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Abstract: Speech emotion recognition predicts the emotional state of a speaker based on the
person’s speech. It brings an additional element for creating more natural human–computer
interactions. Earlier studies on emotional recognition have been primarily based on handcrafted
features and manual labels. With the advent of deep learning, there have been some efforts in
applying the deep-network-based approach to the problem of emotion recognition. As deep learning
automatically extracts salient features correlated to speaker emotion, it brings certain advantages
over the handcrafted-feature-based methods. There are, however, some challenges in applying them
to the emotion recognition problem, because data required for properly training deep networks are
often lacking. Therefore, there is a need for a new deep-learning-based approach which can exploit
available information from given speech signals to the maximum extent possible. Our proposed
method, called “Fusion-ConvBERT”, is a parallel fusion model consisting of bidirectional encoder
representations from transformers and convolutional neural networks. Extensive experiments were
conducted on the proposed model using the EMO-DB and Interactive Emotional Dyadic Motion
Capture Database emotion corpus, and it was shown that the proposed method outperformed
state-of-the-art techniques in most of the test configurations.

Keywords: speech emotion recognition; bidirectional encoder representations from transformers
(BERT); convolutional neural networks (CNNs); transformer; representation; spatiotemporal
representation; fusion model

1. Introduction

In general, emotions are often tightly coupled with social interaction, cognitive processes,
and decision making. Human brain processes the multimodalities to extract the spatial and temporal
semantic information, that are contextually meaningful to perceive and understand the emotional
state of an individual. In particular, human speech contains a wealth of emotional content; therefore,
speech emotion recognition (SER) can play an crucial role in communication between humans and
computers, as it would aid machines in more accurately predicting speech itself or the speaker’s
intention [1]. As such, there is an anticipation that SER may become an important component in
social media, and it attracted much interest and research efforts in the area [2–4]. For a speech-only
system, automatic emotion recognition should understand the fundamental dynamics of emotional
cues and be able to identify emotional states from utterances. As recognizing emotions in speech
among humans is difficult when cultural differences exist among speakers, the same difficulty remains
for SER [5]. Coupled with speech variations among speakers and dynamical features with low
saliency, SER is a challenging problem. Previous speech emotion studies have used handcrafted
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features consisting of low-level descriptors (LLDs), local features such as Mel-frequency cepstral
coefficients (MFCCs), energy, or pitch, and have also considered global features by calculating
local feature statistics [6,7]. However, extracting handcrafted features requires expensive manual
labor and the data quality depends on expert knowledge of labelers. The recent introduction
of deep learning models learns relevant features automatically from data without such expert
knowledge [8–10]. Restricted-Boltzmann-machine (RBM)-based deep neural networks (DNNs) [11,12]
or convolutional neural networks (CNNs) [13,14] have shown significant performance improvements
over the handcrafted-feature-based methods in prediction. Trigeorgis et al. [9] proposed a hybrid
architecture of CNNs extracting local features from a spectrogram and recurrent neural networks
(RNNs) taking the output of the CNNs for considering sequentially relevant features from speech.
While these deep-learning-based models are effective in the applied scenarios, there are still some
significant challenges that these methodologies have yet to overcome. Those issues are as follows:

1. Most of the existing models assume fixed-size input length; however, speech signals are often of
variable time durations.

2. Local features extracted by CNNs may not necessarily contain contextually important
information on a global scale, as some emotional contents may reside over a lengthy utterance.
Previous models of serial fusion that employed RNN structures following the local feature
extraction process by CNNs may not be able to capture global scale contextual features [9,15].

3. A new architecture capable of independently capturing both local and global emotional features
in lengthy utterances is needed. To address these challenges, we propose an end-to-end technique
called “Fusion-ConvBERT”, a parallel network and fusion architecture that automatically captures
rich meaning in spatial and temporal features of two models.

Bidirectional encoder representations from transformers (BERT) [16], a recent transformer-based
model [17] for natural language processing (NLP), is a pretrained model by unsupervised language
models for various NLP tasks. Pretrained models using BERT dominate the NLP world as they
have proved highly effective [18,19]. The pretrained models also learn robust phonetic expressions
in speech processing tasks, such as speaker recognition and SER [20–23]. In Fusion-ConvBERT,
log mel-spectrograms are extracted from acoustic signals first to be composed as inputs for BERT and
CNNs. We employ Mockingjay [21], which is a speech recognition model by pretraining BERT with
a large corpus speech data, for fine tuning it for emotion recognition. In the proposed architecture,
BERT captures global features associated with lengthy sequential data, as it can maintain bidirectional
dependencies, and CNNs are responsible for extracting salient SER features by perceiving local fields
of data. In the proposed transformer fusion architecture, BERT and CNNs learn simultaneously.
Our major contributions in this paper can be summarized as follows:

• We propose a novel framework to fuse both spatial and temporal representations for SER by
leveraging transformer-based Fusion-ConvBERT with pretrained BERT and CNNs, an approach
capable of automatically learning feature representations and modeling the temporal dependencies.

