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Abstract: Loop closure detection is of vital importance in the process of simultaneous localization 
and mapping (SLAM), as it helps to reduce the cumulative error of the robot’s estimated pose and 
generate a consistent global map. Many variations of this problem have been considered in the past 
and the existing methods differ in the acquisition approach of query and reference views, the choice 
of scene representation, and associated matching strategy. Contributions of this survey are many-
fold. It provides a thorough study of existing literature on loop closure detection algorithms for 
visual and Lidar SLAM and discusses their insight along with their limitations. It presents a taxon-
omy of state-of-the-art deep learning-based loop detection algorithms with detailed comparison 
metrics. Also, the major challenges of conventional approaches are identified. Based on those chal-
lenges, deep learning-based methods were reviewed where the identified challenges are tackled 
focusing on the methods providing long-term autonomy in various conditions such as changing 
weather, light, seasons, viewpoint, and occlusion due to the presence of mobile objects. Further-
more, open challenges and future directions were also discussed. 

Keywords: simultaneous localization and mapping; loop closure detection; deep learning; neural 
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1. Introduction 
Over the past few decades, simultaneous localization and mapping (SLAM) has been 

one of the most actively studied problems in autonomous robotic systems. Its main func-
tion is to enable the robot to navigate autonomously in an unknown environment by gen-
erating the map and accurately localize itself in the map. During localization, the robot 
must correctly recognize the previously visited places known as true loops. This recogni-
tion is done by one of the components of SLAM, known as loop closure detection. A true-
loop closure detection helps the SLAM system to relocalize and enhances the mapping 
accuracy by reducing the accumulated drift in the map due to robot motion [1]. However, 
the existing loop closure detection systems are not yet that efficient to accurately detect 
the true loops. The parameters affecting the detection of true loops are changing illumi-
nation, environmental conditions, seasons, different viewpoints, occlusion in features due 
to the presence of mobile objects, and the presence of similar objects in different places. 

Earlier studies have used point features for the detection of closed loops. Point fea-
tures, such as scale invariant feature transform (SIFT) [2] and speedup robust features 
(SURF) [3], etc., used for visual loop closure detection are computationally expensive and 
are not suitable for real-time visual SLAM systems [4–6]. To enhance computational effi-
ciency, many researchers have developed the bag-of-words (BoW)-based loop closure de-
tection methods [7–10]. These methods store the visual information of the environment as 
a visual dictionary and generate the clusters where each cluster represents a “word”. The 
computational efficiency of BoW-based loop detection methods is further boosted with 

Citation: Arshad, S.; Kim, G.-W. 

Role of Deep Learning in Loop  

Closure Detection for Visual and  

Lidar SLAM: A Survey. Sensors 2021, 

21, 1243. https://doi.org/10.3390/ 

s21041243 

Academic Editor: Oscar Reinoso 

Garcia 

Received: 3 December 2020 

Accepted: 4 February 2021 

Published: 10 February 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and insti-

tutional affiliations. 

 

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



Sensors 2021, 21, 1243 2 of 17 
 

 

the inverted-index approach used for the data retrieval of previously visited places [10]. 
Though the BoW approach provides a fast solution to the handcrafted features-based loop 
closure detection, it requires a large amount of memory to store the visual words [11]. 
Most of the BoW-based loop detection algorithms generate fixed-sized vocabulary in an 
offline step and perform the loop closure detection in an online step to further reduce the 
computational cost [5,10]. Such methods perform well only if the loop closure detection is 
performed in the preknown environment and are not practical for unexplored environ-
ments. To address this issue, many researchers have created the BoW vocabulary in an 
online step to enable the system to work in real environments [10]. However, these methods 
are still inefficient as the memory requirement increases with increased vocabulary size. The 
recent studies using convolution neural network (CNN) features for loop closure detection 
have proven to be more robust against the above-mentioned challenges [12–15]. In addition, 
efforts have been made to reduce the memory usage of stored features through deep neural 
networks [16]. However, detecting truly closed loops is still an open problem. 

