σ, σ1, and σ2 are all positive constants, satisfying λ >1.
Obviously, the switching gain k varying respect to the angular position error e1, comparative with

the Equation (19), the novel reaching law can accelerate convergence if the state is far from the sliding
surface, but also further weaken the chattering when the state maintain on the sliding surface.

Hence, from Equations (23) and (27), the total control law uANFTSMC is rewritten as

uANFTSMC = 1
B0
[

..
θd −A0

.
θ− 1

k2β
|e2|

2−β(k0 + k1α|e1|
α−1)sign(e2)

−(d̂0 + d̂1||e1||+ d̂2||e2||
2 + η)sign(s) − ks]

(28)
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4.4. Stability Analysis

In this section, the Lyapunov stability theory is employed to analysis the stability of the control
system. Such as in the Sections 4.1 and 4.2, the block diagram of the ANFTSMC structure is presented
in Figure 3.
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Figure 3. Block diagram of the proposed adaptive nonsingular fast terminal sliding mode control.

We have the following theorem of the proposed ANFTSMC method:

Theorem 1. Consider the system Equation (1) with unknown upper bound of the lumped uncertain disturbances
and non-smooth saturation input approximated by a smooth function, if the NFTSMC surface is selected as
Equation (16), the adaptive controller is designed as Equation (23) and the adaptation laws are chosen as
Equations (24)–(26), and the constant gain in the switching control law replaced by the Equation (27), then the
system states can converge to the sliding surface in a finite time and maintain the system trajectory on it for the
subsequent time.

In general, the selection of the Lyapunov function and design of the adaptive law complement
each other. As a matter of experience, especially in sliding mode control, Lyapunov function candidate
can be divided as two parts, the basic part can be constructed by sliding surface, the rest part is the
matching terms related to the adaptive law, which is selected by trial and error based on reverse
deduction method.

For the sake of fluency, we use the positive sequence to state this part, i.e., firstly the adaptive law
and the Lyapunov function candidate are selected and then the stability is proved.

Proof. Consider the following Lyapunov function candidate:

V =
1
2

s2 + k2β
2∑

i=0

1
2µi

(d̂i − di)
2

(29)

by differentiating V with respect to time yields

.
V = s

.
s + k2β

2∑
i=0

1
µi
(d̂i − di)

.
d̂i (30)



Sensors 2020, 20, 5785 10 of 23

Considering Equations (17) and (28), then Equation (30) can be rewritten as follows

.
V = k2β|e2|

β−1[δs− ks2
− (d̂0 + d̂1||e1||+ d̂2||e2||

2 + η)|s|] + k2β
2∑

i=0

1
µi
(d̂i − di)

.
d̂i (31)

By substituting the adaptation update laws Equations (24)–(26), the time derivative of V leads to

.
V = k2β|e2|

β−1[δs− ks2
− (d̂0 + d̂1||e1||+ d̂2||e2||

2 + η)|s|]
+k2β|s|·|e2|

β−1[(d̂0 − d0) + (d̂1 − d1)||e1||+ (d̂2 − d2)||e2||
2]

(32)

Simplifying Equation (32) yields

.
V = k2β|e2|

β−1[δs− ks2
− (d0 + d1||e1||+ d2||e2||

2 + η)|s|] (33)

From Equations (14) and (15), then Equation (33) can be concluded as

.
V ≤ k2β|e2|

β−1[|D|·|s| − ks2
− (d0 + d1||e1||+ d2||e2||

2 + η)|s|]
≤ k2β|e2|

β−1(−ks2
− η|s|)

≤ 0
(34)

This completes the proof. �
According to Lyapunov stability theorem, the system states converge to the surface s = 0

asymptotically, i.e., even in the presence of system uncertainties and external disturbance, the system
can converge and maintain on the surface from any initial condition states, thus ensuring the robustness
of the system. Next, the convergence time of ANFTSMC will be discussed compared with [26]
as follows.