• Different from previous serial fusion methods, our method adopts input in multiple features
in parallel and simultaneously fuses various emotion details in the transformer layer. The rich
interaction that occurs in the fusion allows Fusion-ConvBERT to capture intermediate associations
between the local and global patterns and also between different modalities at various
representation depths.

We conduct extensive speaker-independent and speaker-dependent experiments, using labeled
emotional speech data from the Interactive Emotional Dyadic Motion Capture (IEMOCAP) [24] and
the Berlin Database of Emotional Speech (EMO-DB) [25] datasets. To the best of our knowledge,
this is the first study in which the BERT model and CNNs are applied to a fusion model, to learn
enhanced deep spectrum representations for SER. We demonstrate experimentally that our framework
outperforms individual models. For the EMO-DB, our method achieves a weighted accuracy (WA) of
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88.43% and an unweighted accuracy (UA) of 86.04% in the speaker-independent experiments. In the
speaker-dependent experiments, it achieves a WA of 94.23% and UA of 92.1%. For the IEMOCAP,
it achieves a WA of 66.47% and UA of 67.12% in the speaker-independent experiments and a WA of
69.51% and UA of 71.36% in the speaker-dependent ones. The remainder of this paper is organized
as follows. In Section 2, existing works related to this research field are presented. In Section 3,
we describe the proposed Fusion-ConvBERT framework for speech emotion classification. In Section 4,
an experimental analysis comparing the performance of the proposed model on the IEMOCAP and
EMO-DB corpora is detailed. Finally, in Section 5, a summary of the study and scope for future work
is provided.

2. Related Work

SER has attracted considerable attention in digital signal processing research. Recently, researchers
have developed various approaches using digital speech signals to identify the emotional conditions
of an individual speaker. The focus is on emotion classification by salient acoustic features of speech.
Classical machine learning sentiment classifiers include the hidden Markov model (HMM) [26,27],
Gaussian mixed model (GMM) [28], and support vector machine (SVM) [29,30]. In general,
previous studies have considered both local features (LLDs or MFCCs and energy and pitch) and global
features (statistical functionals) [6,31,32]. However, these studies have been based on handcrafted
low-level features found to be effective in distinguishing speech emotions. Alternatively, much work
has been conducted into applying deep learning to automatically learn useful features relevant to
emotion from speech data. Stuhlsatz et al. [12] began with an RBM to preoptimize the network
parameters and proceeded with supervised training of a DNN for recognizing speech emotions
and improved upon the accuracy of other classifiers (e.g., SVMs). By extracting spectrograms from
speech signals and learning hidden time-series information, CNNs can select high-level discriminatory
features and recognize the emotional state of the speaker [33–36]. Traditional SER methods also include
bidirectional long-term short-term memory (BLSTM) approaches [37]. Meng et al. [38] proposed a 3-D
convolutional network for SER, by combining CNNs with BLSTM. In their model, the 3-D spectral
features of segments were used as inputs. Mirsamadi et al. [39] adopted attention mechanisms
and feature pooling; thus, the method automatically classified emotions from speech, focusing on
the areas of speech signals that were more emotionally prominent. Extracting useful features is
essential in good recognition performance, but a fusion method that combines different feature
information may further improve classifier results. To this end, Jiang et al. [40] presented an SER
fusion method using handcrafted and bottleneck features, whereas Guo et al. [41] and Lim et al. [42]
proposed a hybrid CNN-BLSTM model without using any handcrafted features. Although these serial
fusion models obtained good results for many speech processing tasks, numerous problems were left
unaddressed. For instance, the serial fusion model may not be able to capture global scale emotion
contextual features. Furthermore, the deeper the learning model, the easier it falls into overfitting
when the database is small. To alleviate these difficulties, we propose a method based on combining a
pretrained BERT model and CNN functions to identify salient local spatial features in the SER dataset.
The pretrained BERT model prevents overfitting by fine-tuning features of temporal flow over the
entire spectrogram frame. Additionally, the model learns by fusing local features extracted from the
CNNs and BERT output. The proposed method is shown to be superior to an individual model based
on our experiments.