Loop closure detection is of key importance to the SLAM system for the relocalization 
of a robot in a map. Several survey articles have extensively discussed the SLAM algo-
rithms and their efforts to improve closed-loop detection. Hence, a thorough taxonomy is 
required to categorize the loop closure detection algorithms. In recent research [17], an 
extensive comparative analysis for feature-based visual SLAM algorithms was presented. 
The existing research is grouped into four categories based on visual features, i.e., low 
level, middle level, high level, and hybrid features, and highlighted their limitations. An-
other review for SLAM systems is provided where the scope is only limited to the vision-
based SLAM algorithms [18]. Similarly, Sualeh et al. [19] developed a taxonomy of SLAM 
algorithms proposed in the last decade and discussed the impact of deep learning to over-
come the challenges of SLAM. The loop closure detection was not thoroughly highlighted. 
A detailed survey of deep learning-based localization and mapping is provided in [20]. 
Other surveys and tutorials focusing on the individual flavors of SLAM include the prob-
abilistic formulation of SLAM [21], pose-graph SLAM [22], visual odometry [23], and 
SLAM in dynamic environments [24]. We recommend these surveys and tutorials to our 
readers for a detailed understanding of SLAM.  

In this survey, state-of-the-art loop closure detection algorithms developed for visual 
and Lidar SLAM in the past decade have been discussed and categorized into three major 
categories of vision-based, Lidar-based, and deep learning-based loop closure detection 
methods. To the best of our knowledge, this is the first survey article that provides an 
extensive study primarily focused on loop closure detection algorithms for SLAM. More-
over, open challenges are also identified. 

The rest of the paper is organized as follows: In Section 2, the existing research of 
vision and Lidar-based loop detection using conventional approaches is discussed along 
with their limitations. Section 3 explains the state-of-the-art deep learning-based loop clo-
sure detection methods. Section 4 summarizes the challenges of conventional loop closure 
detection schemes and the existing research on deep learning-based loop detection to 
overcome these challenges. Finally, Section 5 concludes the survey. 

2. Taxonomy of Loop Closure Detection  
One of the essential parts of SLAM is the recognition of the previously mapped places 

and eliminating the incremental drift by recognizing the premapped environment. For 
loop closure detection, the estimation process cannot be trusted because of inconsistency. 
Thus, a dedicated algorithm is needed for the relocalization of the vehicle in a prebuilt 
map. In this section, the loop closure detection techniques are grouped into two major 
categories: vision-based and Lidar-based loop closure detection. Each category further 
groups the existing research on the basis of data acquisition and matching methods. 
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2.1. Vision-Based Loop Closure Detection 
As imagery provides rich visual information, most of the methods make use of cam-

era sensors for loop detection. Based on the matching schemes, we have grouped the vi-
son-based loop detection methods as image-to-image matching [25], map-to-map match-
ing [26], and image-to-map matching [27] schemes, as done in [28]. 

2.1.1. Image-to-Image Matching 
Loop closure detection methods performing the image-to-image matching using the cor-

respondence between the visual features are grouped in this category. These methods do not 
require the metric information of the features; instead, they apply topological information. 

Bag-of-words [29] model has been widely used for loop closure detection. It first gen-
erates a vocabulary consisting of visual words where each word is a combination of some 
features extracted from a large training dataset. These features are clustered using the K-
means clustering algorithm [30], as it is effective for unsupervised learning [31]. While 
searching for a similar match for the current image, the BoW method converts the image 
into a set of descriptors and for each descriptor. It searches for the closest cluster center to 
generate a BoW vector which is used for image matching with previously seen images. 
The vocabulary generation process is done as a preprocessing step either offline or online. 

Methods with Offline Vocabulary 
This category includes the loop detecting techniques using the bag-of-words ap-

proach where image features are discretized in the descriptor space and a unique vocab-
ulary word is assigned to the group of similar visual or binary features. This vocabulary 
is generated in a hierarchical structure which enhances the matching performance. 

In [8], a probabilistic framework is presented, FABMAP, for appearance-based place 
recognition and loop closing. FABMAP does not only detect the previously visited places 
on the map but also identifies the new places and augments the map. The algorithm ap-
plies the Chow–Liu tree [32] for building a generative model of visual BoW vocabulary 
with 11,000 words. These visual words consist of groups of visual features extracted from 
the images using a SURF detector/descriptor [33]. The system has been evaluated in an 
outdoor environment dataset. The complexity of FABMAP is linear to the number of 
places on the map. Although FABMAP achieved high performance, it was suitable for a 
few kilometers of trajectory. Also, the system performance degraded in the environments 
other than the training data. As FABMAP is using SURF features, it requires 400 millisec-
onds for only the feature extraction process. 

To enhance the applicability of the FABMAP in large-scale environments, FABMAP 2.0 
[34] was proposed for the 70 km and 1000 km trajectories dataset. It has also applied the in-
verted index with the BoW model for place recognition, generating a vocabulary of 100,000 
words which improves the overall performance of the system in terms of loop detection and 
resource consumption. It has become the gold standard for loop detection, but the robustness 
decreases if the similar structure appears in the images for a long time [35]. 