Reconsidering Lyapunov function candidate Equation (29), the inequality (34) can be rewritten as

dV
dt ≤ k2β|e2|

β−1(−ks2
− η|s|)

= −2kk2β|e2|
β−1
[
V − k2β

2∑
i=0

1
2µi

(d̂i − di)
2
]
−
√

2ηk2β|e2|
β−1
[
V − k2β

2∑
i=0

1
2µi

(d̂i − di)
2
]1/2 (35)

By defining ρ1 = 2kk2β|e2|
β−1, ρ2 =

√
2ηk2β|e2|

β−1, and ∇ = k2β
2∑

i=0

1
2µi

(d̂i − di)
2
, then inequality

(35) leads to
dt ≤

−dV
ρ1(V−∇)+ρ2(V−∇)

1/2

=
−(V−∇)1/2dV
ρ1(V−∇)

1/2+ρ2
= −2 d(V−∇)1/2

ρ1(V−∇)
1/2+ρ2

(36)

Suppose that the reaching time from the initial state Vt0 , 0 to the equilibrium state Vt f = 0 is t f .
Taking integral of both sides of the inequality (36) yields

t f ≤ −
2
ρ1

ln

ρ1(Vt f −∇t f )
1/2 + ρ2

ρ2

+ 2
ρ1

ln

ρ1(Vt0 −∇t0)
1/2 + ρ2

ρ2

 (37)

Furthermore in Lyapunov function candidate Equation (29), it is not difficult to get the following
implicit relationships

Vt ≥ Vt −∇t =
1
2

s2
t ≥ 0, ∀t ∈ [t0, t f ] (38)

Vt f −∇t f =
1
2

s2
t f
= 0 (39)
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Then, combining the inequalities (38) and (39), the inequality (36) concludes as

t f ≤
2
ρ1

ln
[
ρ1(Vt0−∇t0 )

1/2+ρ2
ρ2

]
= 2

ρ1
ln
[ √

2ρ1st0
2ρ2

+ 1
] (40)

Comparison with [26], the convergence time of the ANFTSMC is the same as the ones by the
NFTSMC, i.e., it is concluded that the introduction of the adaptive controller Equation (28) does not
change the finite convergence time by NFTSMC.

5. Simulation and Experimental Results

In this section, in order to verify the effectiveness of the proposed ANFTSMC strategy, extensive
simulations and practical experiments are carried out. As mentioned in the beginning of Section 3,
the motion of each axis of the UISP can be considered independently. Each axis can be designed
separately according its own motor parameters. It is worth mentioning that the cantilever structure
of the A-gimbal makes it more vulnerable to the disturbance of imbalance and fiction torques, at the
same time, considering the limited space, without loss of generality, only the A-gimbal is selected to
validate the proposed ANFTSMC method. In the practical applications, the precision of the low-speed
tracking is higher than that of the large-angle swing canning, in order to enhance the comparability of
our research, all the control algorithms are designed based on low-speed tracking under the premise
of giving priority to ensure its good control performance, and then the same control parameters are
applied to the large-angle swing scanning. In addition, due to the attitude compensation cannot be
realized in the simulation, in order to ensure the fairness of the comparison between simulation and
experiment, the attitude compensation was not added to the experiment presented in this paper.

5.1. Simulation Results and Discussions

The simulation is carried out by MATALB/Simulink based on the block diagram of the proposed
ANFTSMC shown in the Figure 3 and the parameters of the A-gimbal DC motor listed in Table 1.

Table 1. Parameters of the A-gimbal DC torque motor.

Description Value

Rated voltage 28 V
Peak torque ≥8.2 N·m
Peak current 5 A

Continuous plugging torque ≥4.0 N·m
Continuous plugging current 2.4 A

Speed (Max. no-load) 150 r/min
Torque ripple coefficient 3.27%

Armature resistance 5.45 Ω
Armature inductance 3.57 mH

Moment of inertia 0.227–0.281 kg·m2

In the simulation, the initial conditions and parameters of the system are set as [θ(0),
.
θ(0)]

T
= [0, 0]T,

J0 = 0.255 kg·m2, A0 = −0.5, B0 = 25, the maximum output of the actuator is ϕmax = 28, and the
uncertain disturbances including both low and high frequency signals are selected as δ = sin(0.01πt) +
cos(2t) + sin(50πt); in addition, external disturbances contains step signal and random signal are selected
as δadd = 1+ rand(1) are added to the system at time t ≥ 0.6 s, the sampling time is t = 1 ms. Meanwhile,
due to the variation range of the moment of inertia J0 is 0.227 ∼ 0.281 kg·m2, so in order to validate
robustness of the proposed method, the condition of deviation ±15% about J0 base on J0 = 0.255 kg·m2 is
also considered. The following four different control methods are tested and compared in the simulations.
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Method 1. The traditional PID controller. Since the system has not established an exact dynamic model,
the controller gains are selected as Kp = 1000, Ki = 5, Kd = 5 by trial and errors according to the order of Kp,
Ki and Kd.