3. Proposed Methodology

In this section, we describe Fusion-ConvBERT, which is formed of two parallel networks (the
BERT model and CNNs) and uses log-mel spectrogram as its input (Figure 1). The BERT model
extracts speech representations (temporal information) from a spectrogram, whilst the CNNs extract
spectrotemporal information. Then, the speech features from these two networks are fused to form a
combined spectrotemporal feature vector.
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Figure 1. Overview of our proposed Fusion-ConvBERT method for speech emotion recognition. In the
pretraining component, a random masking strategy is employed in the spectrogram frame using speech
recognition data. Then, unsupervised learning is performed using an L1 loss between the masked and
predicted frames. During the fine-tuning process of the BERT model, the spectrogram features are
simultaneously input to the pretrained BERT model and CNNs. Meanwhile, Fusion-ConvBERT as a
whole is trained by fusion at the transformer; it uses the final hidden-layer features obtained during
the fine-tuning of both the CNN- and BERT-based learning components.

3.1. Log-Mel Spectrogram Generation

The first step in the process is to extract log-mel spectrograms as the input to our proposed
network. We used the Librosa framework [43] to resample the one-dimensional audio signals
received from a microphone to 16 Khz; then, we split them into short frames via a short-time Fourier
transform (STFT) [44] using a Hamming window function with a frame length of 25 ms and a rate
of 10 ms. Then, the power spectrum for each frame was calculated and transmitted through the
mel-filter bank to generate the output meli,j ∈ mel, where i denotes the power spectrum components
corresponding to the filter bank and j denotes the individual frequency components that span the filter
bank region i. The relationship between the mel-spectrum (after scaling) and frequency f ′ is expressed
via Equation (1):

mel = 2595 log(1 +
f ′

700 Hz
). (1)

The mel-frequency spacing approximates that of the human cochlea, and mel-spectrograms reflect
the relative importance of different frequency bands [45]. Then, as shown in Equation (2), the features
are normalized using the mean µi,j and variance σi,j to obtain xi,j ∈ X such that −1 ≤ mel ≤ 1.

xi,j =
meli,j − µi,j

σi,j
. (2)
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Equation (3) shows how the log-mel features, calculated from the inputs of the CNNs and BERT
model, are reconstructed for each model.

Xα ∈ Rt× f , Xβ ∈ Rt× f×c. (3)

where t denotes the total number of time frames, f denotes the number of mel-filter banks ( f = 160),
and c denotes the number of feature channels. Xα denotes the single channel two-dimensional BERT
model input while Xβ represents the CNN input with its channel extended to three dimensions.
As the number of frames in the frame-level features varies depending on speech, these features are
zero-padded to match the predefined dimension.

3.2. CNN Architecture

In this session, we describe the CNN-based architecture for extracting log-mel features for SER.
The network is primarily composed of four convolution blocks with indices 1–4.

Convolutional blocks are composed of a two-dimensional convolution layer, a layer
normalization [46], and a Swish activation [47] in Figure 2. The advantage of the two-dimensional
convolution layer is that it can extract local features using the connectivity and shared weights
of the spatial information [48,49]. Performing layer normalizations of the convolution layer’s
activations at each batch improves the performance and stability of the network. The recently
proposed Swish activation is defined as follows:

xϕ(θx) = xϕ(1 + exp(−θx))−1. (4)

where ϕ(·) denotes the sigmoid function and θ is either a constant or a trainable parameter.
The convolution and pooling kernels in each convolution block are two-dimensional. The convolution
kernels are of the same size (3× 3), stride (1× 1), and shape. Convolutional layers can be composed
of multiple feature maps. Layers 1–4 contain 64, 128, 256, and 512 convolution kernels, respectively.
The parameters of the CNNs are shown in Table 1. Local connections, weight sharing, and downsampling
in CNNs can effectively reduce the complexity of the network model and the number of training
parameters. The process abstracts input data into high-level feature representations via algorithmic
operations between the layers. When only the CNN network is used, the dense output from the fourth
layer as shown in Equation (5) is mapped to K emotional categories via Softmax.

REPCNN =
{

xt|xt ∈ R512, t = 0, . . . , T
}

. (5)

Table 1. Layer parameters of the CNNs. The output shape is given by the time steps (T), mel bins (F),
and feature maps (C). The output K denotes the number of emotion targets.