Vocabulary generated using visual features such as SIFT and SURF provides high 
performance because of invariance to light, scale, and rotation. However, these features 
required a longer computation time [35–38]. This problem was addressed by the usage of 
binary features such as BRIEF [39], BRISK [40], and ORB [41]. As their information is com-
pact so they are fast to compute and compare thus allowing much faster place matching. 
For the first time, binary features have been used in [9,42], Fast detector and BRIEF de-
scriptor, for building a vocabulary of binary words. The system can perform the loop de-
tection and verification at one order of magnitude less than the other similar techniques. 
As the BRIEF is not invariant to significant scale and rotation, these methods are good for 
loop detection with planar camera motion. 
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The BoW-based loop closure detection methods depend on the appearance features 
and their existence in the dictionary, ignoring the geometric information and relative po-
sition in the space, thereby resulting in false loops due to similar features appearing in 
different places [43]. Also, in the presence of dynamic objects, the similarity in the loop 
scene is reduced, thus causing the system to lose stability. 

Methods with Online Vocabulary 
The above-mentioned schemes build the vocabulary in offline steps. The systems 

trained on the prebuild vocabulary show high performance on the same dataset, but the 
performance degrades if the traversed places are inconsistent with the trained dataset. 
This problem is addressed by the generation of the vocabulary in an online step. 

Offline vocabulary is not suitable for the dynamic robot environment. In [44] a loop 
closure detection method for a dynamic indoor and outdoor environment is developed by 
incrementally generating and updating the vocabulary, in an online step, through feature 
tracking among consecutive frames. The loop candidates are identified by a likelihood 
function that is based on inverse frequency of corresponding image features. After the 
likelihood evaluation, the vocabulary is updated based on new features extracted from 
the current image. Through extensive experiments, it is shown that the incremental vo-
cabulary generation achieves a higher number of true positives in comparison to [37]. 

The BoW provides fast and easy loop detection. However, the performance of such 
systems is highly dependent on the appearance of a place. Thus, they suffer from a per-
ceptual aliasing problem, i.e., occurrence of similar features in different places or drastic 
change in appearance of a place due to variation in environmental conditions. Kejriwal et 
al. [45] generated a bag-of-word-pairs dictionary using quantized SURF features by incor-
porating the spatial co-occurrence information of the image features to improve the recall 
rate and reported better performance than [44]. 

To deal with the occlusion due to the presence of dynamic objects, SIFT features have 
been used to enhance the loop detection accuracy for monocular SLAM [46]. The appear-
ance changes in the dynamic environment due to moving objects have been detected 
through features projection from keyframes to current image and comparison among 
them. Tracking is performed through matching features. As a result, image comparisons 
and dynamic change in the environment are detected through gradual change in image 
portions. As SIFT features are computationally expensive, the system ensures the real-
time performance through GPU acceleration and multithread programming. Similarly, in 
[47], SURF and BRIEF features have been extracted to perform the word training for loop 
detection in long-term autonomous driving. To improve the detection accuracy of BoW-
based closed-loop detection in a dynamic environment, Xu et al. [48] performed the dis-
crimination among feature points that belong to the static and dynamic objects. The algo-
rithm first detects and removes the feature points belonging to the dynamic objects and 
then generates the BoW vocabulary using the static features. 

2.1.2. Map-to-Map Matching 
Methods performing map-to-map feature matching detect the loops by using the visual 

features and relative distance between features common to two submaps. In [26], loop clo-
sure detection is performed in monocular SLAM by using the geometric compatibility 
branch and bound (GCBB) algorithm which matches the submaps based on the similarity 
in visual features common in both submaps and their relative geometry. However, the sys-
tem is not suitable for sparse maps [28]. The major limitation of such methods is that the 
maps are either too sparse to be distinctive or too complex such that they cannot be com-
pletely explored for high performance in real-time. For such methods, the exploration space 
can be reduced by using the position information of the map features as done in [49]. 
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2.1.3. Image-to-Map Matching 
This group includes the loop detection methods which use the correspondences between 

the visual features of the current camera image and the feature map. While in image-to-map 
matching, the aim is to determine the camera pose relative to the point features in the map 
and matching is based on appearance features along with their structure information. 