Method 2. The NFTSMC with a variable gain. The controller is expressed as Equation (21), and taking variable
gain k Equation (27) replace constant gain k in the Equation (21), set α = 2, β = 1.99, k0 = 1, k1 = 100,
k2 = 0.5, d0 = 10, d1 = 5, d2 = 2, η = 1, ka = 20, λ =100, σ =0.1, σ1 = 0.01, σ2 = 0.01.

Method 3. The ANFTSMC with a small constant gain. The controller is expressed as Equation (23), set α = 2,
β = 1.99, k0 = 1, k1 = 100, k2 = 0.5, µ0 = 0.1, µ1 = 0.1, µ2 = 0.1, η = 1, k = 200.

Method 4. The proposed ANFTSMC method. The controller is expressed as Equation (28), set α = 2, β = 1.99,
k0 = 1, k1 = 100, k2 = 0.5, µ0 = 0.1, µ1 = 0.1, µ2 = 0.1, η = 1, ka = 20 ,λ =100 , σ = 0.1, σ1 = 0.01,
σ2 = 0.01.

The maximum absolute error (MAE) and the steady-state root mean square (RMS) are used to
evaluate the performances of different control methods.

The definition of MAE is as follows:

MAE = max|ei| (41)

The definition of RMS is as follows:

RMS = [
1

n− 1

n∑
i=1

(xi − x)2]

1/2

(42)

where xi is the sample data, x is the mean value of the sample data xi.

5.1.1. Case 1—Sinusoidal Signal Tracking

Sinusoidal Signal Tracking can reflect the low-speed video tracking performance, the reference
signal is selected as θd = sin(4πt). The comparative simulation results are shown in Figures 4–11.
The performance indexes of simulation results as shown in Table 2.
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Figure 4. Simulation of A-gimbal system—Angular position tracking responses to sinusoidal signal.

As shown in Figures 4–7 and Table 2, it can be seen that all the four methods can track the desired
position and speed signals with the lumped uncertain disturbances. From the MAE and RMS, we know
that the position and speed tracking errors of the proposed ANFTSMC method are much smaller
compared with those of PID and NFTSMC. Moreover, by using variable gain, the convergence time of
the proposed ANFTSMC method can be reduced to 0.07 s from 0.50 s, and the external disturbances
appear suddenly, the propose method can convergence again faster than the ANFTSMC with the
constant gain. Specifically, as shown in Figures 6–8, the chattering of the proposed ANFTSMC method
is much smaller compared with that of the NTFSMC. As shown in Figure 9, the estimation parameters
in the proposed method are smaller than those by ANFTSMC with the constant gain, due to the



Sensors 2020, 20, 5785 13 of 23

adaptive laws are related to the state errors, it reveals that the convergence speed is faster by the
proposed method. As shown in Figures 10 and 11, the robustness of the proposed method has been
validated under the condition of deviation about J0. In addition, it is worth noting that only PID
controller has phase lag, if we want to reduce the phase lag, we need to increase the gain kd. However,
an inappropriate larger kd will easily excite the sensor noise, which is not allowed in the actual system.Sensors 2020, 20, x FOR PEER REVIEW 13 of 23 
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Figure 7. Simulation of A-gimbal system—Angular velocity tracking error responses to sinusoidal signal.
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Figure 8. Simulation of A-gimbal system—Control Input responses to sinusoidal signal.
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Figure 9. Simulation of A-gimbal system—Estimation of the parameters of disturbances by two
different ANFTSMC.
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Figure 10. Simulation of A-gimbal system—Angular position tracking responses to sinusoidal signal
by proposed method under the condition of deviation about J0.
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Figure 11. Simulation of A-gimbal system—Angular velocity tracking responses to sinusoidal signal
by proposed method under the condition of deviation about J0.

Table 2. The simulation results of sinusoidal signal tracking for the A-gimbal system.