Layers Output Shape
(Time Steps : T × Mel Bins : F × Feature Maps : C)

Kernel Size Stride

Input T × F× 1 − −
Convolution (1) T × F× 64 3× 3 1× 1

Pooling (1) T/4× F/4× 64 4× 4 4× 4
Convolution (2) T/4× F/4× 128 3× 3 1× 1

Pooling (2) T/16× F/16× 128 4× 4 4× 4
Convolution (3) T/16× F/16× 256 3× 3 1× 1

Pooling (3) T/64× F/64× 256 4× 4 4× 4
Convolution (4) T/64× F/64× 512 3× 3 1× 1

Pooling (4) 1× 1× 512 2× 2 2× 2
Dense 512 − −

Output K − −
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Figure 2. Proposed CNN architecture.

3.3. Architecture of BERT Model

This section introduces the BERT model, which consists of a transformer architecture for extracting
temporal features via the self-attention process [16]. Unlike recent language processing models,
the BERT model is designed to pretrain deep bidirectional representations from the unlabeled text.
Once pretrained on a large language corpus, the BERT model can effectively deliver transfer learning
for multiple NLP tasks, such as extracting expressive global features of sentences. The BERT model
is commonly trained in a two-step strategy: (1) pretraining and (2) fine-tuning. In our architecture,
we begin with the Mockingjay [21] model, which is essentially a BERT pretrained on acoustic data,
and proceed to fine-tuning for the emotion classification task. The process starts by taking sequences
of mel-feature frames X = (x0, . . . , xT) ∈ Rt× f and passing them through the transformer to produce
the learned encoding of BERT representations H = (h0, . . . , hT) ∈ Rt× f . In 15% of the frames selected
during pretraining, we mask 80% of the time frame, replacing the remainder with 10% of the frames
randomly shuffled and 10% unaltered. Given the observed set, the BERT model is trained to minimize
reconstruction errors between the prediction and ground-truth frames selected using L1 loss (15%).
The BERT structure is presented in Figure 3.

The flow path denoted by dotted lines and the random masking process shown in Figure 3
are used only in the pretraining process while the other elements in the figure were used for both
pretraining and fine-tuning. In the BERT architecture, Hl denotes an input representation combining a
linear layer and position embedding, and it is supplied as the transformer input. Specifically, for the
ith head attention in Equation (6), the input layer is based on the dot-product attention mechanism [17]
as follows:

atti = ε (X) ,

= so f tmax
(

QKT
√

m

)
V,

= so f tmax

(
XWQi W

T
Ki

XT

√
m

)
WVi X.

(6)
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Figure 3. Proposed BERT architecture.

We define the query as Q = XWQ, the key as K = XWKi , and the value as V = XWVi , where,
WQi ∈ R f× f , WKi ∈ R f× f and WVi ∈ R f× f are weights. Note that atti has the same dimensions as Q,
K, and V. The Softmax function in Equation (6) measures the attention given for specific parts of the
mel spectrogram, thus atti is features of V weighted by attention calculated from Q and K. The outputs
of the m attention heads are concatenated together and followed by a linear layer as

Linear(X) = Wm[att1(X), . . . , attm(X)]T + bm. (7)

where Wm ∈ R f× f and bm are learning parameters. The BERT model adds the residual connection
from the input to output and then adds the layer normalization [46] as follows:

Z = LayerNorm(X + Linear(X)). (8)

H = LayerNorm(X + Feed f orwrad(Z)). (9)

The entire model stacks L layers, and the final representation Hl+1 of the frame is used for the
fusion networks.

3.4. Fusion-ConvBERT

While following the basic layout of NLP encoder transformers, we propose a hybrid transformer
model by incorporating a fusion of taking two separate input features in different combinations of Q,
K, and V. BERT representations and CNN features are the two input types considered, and one of these
was taken as input for Q and K while V was provided from the other representation. As illustrated in
Figure 4, an intuitive but general solution that incorporates the two features into the BERT architecture
is to directly concatenate the two representations with the final hidden states of the input sequence
and then stack additional BERT layers on top, to capture the intermodel interactions between the
CNNs and BERT representations. In Equation (5), the output features of the CNNs and Hl+1 pass
through a one-dimensional convolution, to project them into the same feature space. Furthermore,
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Fusion-ConvBERT applies a transformer to automatically model the rich interactions between the
CNNs and BERT model. The ith head attention takes the form of Equation (10) as

att′i = ε′ (REPCNN , Hl+1)