In [25], a feature-tracking and loop closing method is proposed for monocular SLAM 
using appearance and structure information. At each time step, 16D SIFT features have 
been extracted from the current image representing the appearance information and 
matching with the map features using BoW model. The BoW appearance model helps to 
identify the part of the map that is similar to the current image by comparing image features 
with the map features and generating the loop closure candidates. The map is stored as a 
graph where each node stores the structure of landmarks. The structure for loop candidates 
is matched through landmark appearance models. The current pose relative to the map fea-
tures is further determined by MLESAC [50] and the three-point pose algorithm [51]. 

William et al. [52] proposed a method for camera-pose estimation relative to the map 
for relocalization and loop closing through an image-to-map matching scheme. The fea-
ture map is built using the visual and metric information of landmarks. The appearance 
information of map features is learned using a randomized tree classifier [53], and corre-
spondences between the current image and map are generated by landmark recognition. 
Once the landmarks are recognized in an image, the camera pose is determined using 
estimated metric information. For this purpose, a global metric map is divided into sub-
maps. The relative positions of these submaps are determined by the mutual landmarks. 
The global map is represented by a graph where each node is a submap and edges be-
tween the nodes represent the transformation between submaps. Tracking is performed 
between the current and the previous submap, thus merging the maps. In the case of true 
overlap, the relative transformation between submaps is determined by the poses from 
their trajectories and an edge is added between the two consecutive submaps, thus repre-
senting a detected loop. Though it performs well in relocalization and loop closing, the 
randomized list classifier is memory inefficient. 

Xiang et al. [54] proposed direct sparse odometry with loop closure detection (LDSO) 
as an extension of direct sparse odometry (DSO) [55] for monocular visual SLAM. The 
DSO ensures the robustness of the system in a featureless environment. To retain the re-
peatability of the feature points, LDSO extracts ORB features from keyframes. The loop 
closure candidates are selected using the BoW approach as used in [9]. Later, the RANSAC 
PnP [56] is applied for the verification of loop candidates. Raul et al. [57] addressed the 
relocalization and loop closure problem in keyframe-based SLAM by using the ORB fea-
ture. The proposed solution applies the image-to-map feature matching scheme and is 
robust to scale changes from 0.5 to 2.5 and 50 degrees of viewpoint changes. The loop can 
be detected and corrected at a 39 milliseconds frame rate in the database of 10,000 images. 
Due to scale and viewpoint invariance, the proposed method achieves a higher recall rate 
in comparison to [8,9,34]. 

2.2. Lidar-Based Loop Closure Detection 
Vision-based loop closure detection for a long-term autonomous system is a chal-

lenging task due to large viewpoint and appearance changes. When such systems revisit 
a place, they are subject to extreme variations in seasons, weather, illumination, and a 
viewpoint along with the dynamic objects. These environmental changes make robust 
place recognition extremely difficult. These limitations can be handled by the LiDAR, up 
to some extent, as Lidar measurements are less prone to light and environmental changes 
in comparison to vision sensors, providing a 360-degree field of view. Unlike vision-based 
loop detection, research for Lidar-based solutions is rare. One of the reasons could be the 
high cost of LiDAR sensors which prevents the wider use. Another reason is that the Li-
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DAR point clouds only contain the geometry information while images contain rich infor-
mation; thus the place recognition is a challenging problem when using point clouds. The 
existing research on Lidar-based loop detection can be generally grouped into histograms 
and segmentation-based methods. 

2.2.1. Histograms 
Histogram extracts the feature values of points and encodes them as descriptors us-

ing global features [58–60] or selected keypoints [61–64]. One of the approaches used by 
these methods is the normal distribution transform (NDT) histogram [65], [66] which pro-
vides the compact representation of point cloud maps into a set of normal distributions. In 
[67], an NDT histogram is used to extract the structural information from Lidar scans by 
spatially dividing the scans into overlapping cells. NDT is computed for each cell and in-
stances of certain classes of NDT in range intervals constitute the histograms. The authors 
have compared the histograms using the Euclidean distance metric [68]. It is shown that 
structural information provided by the histograms of NDT descriptors improves the accu-
racy of the loop detection algorithm. A similar approach is used in [69] for loop closure 
detection where scan matching is performed using the histograms of NDT descriptors. 