Method ∆ J0 Position Error (deg.) Speed Error (deg./s) Convergence Phase
MAE RMS MAE RMS Time (s) Lag (rad)

PID 0 1.42 × 10−2 5.2 × 10−3 0.8275 0.3332 0.14 0.0754
NFTSMC and Variable gain 0 9.97 × 10−4 3.79 × 10−4 0.9256 0.3670 0.05 No

ANFTSMC and k = 200 0 3.97 × 10−2 2.20 × 10−2 0.6703 0.1266 0.50 No

Proposed
0 1.06 × 10−3 5.41 × 10−4 0.2889 0.0607 0.07 No
−15% 1.19 × 10−3 5.58 × 10−4 0.3171 0.0622 0.07 No
+15% 1.11 × 10−3 5.42 × 10−4 0.3045 0.0618 0.07 No

Combining with above analysis, the proposed method can achieve much better low-speed tracking
performance and transient response.

5.1.2. Case 2—Step Signal Tracking

Step Signal Tracking can reflect the large-angle stepping swing scanning, in this case, the system
state error is expected to converge to zero in a desired time from far away. The reference signal is
selected as Equation (43), and the comparative simulation results of the four methods are shown in
Figures 12–14. The performance indexes of simulation results as shown in Table 3.

θd =


2◦ i f 0 ≤ t ≤ 0.5
5◦ i f 1 ≤ t ≤ 1.5

10◦ i f 2 ≤ t ≤ 2.5
0 else

(43)
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Figure 12. Simulation of A-gimbal system—Angular position tracking responses to step signal.
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Figure 13. Simulation of A-gimbal system—Angular position tracking error responses to step signal.

Sensors 2020, 20, x FOR PEER REVIEW 16 of 23 

 
Figure 13. Simulation of A-gimbal system—Angular position tracking error responses to step signal. 

 
Figure 14. Simulation of A-gimbal system—Control Input responses to step signal. 

As shown in the Figures 12–14 and the Table 3, except for the PID controller, in spite of different 
amplitudes of desired step signals, the other three methods based NFTSMC have no overshoot, 
furthermore, the proposed ANFTSMC method has the smallest RMS value and chattering. When the 
external disturbances appear suddenly, the proposed method with the variable gain can convergence 
again faster than that in ANFTSMC with a constant gain method. 

Table 3. The simulation results of step signal tracking for the A-gimbal system. 

Method 
Desired Angle 

(deg.) 
Rising 

Time(s) 
Setting 
Time(s) 

Overshoot 
(%) 

Steady-
State  

RMS (deg.) 
PID 2 0.011 0.110 63.2 3.368 × 10−3 

NFTSMC and Variable 
gain 

2 0.110 0.132 0 2.779 × 10−3 

ANFTSMC and k = 200 2 0.112 0.138 0 6.415 × 10−3 
Proposed Method 2 0.110 0.132 0 1.926 × 10−3 

PID 5 0.012 0.113 54.2 3.718 × 10−3 
NFTSMC and Variable 

gain 
5 0.131 0.139 0.06 3.361 × 10−4 

ANFTSMC and k = 200 5 0.133 0.142 0 7.817 × 10−4 
Proposed Method 5 0.131 0.138 0 2.154 × 10−4 

PID 10 0.017 0.124 54.4 3.599 × 10−3 

0 0.5 1 1.5 2 2.5 3

-10

-5

0

5

10

15

20

t(s)

P
os

iti
on

 E
rro

r( °
)

 

 
PID
NFTSMC & variable gain
ANFTSMC & k=200
ANFTSMC & variable gain

0 0.5 1 1.5 2 2.5 3
-30

-20

-10

0

10

20

30

t(s)

C
on

tro
l i

np
ut

(V
)

 

 
PID
NFTSMC & variable gain
ANFTSMC & k=200
ANFTSMC & variable gain

0.3 0.4 0.5
-0.5

0

0.5

 

 

1.3 1.4 1.5
-0.5

0

0.5

 

 

2.3 2.4 2.5
-0.5

0

0.5

 

 

1 1.05 1.1
-20

0

20

 

 

2 2.05 2.1
-20

0

20

 

 

Figure 14. Simulation of A-gimbal system—Control Input responses to step signal.

Table 3. The simulation results of step signal tracking for the A-gimbal system.

Method Desired
Angle (deg.)

Rising
Time(s)

Setting
Time(s)

Overshoot
(%)

Steady-State
RMS (deg.)