= so f tmax

(
Hl+1W ′Qi

W ′TKi
REPT

CNN√
m

)
W ′Vi

Hl+1.
(10)

where W ′Qi
, W ′Ki

, and W ′Vi
∈ R f× f are the parameters. Similarly to the BERT model, the L layers are

stacked to obtain the final representation by connecting the feedforward layer and residual connections.
Finally, we direct the final hidden state of H′l+1, which captures salient features of different emotions
of interest, to the linear function for classification. All modules (i.e., the CNNs and fine-tuned BERT
model) are trained simultaneously, to ensure that the model can learn the emotional content of each
utterance. As shown in Figure 4, we experimented with two different design configurations of
fusion. The first configuration, shown as Figure 4a, applies the CNN-extracted representation for K
and V computations, thus greater attention weight was given to the features obtained by the CNN.
Figure 4b depicts the other design option that applies the BERT-extracted representation toward K
and V calculations for giving a larger emphasis to the BERT delivered features. The results of both
experiments are discussed in detail in Section 4.2.4.

(a) Fusion with emphasis on CNNs

(b) Fusion with emphasis on BERT

Figure 4. Proposed Fusion-ConvBERT strategy. (a), CNN representation is given more emphasis in the
attention process; (b), BERT representation is given more emphasis in the attention process.
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4. Experiments and Results

In this section, we evaluate the proposed system’s effectiveness for SER and compare it against
other baseline methods on a publicly available benchmark speech emotion dataset.

4.1. Dataset

The Fusion-ConvBERT network was evaluated on two public speech datasets: EMO-DB [25]
and IEMOCAP [24]. These two databases contain predetermined sentences spoken by invited
actors according to the emotions required. A detailed description of the datasets is given in the
following subsections.

4.1.1. EMO-DB Emotion Database

The Berlin EMO-DB was recorded in 2005 and is a German-language SER database. The dataset
contains 353 sentences with an average length of approximately 2.7 s recorded at 16 Khz sampling rate.
We used seven categories of emotions and they are listed in Table 2.

Table 2. Emotion class distribution of EMO-DB dataset.

Emotion Total Utterances Proportion in (%)

Anger 127 23.74
Fear 69 12.90

Boredom 81 15.14
Disgust 46 8.60

Happiness 71 13.27
Neutral 79 14.77
Sadness 62 11.59

Total 535 100

4.1.2. IEMOCAP Emotion Database

The IEMOCAP database is widely used by researchers in the field of SER. It features two types
of dialogue: scripted and improvised. It is an acted English-language SER dataset consisting of five
sessions; each session includes two actors (one male and one female), and the database contains 12 h of
audio-visual data from all 10 actors recording different emotions, including anger, disgust, fear, sadness,
neutral, happiness, and excitement. It is also worth noting that the data distribution of each emotion
class is heavily imbalanced. Therefore, following the approach of [50,51], we merged the happiness
and excitement utterances into the happiness class. We used four categories of emotions—namely
neutral, happiness, sadness, and anger—for training and evaluation. Details are given in Table 3.

Table 3. Emotion class distribution of IEMOCAP dataset.

Emotion Total Utterances Proportion in (%)

Neutral 1708 30.88
Happiness 1636 29.58

Sadness 1084 19.60
Anger 1103 19.94
Total 5531 100

4.2. Experimental Setup and Evaluation Metrics

We conducted several experiments to evaluate the performance of the proposed framework.
These experiments are divided mainly into two categories: speaker-dependent and speaker-independent.
Each of these experiments was conducted in two phases: (1) pretraining the BERT setup, and (2) the
Fusion-ConvBERT setup. As stated earlier, we applied Mockingjay [21], a speech recognition version
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of BERT, by pretraining it with the LibriSpeech [52] corpus train-clean-360 containing 1000 h of data.
While we followed the main structure of Mockingjay, we found the effect of its downsampling and
upsampling parts to be minimum. Thus, for expediency, they were excluded from our architecture.
We used the mel-features as inputs to be converted into a high-level representation. In the pretraining
phase, we used the same hidden dimension size of H = 768, an attention head of A = 12, a layer number
of L(−layer) = 3, and a consecutive masking number of C = 7. A total of 500 K epochs were used in the
pretraining. In the fusion phase, Fusion-ConvBERT implemented an attention dropout [53] of 0.3 inside
the transformer and 20 K training epochs total. The fusion transformer layer was applied with a hidden
dimension size of H = 120, an attention head of A = 6, and a layer number of L′(−layer) = 3. We used a
learning rate of 2e− 3 for all models and applied the Adam [54] optimizer and Swish [47] as activation
function. We also applied SpecAugment [55] to prevent overfitting. The overall model performance
was quantitatively measured using the F1 score, WA, and UA. WA and UA better reflect class-to-class
imbalance class averages. We determined WA as the ratio between the correctly classified emotions and
the total emotions of the same class. Similarly, UA is the ratio between the correctly predicted emotions
and all emotions in the dataset. The metrics are expressed as follows:

F1 =
2 ∗ precision ∗ recall
precission + recall

. (11)

WA = ∑
i

correct utterances
utterances

. (12)

UA = ∑
i

correct utterances f or emotion i
utterances o f emotion i

. (13)

Furthermore, we performed a detailed ablation study to justify our design choices. First, we built
CNN, BERT, and transformer models, to investigate the impacts of spatial and temporal information.
The model comparison is summarized as follows: (1) CNNs: we used the proposed CNNs only
(see Section 3.2); (2) BERT: we fine-tuned the pretraining BERT model by adding a transformer
downstream (see Section 3.3); (3) Transformer: the BERT strategy of masking pretraining was not
used and only the transformer encoder architecture was applied; (4) Fusion-ConvBERT: during
the fine-tuning process of the BERT model, the pretrained BERT model and the features extracted
from CNNs were trained simultaneously in transformer networks. We also compared the fusion
performances obtained when using the BERT model for fine-tuning and as a feature extractor in
Fusion-ConvBERT. Finally, for Fusion-ConvBERT, we compared the transformer fusion configurations
of placing greater emphasis on CNN features versus greater emphasis on BERT features. In other
words, the value compares how weights were assigned to spatial features (CNN features) or the
temporal features (BERT features). All models were implemented using the Pytorch framework and
the suggested models were trained and evaluated on two NVIDIA GeForce GTX 2080TIs.

4.2.1. Speaker-Independent Performance Experiments

We conducted extensive speaker-independent experiments on all the labeled emotional speech
data of the EMO-DB and IEMOCAP datasets. The EMO-DB and IEMOCAP corpora contain 10 speakers,
and we performed 10-fold cross-validation using a leave-one-out strategy. In each training process,
eight speakers from four sessions were used as training data, and the remaining sessions were separated
into two parts; thus, eight, one, and one folds were used for the training, development, and testing sets,
respectively. Therefore, speaker independence is strictly enforced by testing the model performance
by an unseen speaker. As such, the arrangement may also shed some light on how generalizable the
models are. We evaluated the proposed system using these datasets and compared several models to
verify our design decisions. The comparisons are shown in Tables 4 and 5.
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Table 4. Performance of the proposed model for speaker-independent emotion recognition on EMO-DB.

Model F1-Score WA (%) UA (%)

CNNs 0.77 79.42 78.12
BERT 0.82 84.77 83.01

Transformer 0.78 80.25 79.1
Fusion-ConvBERT 0.84 88.43 86.04

Table 5. Performance of the proposed model for speaker-independent emotion recognition on IEMOCAP.

Model F1-Score WA (%) UA (%)

CNNs 0.63 62.12 64.75
BERT 0.64 64.3 65.11

Transformer 0.63 61.41 64
Fusion-ConvBERT 0.66 66.47 67.12

It is apparent from the tables that Fusion-ConvBERT outperformed all the other models.
The highest WA and UA achieved were 88.43% and 86.04%, respectively. For IEMOCAP, a WA and
UA of 66.47% and 67.12% were achieved, respectively. Since IEMOCAP data contains more realistic
expressions of speaker emotions rather than the EMO-DB data collected from speeches by actors
instructed to express content emotions, the model performance is overall lower as can be expected.
Models containing the pretrained BERT (BERT or Fusion-BERT) showed higher performances than the
other models. From the results, it can be surmised that CNN and the pretrained BERT are extracting
information that is mutually exclusive, as the fusion of the two delivers improved performances. It is
also observed that the pretraining of BERT delivers better results compared to simply applying the
transformer. The proposed architecture of employing a transformer as a fusion structure for combining
features taken from CNN and pretrained BERT clearly delivers improved overall performances.
The confusion matrix for the proposed Fusion-ConvBERT shows the actually predicted emotions and
the model confusion results of each class (Figure 5).

Figure 5. Confusion matrix of speaker-independent emotion prediction on EMO-DB with 86.04%
unweighted accuracy overall; the confusion between actual and predicted emotions is shown in the
corresponding row.

The figure shows improved overall emotion recognition performance for the EMO-DB dataset,
however, both “fear” and ”boredom” were identified with accuracies below 80%. While recognition
rates for the other five emotions (i.e., “anger”, “disgust”, “happiness”, “neutral”, and “sadness”)
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exceed 90%; “boredom” was confused with “neutral” due to diversities in how these emotions are
expressed among people.