NDT histogram-based methods are computationally expensive. To overcome the 
computational overhead, many researchers have put efforts into developing fast loop de-
tection methods. In [58], the performance of the loop detection method presented in [67] has 
been improved and the computational cost is reduced by using the similarity measure his-
tograms extracted from Lidar scans that are independent of NDT. Lin et al. [70] developed 
a fast loop closure detection system for Lidar odometry and mapping. It performs similarity 
matching among keyframes through 2D histograms. Another approach used for reducing 
the matching time is proposed in [62], where place recognition is performed by using 3D 
point cloud keypoints and 3D Gestalt descriptors [71,72]. The descriptors of current scan 
keypoints are matched with the point cloud map and a matching score is computed for each 
keypoints using nearest neighbor voting scheme. The true loop is determined by the ob-
tained highest voting score after geometric verification. 

The histogram-based methods can handle the two major issues: rotation invariance for 
large viewpoint changes and noise handling for spatial descriptors, as spatial descriptors 
are affected by the relative distance of an object from Lidar [61,73,74]. The major limitation 
of histogram-based methods is that they cannot preserve the information of the internal 
structure of a scene, thus making it less distinctive and causing false loop detections. 

2.2.2. Segmentation 
The loop detection methods using a point-cloud-segmentation approach are based 

on shapes or objects recognition [75–80]. In such methods, segmentation is performed as 
a preprocessing step because a priori knowledge about location of objects, that are to be 
segmented during robot navigation, is needed. The segment maps provide a better repre-
sentation of a scene where static objects may become dynamic and are more related to the 
ways human’s environment perception. One of the advantages of such techniques is the 
ability to compress the point cloud map into a set of distinctive features which largely 
reduced the matching time and likelihood of obtaining false matches. Douillard et al. [81] 
provide a detailed discussion on several segmentation methods for Lidar point clouds 
including ground segmentation, cluster-all, base-of, base-of with ground method for 
dense data segmentation, and Gaussian process incremental sample consensus, mesh-
based segmentation for sparse data. SegMatch [82] uses the cluster-all method for point 
cloud segmentation and extracts two types of features including eigenvalue-based and 
shape histograms. The features are segmented as trees, vehicles, buildings, etc., and 
matching is done by using a random forest algorithm [83]. It is observed that SegMatch 
requires real-time odometry for loop detection and does not perform well when using 
only the Lidar sensor. Also, the maps generated by SegMatch are less accurate. A similar 
segmentation approach is used in [84] to enhance the robustness of loop closure detection 
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by reducing the noise and resolution effect. The point cloud descriptor encodes the topo-
logical information of segmented objects. However, the performance degrades if the seg-
mentation information is not sufficient. In recent research [85], an optimized Lidar odom-
etry and mapping algorithm is proposed in integration with SegMatch-based loop detec-
tion [82] to enhance the robustness and optimization of the global pose. The false matches 
are removed using ground plane constraints based on RANSAC [86]. Tomono et al. [87] 
applied a coarse-to-fine approach for loop detection among feature segments to reduce 
the processing time where lines, planes, and balls are used for coarse estimation instead 
of feature points. 

Based on the literature reviewed in this section, the benefits and limitations of each 
method are summarized in Table 1. 

Table 1. Summary of the benefits and limitations of camera and Lidar-based loop closure detection methods. 

Method Benefits Limitations 

Vision-
based 

Image-to-
Image 

Offline 
Vocabulary 

• Does not require the metric information of the 
features 

• Dependent on the appearance features and 
their existence in dictionary 

• Good for loop detection with planar camera 
motion 

• Not suitable for dynamic robot environment 
• Memory consumption is proportional to vo-

cabulary size 
• Performance reduces if tested on different 

dataset. 

Online 
Vocabulary 

• Allows to learn features in real time 
• Memory consumption is proportional to vo-

cabulary size 
• Does not use geometric information 

Map-to-Map 
• Detects true loops when common features exist 

in two submaps 

• Not suitable for sparse maps. 
• Cannot achieve high performance for com-

plex dense maps. 

Image-to-Map 

• High performance when tuned for 100% preci-
sion 

• Allows online map feature training for real en-
vironment 

• Memory inefficient 

Lidar-based 

Histograms 
• Provides rotation invariance for large view-

point changes 
• Noise handling for spatial descriptors 

• Cannot preserve distinctive information of 
internal structure of a scene 

Segmentation 
• Compresses large point cloud maps into set of 

distinctive features 
• Reduced matching time 

• Requires prior knowledge of object loca-
tions 

3. Role of Deep Learning in Loop Closure Detection 
In the past few years, deep learning has been introduced in visual and Lidar SLAM 