PID 2 0.011 0.110 63.2 3.368 × 10−3

NFTSMC and Variable gain 2 0.110 0.132 0 2.779 × 10−3

ANFTSMC and k = 200 2 0.112 0.138 0 6.415 × 10−3

Proposed Method 2 0.110 0.132 0 1.926 × 10−3

PID 5 0.012 0.113 54.2 3.718 × 10−3

NFTSMC and Variable gain 5 0.131 0.139 0.06 3.361 × 10−4

ANFTSMC and k = 200 5 0.133 0.142 0 7.817 × 10−4

Proposed Method 5 0.131 0.138 0 2.154 × 10−4

PID 10 0.017 0.124 54.4 3.599 × 10−3

NFTSMC and Variable gain 10 0.133 0.141 0.73 4.584 × 10−4

ANFTSMC and k = 200 10 0.151 0.177 0 8.127 × 10−2

Proposed Method 10 0.134 0.141 0 2.533 × 10−4

As shown in the Figures 12–14 and the Table 3, except for the PID controller, in spite of different
amplitudes of desired step signals, the other three methods based NFTSMC have no overshoot,
furthermore, the proposed ANFTSMC method has the smallest RMS value and chattering. When the
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external disturbances appear suddenly, the proposed method with the variable gain can convergence
again faster than that in ANFTSMC with a constant gain method.

In order to verify the robustness of the proposed method, under the condition about J0, an additional
step simulation is tested with the amplitude of 10◦. As shown in Figure 15, if the external disturbances
appear suddenly, the proposed method has good anti-disturbance performance and robustness.
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Figure 15. Simulation of A-gimbal system—Angular position tracking responses to step signal with
amplitude of 10◦ under the condition of deviation about J0.

Combining with above analysis, the proposed method can achieve much better large-angle step
tracking performance and transient response.

5.2. Experimental Results and Discussions

As shown in Figure 16, in order to validate the effectiveness of the proposed method for the
three-axis UISP system, the moving vehicle experiments are carried out on the express way in Jilin
Province of China. The UISP is mounted on the inner floor of the vehicle. In our experiments,
it consists of the UISP, 28 V DC power, ground station, personal debugging computer and data storage.
The equivalent circuit diagram of the UISP system is shown in Figure 17, all the control algorithms are
written by C language downloaded to the DSP TMS320F28335.
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Figure 16. The picture of experimental system for the moving vehicle.
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Figure 17. The equivalent circuit diagram of the A-gimbal in the universal inertially stabilized platform.

In the experiments, the parameters of the system are set as J0 = 0.255 kg·m2, A0 = −0.5, B0 = 25,
the maximum output of the actuator is ϕmax = 28, and the sampling time is 1 ms. The encoder
resolution is about 6.866 × 10−4 (deg.), and the gyro resolution is about 2.384 × 10−5 (deg./s).

Similar to the Section 5.1, in order to further validate the control performance of the proposed
ANFTSMC method, comparative experiments are carried out, as compared with PID control and
NFTSMC. Since we have referred to the motor parameters in the simulation, so the parameters in the
experiments are similar as those of the simulation, they only need to be fine-tuned according to the
actual situation.

Method 1. PID Controller. In order to reduce the sensor noise, Kd is reduced accordingly. The parameters are
selected as Kp = 1000, Ki = 5, Kd = 0.5.

Method 2. NFTSMC method with a constant gain. The parameters are select as α = 2, β = 1.99, k0 = 1,
k1 = 100, k2 = 0.5, d0 = 10, d1 = 5, d2 = 2, k = 2000.

Method 3. Proposed ANFTSMC method. The parameters are select as α = 2, β = 1.99, k0 = 1, k1 = 100,
k2 = 0.5, µ0 = 0.1, µ1 = 0.1, µ2 = 0.1, η =1, ka = 20, λ =100, σ = 0.1, σ1 = 0.1, σ2 = 0.5.

5.2.1. Case 1—Sinusoidal Signal Tracking

In this Case, the desired signal is selected as θd = sin(4πt), and the comparative experiment
results are as show in the Figures 18 and 19. The performance indexes of the control responses are
shown in the Table 4.
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Figure 18. Practical experiments of A-gimbal system—Angular position tracking responses to
sinusoidal signal.
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Figure 19. Practical experiments of A-gimbal system—Angular velocity tracking responses to
sinusoidal signal.

Table 4. The practical experiments results of sinusoidal signal tracking for the A-gimbal system.

Method
Position (deg.) Speed (deg./s) Phase Lag (rad.)