Figure 6 shows that on the IEMOCAP dataset, “neutral” was identified with the highest accuracy
(68%), “anger” and “happiness” were identified with the lowest accuracy (64%), and both were affected
by ”neutral.”

Figure 6. Confusion matrix of speaker-independent emotion prediction on IEMOCAP with 67.12%
unweighted accuracy overall; the confusion between actual and predicted emotions is shown in the
corresponding row.

4.2.2. Speaker-Dependent Performance Experiments

In the speaker-dependent experiments, the data were shuffled and the entire set was divided
by randomly selecting an 80:20 split ratio for model training and testing, respectively. As before,
we investigated the speaker-dependent model using F1-score, WA, and UA. The detailed numerical
results for the EMO-DB and IEMOCAP datasets are given in Tables 6 and 7.

Table 6. Performance of the proposed model for speaker-dependent emotion recognition on EMO-DB.

Model F1-Score WA (%) UA (%)

CNNs 0.84 87.56 85.44
BERT 0.91 91.42 91.12

Transformer 0.86 88.4 87.34
Fusion-ConvBERT 0.91 94.23 92.1

Table 7. Performance of the proposed model for speaker-dependent emotion recognition on IEMOCAP.

Model F1-Score WA (%) UA (%)

CNNs 0.62 64.11 66.41
BERT 0.68 70.45 71.12

Transformer 0.66 63.16 65.75
Fusion-ConvBERT 0.69 69.51 71.36

Fusion-ConvBERT again was found superior in this set of experiments. The EMO-DB dataset
shows 94.23% WA and 92.1% UA, and the IMEOCPA dataset shows 69.51% WA and 71.36% UA.
The confusion matrices for Fusion-ConvBERT in the speaker-dependent experiments are shown in
Figures 7 and 8.
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Figure 7. Confusion matrix of speaker-dependent emotion prediction on EMO-DB with 92.1%
unweighted accuracy overall; the confusion between actual and predicted emotions in the
corresponding row.

In this experiment, the model recognized “disgust”, “happiness, “’ and “sadness” with high
accuracy while “boredom” was recognized with a 73% ratio. As in the speaker-independent
experiments, ”boredom” was confused with “neutral.”

Figure 8. Confusion matrix of speaker-dependent emotion prediction on IEMOCAP with 71.36%
unweighted accuracy overall; the confusion between actual and predicted emotions is shown in the
corresponding row.

In the speaker-dependent, IEMOCAP dataset experiments on our network architecture, we found
a notable superiority for the “anger” emotion state, with an 81% UA. For “neutral”, “happiness”,
and “sadness”, we found almost equal performance results of 67%, 68%, and 66%, respectively.
The overall accuracy of the system for speaker-dependent emotion recognition exceeded that of the
speaker-independent emotion recognition experiment.

4.2.3. Analysis of Fine-Tuning Effects of Fusion-ConvBERT

As described earlier, Fusion-ConvBERT was first pretrained on the BERT model to compensate for
the sparseness of the emotional recognition data. A fusion transformer encoder was added on top of the
BERT model, and the overall model is fine-tuned (simultaneously with CNN representation training)
as shown in Figure 1. Here, we demonstrate the effectiveness of Fusion-ConvBERT when fused with
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a pretrained BERT model by comparing performances of two configurations, namely “Fusion-A”
and “Fusion-B”. In Fusion-A, learning is applied to the whole network in the fine-tuning process
including the pretrained parameters while in Fusion-B the pretrained parameters are frozen in the
fine-tuning process.

We compared these strategies using both the EMO-DB and IMEOCAP emotion datasets as
shown in Figure 9. From the figure, we can see that the Fusion-A outperforms Fusion-B in general.
Thus, the value of the fine-tuning method in our architecture is clear.

Figure 9. Performance comparison of fine-tuning and feature extractor strategies when training
Fusion-ConvBERT with pretrained BERT model, evaluated using the EMO-DB and IEMOCAP datasets
with unweighted accuracy overall.

4.2.4. Analysis of Fusion Strategies

We investigated fusion strategies for Fusion-ConvBERT. As shown in Figure 4, in Fusion-ConvBERT,
two alternative fusion strategies (BERT-focused and CNN-focused) were applied to the attention
mechanism by taking different value combinations of the query, key, and value. Figure 10 shows
their experimental performances on the EMO-DB and IEMOCAP datasets.