systems to overcome the challenges of truly-closed-loop detection [13–16,19,88–90]. The 
deep learning-based loop detection methods are known to be more robust to changing 
environmental conditions, seasonal changes, and occlusion due to the presence of dy-
namic objects [91]. This subsection presents the state-of-the-art deep learning-based loop 
closure detection methods using camera and Lidar sensors. The main characteristics of the 
algorithms are tabulated in Table 2. The table represents the reference of the algorithms 
followed by the year of publication, the sensors used for environment perception, the type 
of features used for environment representation, the neural network used by the algo-
rithm, the type of environment for which the algorithm is developed, the loop closure 
challenges addressed by the algorithm, i.e., variation in weather, seasons, light, and view-
point, computational efficiency, dynamic interference in the environment due to moving 
objects and the semantics used for environment classification. 

3.1. Vision-Based Loop Closing 
In deep learning-based visual loop closure detection algorithms, research efforts 

have been made to overcome the limitations of handcrafted feature-based methods. In a 
recent research [89], a multiscale deep-feature fusion-based solution is presented where 
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abstract features are extracted from AlexNet [92] pre-trained on ImageNet [93] and fused 
with different receptive fields to generate fixed-length image representations that are in-
variant to illumination changes. A similar approach is used in [94] where features are ex-
tracted from fast and lightweight CNN to improve the loop detection accuracy and com-
putation speed. 

Many researchers have used semantics-based objects and scene classification for loop 
detection through deep learning [95,96]. Semantic segmentation classifies each image 
pixel according to the available object categories. All pixels, in an image, with same object 
class label are grouped together and represented with same color. Maps with semantic 
information enable the robots to have a high-level understanding of the environment. 

Another approach used by the researchers for loop detection is autoencoders. The 
autoencoder compresses the input frame and regenerates it to the original image at the 
output end of the system [88,97]. Merril et al. [98] proposed an autoencoder-based unsu-
pervised deep neural network for visual loop detection. The illumination invariance is 
achieved by generating HoG descriptor [99] from the autoencoder at output instead of the 
original image. The network is trained on the Places dataset [100] containing images from 
different places, primarily build for scene recognition. During the robot navigation, there 
may exist similar objects in different places which can greatly affect the performance of 
the algorithm when it is executed for a sequence of images of a path. The major limitation 
of this approach is that the autoencoder cannot show which keyframe in the database 
matches with the current image; instead, it can only detect if the current place is already 
visited or not. Gao et al. [88] have used the deep features from the intermediate layer of 
stacked denoising autoencoder (SDA) [101] and performed the comparison of the current 
image with previous keyframes. This method is also time-consuming as the current image 
is compared to all the previous images. Also, the perceptual aliasing problem is not ad-
dressed, which may result in false loops and incorrect map estimations. 

3.2. Lidar-Based Loop Closing 
To improve the matching time and detection accuracy of histogram-based loop de-

tection methods, Zaganidis et al. [102] generated an NDT histogram-based local descriptor 
using semantic information obtained from PointNet++ [103]. Here, [104] implemented 
PointNetVLAD [105] which integrates PointNet [106] and NetVLAD [107] to generate a 
global descriptor from 3D point cloud. Similarly, LocNet [108] applies a semi-handcrafted 
deep network to generate a global representation of scan maps for place matching and 
loop detection. 

In deep learning-augmented segment-based loop detection methods, the SegMap [109] 
produces segments of the scene incrementally as the robot navigates and passes those seg-
ments to a deep neural network to generate a signature per segment. A loop is detected by 
matching the segment signatures. SegMap aims to extract meaningful features for global 
retrieval while the semantic class types were limited to vehicles, buildings, and others. The 
performance of SegMap is further improved in [110]. 

Though segmentation-based loop detection methods are successful to enhance the per-
formance in terms of processing time, they are highly dependent on segmentation infor-
mation available in the environment. One of the solutions can be the formulation of a more 
generic and robust descriptor using segmentation information from multiview Lidar scans. 

Table 2. State-of-the-art deep learning-based loop closure detection methods for visual and Lidar SLAM. 