MAE RMS MAE RMS

PID 0.1219 0.0857 3.258 1.8316 0.0943
NFTSMC 0.0506 0.0343 1.0867 0.6662 0.0377

Proposed Method 0.0348 0.0204 0.5013 0.2643 0.0251

As the results in the Table 4, by ignoring the inherent delay effect of the system, the proposed
method has the smallest MAE and RMS value of both angular position and speed tracking. A particular
attention is paid to the Figure 15, we can get that the phenomenon of stick-slip caused by friction only
appears in the PID controller. So, the proposed method has better performances in the low-speed
tracking application.

5.2.2. Case 2—Step Signal Tracking

In this case, the desired signal is set as θd = 2◦(t ≥ 0), θd = 5◦(t ≥ 0), and θd = 10◦(t ≥ 0),
respectively, the comparative experiment results are as show in the Figures 20–22. The performance
indexes of the control responses are shown in the Table 5.
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Figure 20. Practical experiments of A-gimbal system—Tracking responses to 2◦ step signal: (a) Angular
position; (b) Control input.
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Figure 21. Practical experiments of A-gimbal system—Tracking responses to 5◦ step signal: (a) Angular
position; (b) Control input.
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Figure 22. Practical experiments of A-gimbal system—Tracking responses to 10◦ step signal: (a) Angular
position; (b) Control input.

Table 5. The practical experiments results of step signal tracking for the A-gimbal system.

Method Desired
Angle (deg.)

Rising
Time (s)

Setting
Time (s)

Overshoot
(%)

Steady-State
RMS (deg.)

PID 2 0.070 0.136 5.250 0.0354
NFTSMC 2 0.057 0.095 2.645 0.0227

ANFTSMC 2 0.062 0.094 1.012 0.0114
PID 5 0.096 0.178 4.628 0.0570

NFTSMC 5 0.085 0.131 1.328 0.0307
ANFTSMC 5 0.083 0.124 0.584 0.0159

PID 10 0.116 0.243 6.714 0.0740
NFTSMC 10 0.112 0.177 1.308 0.0426

ANFTSMC 10 0.105 0.165 0.556 0.0189

As the results in the Table 5, by ignoring the inherent delay effect of the system, if the initial state
is far from the sliding surface, the rising time of NFTSMC and the proposed ANFTSMC methods
is shorter than that of the PID controller, and the overshoot of the proposed ANFTSMC method is
smallest. So, the proposed method is superiority in the large-angle step tracking application.
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5.3. Discussions

Although the comparative simulations and experiments are carried out, some differences are
obvious. What we have to explain is that the lower limit value of the DC motor parameters listed in
the Table 1 was selected in the simulation; however, in the practical experiment, the actual torque
parameters of the motor were better than those set in the simulation. So, in the step signal tracking,
the methods have better transient performances. What is more, in the practical experiment by the
PID method, in order to reduce the adverse effect of the sensor noises, under the sacrifice of the
phase lag, the gain Kd was reduced from 5 to 0.5, and the performances improved more than those in
the simulation.

6. Conclusions

In this paper, aiming at the practical engineering applications, including so called low-speed
video tracking and large-angle swing scanning imaging, we proposed an adaptive nonsingular
fast terminal sliding mode control strategy for a cantilever three-axis inertially stabilized platform
subjected to the uncertain disturbances and input saturation constraints, so as to obtain better control
performances. First of all, a second-order dynamic model with friction and torques, unmodelled
dynamics, external disturbances, and input saturation constraints was established, where the
non-smooth input saturation dynamic was approximated by a smooth hyperbolic tangent function,
which makes it more convenient in engineering implementation. Based on the dynamic model, the
proposed method inherits the advantage of the NFTSMC, which can drive the system state error to
zero in finite time without singularity. In addition, a novel reaching law based on a normal distribution
function was designed to adjust the control gain according to the position and speed errors, which not
only accelerate convergence when the system state is far away from the equilibrium but also weaken
the chattering when the state maintains on the sliding surface. This can obtain a better performance
of low-speed video tracking and large-angle swing scanning applications at the same. It is worth
mentioning that the proposed method can online estimate the parameters of the lumped uncertain
disturbances, where the prior knowledge of the upper bounds is not required during the procedure
of the controller design, which makes it more suitable to be applied in practical engineering. Finally,
extensive comparative simulations and practical experiments have validated the effectiveness and
superiority of the proposed ANFTSMC method, the results show the proposed method has much
better tracking performance and transient response.
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