Figure 10. Unweighted overall accuracy comparison of EMO-DB and IEMOCAP according to the
two fusion strategies in Fusion-ConvBERT.
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“Fusion-robustBERT” in Figure 10 indicates the experiments with a query from CNN representation,
and the key and value taken from BERT representation, thus greater weight, in essence, is given to
the BERT-extracted features. “Fusion-robustCNNs” represents the experiments with query taking the
value from BERT representation, and the key and value are from the CNN representation, therefore the
CNN features are given greater emphasis. Both the speaker-dependent and speaker-independent tests
were conducted using the two fusion configurations and the results are labeled accordingly in the
figure. As shown from the figure, the BERT-focused fusion methodology consistently outperforms the
CNN-focused fusion. It seems that in the case of emotion recognition, considering the temporal context
in large scales, as BERT is capable of, would yield better results compared to placing more emphasis on
spectral-temporal correlations and context.

4.2.5. Discussion

SER performance of Fusion-ConvBERT was compared to the existing methods over both the
speaker-independent and the speaker-dependent configurations and the results are summarized in
Tables 8 and 9. As most of the existing methods were evaluated in terms of UA scores, only limited
performance comparison was possible via WA scores. It can be seen that the approach proposed
outperforms existing methods on the EMO-DB and IEMOCAP datasets in all cases except one in the
speaker-independent test of EMO-DB dataset.

Table 8. Speaker-independent and speaker-dependent comparison of the proposed model against
baseline methods for the EMO-DB dataset. The optimal results are highlighted in bold. Our model
outperforms the current state-of-the-art methods across most evaluation metrics.

Model Speaker-Indep
(WA%)

Speaker-Indep
(UA%)

Speaker-Dep
(WA%)

Speaker-Dep
(UA%)

Guo, L. et al. [41] 87.85 87.49 − 87.85
Meng, H. et al. [38] − 84.99 − 90.37
Chen, M. et al. [15] − 82.82 − −

Badshah, A.M. et al. [56] − 80.79 − 89.46
Jiang, P. et al. [57] − 84.53 − 86.44

Our model 88.43 86.04 94.23 92.1

Table 9. Speaker-independent and speaker-dependent comparison of the proposed model against
baseline methods for the IEMOCAP dataset. Optimal results are highlighted in bold. Our model
outperforms the current state-of-the-art methods across most evaluation metrics.

Model Speaker-Indep
(WA%)

Speaker-Indep
(UA%)

Speaker-Dep
(WA%)

Speaker-Dep
(UA%)

Guo, L. et al. [41] 56.55 57.99 − −
Zheng, W. et al. [58] − 40.02 − −
Behnke, S. et al. [49] − 51.24 − −

Luo, D. et al. [59] 60.35 63.98 − −
Chen, M. et al. [15] − 64.74 − −

Our model 66.47 67.12 69.51 71.36

The reason that the speaker-independent UA score of our model is lower than the one by
Guo, L. et al. [41] is that Guo’s model delivered better classification in the Boredom category. It must
be noted the dataset on the Boredom class is sparse compared to the other categories, thus the WA
score of the same experiment shows our model delivering a better result. It is not clear whether this
disparity is due to the sparseness of the data, and warrants future investigation.
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5. Conclusions

This paper presented Fusion-ConvBERT, a novel fusion network model for SER. Through a series
of experiments, the proposed method demonstrated its effectiveness in correctly recognizing the
emotional state of a speaker based on the utterance using spectrogram-based features. Two types
of features employed here were CNN-based and the BERT-extracted features to consider both
spectral-temporal correlations as well as extended temporal contextual information. In the proposed
model, these two features were processed simultaneously using a parallel internal structure within the
transformer architecture to extract high-level features containing different emotional details. From the
ablation study, it was clearly shown that the proposed method delivers improved performance
over the individual CNNs, BERT, and transformer models. After verifying the effectiveness of the
fusion structure, the model was finalized for performance evaluation. The experiment showed that
Fusion-ConvBERT can effectively mine emotional information from spectral and temporal features via
an end-to-end technique, and its performance on the EMO-DB and IMEOCAP datasets are superior
compared to the state-of-the-art techniques. Fusion-ConvBERT has shown high performance, but one of
the areas to be improved for future work is the model complexity resulting in a large number of weight
that requires additional computational resources.We will explore simpler structures for combining two
different features while retaining the effectiveness of the proposed approach. Additionally, we will
investigate improving the model performance in the Boredom class. To improve the Boredom class,
we will introduce binary classification to further refine the emotion class and experiment. We expect to
achieve real-time speech emotion recognition for human-machine interaction.
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