Ref. Year Sensor Components Deep Learning 
Algorithm 

Env 
Challenges 

Seman-tics 
Weather Seasons Light Viewpoint Effi-ciency Dynamic Env 

[89] 2019 C CNN feature AlexNet  - - + - - - - 
[95] 2019 C SIFT, SURF, ORB Faster R-CNN  - - - + - + + 
[96] 2018 C ORB Yolo [111]  - - + + + + + 
[98] 2018 C HoG Autoencoder  + + + + - + - 

[102] 2019 L Semantic-NDT PointNet++ [103]  - - + + + + + 



Sensors 2021, 21, 1243 9 of 17 
 

 

[108] 2018 L Semi-handcrafted Siamese  - - + + + + - 
[109] 2018 L SegMap CNN  - - - + - - - 
[110] 2020 L SegMap CNN  - - -  + + - 
[112] 2016 C SIFT, SURF, ORB PCANet [113]  - - + + - - - 
[114] 2020 L Semantic class RangeNet++ [115]  - - - + - + + 
[116] 2020 C CNN feature ResNet18 [117]  + + + + + + - 
[118] 2020 C/L CNN feature VGG16 [119]  + - + - - + - 
[120] 2018 C CNN feature VGG16  + + + + - - - 

[121] 2019 C 
CNN Multiview 

descriptor ResNet-50 [117]  + + + + - + - 

[122] 2019 C Semantic feature Hybrid [123]  + + + + - - + 
L: LiDAR; C: Camera; : Indoor; : Outdoor; +: Present; -: Absent. 

4. Challenges of Loop Closure Detection and Role of Deep Learning 
Based on the existing literature and their limitations presented in Section 3, the major 

challenges of loop closure detection methods are identified. This section lists the major 
challenges and role of deep learning in SLAM systems to overcome those challenges. 

4.1. Perceptual Aliasing 
In an environment, the objects may have some visual, geometric, and topological fea-

tures based on appearance, structure, and relative position of objects as depicted in Figure 
1. Similar features may appear in different places such as in many buildings that have the 
same structure, color, and topological features, in corridors in a building with the same 
structure, or in doors that have the same geometry. This occurrence of similar features at 
different locations causes the loop detection algorithm to generate false loop correspond-
ences and is termed as a “perceptual aliasing” problem. Perceptual aliasing is one of the 
main reasons for the failure of appearance-based loop detection methods. Many BoW-
based methods generate false correspondences as they only consider similar visual fea-
tures for true-loop detection [88]. This problem is well addressed in recent work by com-
bining multiview information of a place, instead of single view, through deep neural net-
works [121]. Also, the temporal information is embedded in the descriptors by concate-
nating the descriptors of consecutive frames. Through experiments, it is shown that image 
descriptors generated from the sequence of images are more robust and distinctive in 
comparison to the descriptors generated from single image. 

 
Figure 1. (a) Same place with different appearance and (b) similar looking different places. 

4.2. Variation in Environmental Conditions 
The loop closure is an open problem due to variation in illumination conditions [124], 

seasons [125], and viewpoints [126]. Figure 2 depicts the variation in seasons from sum-
mer to winter, light changes from day to night, and viewpoint variation due to lateral and 
angular changes. 
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Figure 2. Change in appearance of places due to variation in (a) seasons [125], (b) light [124], and 
(c) viewpoint [126]. 

For robot navigation in environments with viewpoint variations, the conventional 
approaches succeed up to some extent to achieve high performance in loop closure detec-
tion. In the case of light, weather, and seasonal variations, the features cannot be detected 
i.e., features detected during daytime are not detectable at night due to light effects. Sea-
sonal changes affect the appearance of the environment drastically, e.g., leaves disappear 
in autumn, the ground is covered with snow in winter, etc. Similarly, weather conditions 
such as rain, clouds, and sunlight change the appearance of the environment. It is compli-
cated to overcome these challenges using conventional methods as they are sensitive to 
such environmental conditions [88]. 

To overcome the challenges of changing environmental conditions, many researchers 
have proposed CNN-based loop detection methods that are robust to the variance of illu-
mination and other conditions [16,88,98,122]. In [98], an unsupervised deep neural net-
work is used to achieve illumination invariance in visual loop detection. Autoencoder-
based loop detection methods using unsupervised deep neural networks achieved state-
of-the-art performance for loop detection in variable environmental conditions [88,127]. 
However, these methods are not scale invariant. The viewpoint invariance problem up to 
180-degree rotation change is addressed in [84] through an object-based point-cloud-seg-
mentation approach. 

BoW features are sensitive to illumination changes and cause loop detection failure 
in severe environmental condition changes. Chen et al. [89] extracted the abstract features 
from AlexNet and improved the illumination invariance through multiscale deep-feature 
fusion. For varying weather conditions, [118] performed camera-LiDAR-based loop clo-
sure detection using a deep neural network. 

4.3. Dynamic Environment 
The presence of moving objects in the environment is one of the major challenges for 

true loop detection. The mobile objects cause occlusion to the essential features in the 
scene [126,128], as shown in Figure 3; thus, the available features are not sufficient for the 
algorithm to detect the loop closure, leading to the closed-loop detection failure. 
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Figure 3. Occlusion in features of same place due to moving objects such as person [128] and vehi-
cles [126]. 

Many researchers have addressed this problem to improve the accuracy of the algo-
rithm. The BoW-based loop closure detection methods perform well in a static environ-
ment. However, the detection performance decreases in the presence of dynamic objects 
due to reduced feature similarity in loop scenes. This issue can be better addressed using 
the semantic information of the environment as the semantic extraction is not affected if 
there are mobile objects or people [112]. 

Hu et al. [95] fused the object-level semantic information with the point features 
based on the BoW model [129] to enhance the image similarity in loop scenes and stabilize 
the system in a dynamic environment. Object-level semantic information is extracted us-
ing Faster R-CNN [130], pretrained on the COCO dataset [131]. It is shown that the point 
feature matching fused with semantics achieves better detection precision in comparison 
to only BoW-based loop detection. In [96], the object-based semantic information is em-
bedded with the ORB features to improve the performance of the overall SLAM frame-
work. The proposed framework extracts the semantic information of objects and assigns 
the class labels to the feature vectors which lie within the boundary boxes. Feature match-
ing is only performed among the features with same class labels. Thus, avoiding the 
wrong matches and reducing the computation time for the loop closure detection thread. 
Memon et al. [16] combined the supervised and unsupervised deep learning methods to 
speed up the loop detection process. The true-loop detection is ensured by removing the 
features from dynamic objects that are either moving or temporarily static. Through deep 
learning, the proposed system performs eight times faster loop closure detection at low 
memory usage in comparison to traditional BoW-based methods. 

4.4. Real-Time Loop Detection 
In SLAM, the mapping and loop detection run in parallel threads. As the robot keeps 

on generating the environment map along the trajectory, the loop detection algorithm 
compares the current frame (in visual SLAM) with all previously seen images to detect 
the closed loop. As the map size increases, the similarity computation time for each frame 
increases which slows down the system and is not suitable for real-time applications [88]. 
Many approaches have been proposed in the past to overcome this challenge such as se-
lecting random frames [132,133] or the fixed keyframes as used in ORB-SLAM2 [134] for 
comparison with the current frame, but still, the system will slow down in case of longer 
trajectories and also the probability of detecting true loop will decrease [88]. Thus, devel-
oping a real-time loop closure detection algorithm able to optimize the computation time 
with the variable map size is one of the major challenges. In the previous few years, deep 
learning-based loop closure detection methods have been developed to enhance the com-
putational efficiency through different schemes such as reducing the descriptor size [121], 
reducing the deep network layers during deployment [94,98], matching features of same 
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semantic class [96], generalizing scene representation with segmentation and matching 
segment feature descriptors instead of point features [109]. 

5. Conclusions and Future Research Directions 
SLAM is an integral part of most autonomous robots. This article presents an exten-

sive survey primarily focused on loop closure detection methods based on visual and Li-
dar features and groups them into two major categories. Based on the limitations of each 
approach, the major challenges of loop closure detection are identified. The survey also 
argues on how those challenges are addressed by the deep learning-based methods. From 
the reviewed literature, it is observed that loop detection methods based on deep neural 
networks proved to be robust to the challenges, but true-loop detection is still an open 
issue as both the camera and Lidar-based deep-learning loop closure detection ap-
proaches have some limitations. 

The vision-based loop closure detection methods are sensitive to illumination varia-
tions and cannot work, but LiDAR can. Similarly, the Lidar-based methods fail in weather 
changes such as rain, while vision-based methods can perform comparatively well [135]. 
Thus, there is a need for research in visual–LiDAR fusion-based loop closure detection to 
take advantage of both modalities for achieving robustness against illumination and en-
vironmental changes [118]. To this end, the LiDAR scan analysis for feature detection and 
camera–LiDAR calibration are the primary problems to be addressed [118]. The semantics 
provides high-level understanding of the environment allowing the robot to percept the 
environment like the humans. One of the major limitations of semantics-based loop de-
tection methods is the assumption that there are enough objects learned by the pretrained 
CNN model. In a real environment, this assumption may not be satisfied. Also, learning-
based methods are computationally expensive, and the performance is dependent on the 
dataset used for training the network. 
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