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Abstract: With the rise of location-based services and the rapidly growing requirements related to
their applications, indoor localization based on channel state information–multiple-input multiple-
output (CSI-MIMO) has become an important research topic. However, indoor localization based
on CSI-MIMO has some disadvantages, including noise and high data dimensions. To overcome
the above drawbacks, we proposed a novel method of indoor localization based on CSI-MIMO,
named SICD. For SICD, a novel localization fingerprint was first designed which can reflect the
time–frequency and space–frequency characteristics of CSI-MIMO under a single access point (AP).
To reduce the redundancy in the data of CSI-MIMO amplitude, we developed a data dimensionality
reduction algorithm. Moreover, by leveraging a log-normal distribution, we calculated the conditional
probability of the naive Bayes classifier, which was used to predict the moving object’s location.
Compared with other state-of-the-art methods, the results of the experiment confirm that the SICD
effectively improves localization accuracy.

Keywords: channel state information; indoor localization; dimensionality reduction; MIMO; naive Bayes

1. Introduction

The rapid development of location-based services and the rapidly growing require-
ments with regard to their applications have greatly facilitated the development of indoor
localization. This has brought great changes to our lives. The WIFI fingerprint-based indoor
localization method [1–4] has become an important research topic due to its convenience
and low cost. To accurately obtain the indoor location information of a moving object, the
WIFI fingerprint-based indoor localization method uses a large number of WIFI signal
measurements to establish a fingerprint database in the training stage and obtains the
location of the moving object by matching fingerprints in the test stage.

The key to indoor localization technology is obtaining accurate and reliable indoor
locations. Channel state information (CSI) is sub-carrier level channel information. It can
better describe the influence of the moving object on surrounding signals. Therefore,
CSI has been proposed by researchers as a fingerprint for WIFI-based indoor localization
in recent years. For example, Wang et al. [5] proposed CSI fingerprint-based indoor
localization, which uses a deep learning network to achieve localization. Gao et al. [6]
performed device-free wireless indoor localization based on the change of the surrounding
CSI signals caused by human behavior. In [7], Yu et al. proposed a stable CSI fingerprint
extraction method to achieve indoor localization. However, these methods only use the
time–frequency characteristics of CSI to construct fingerprints and ignore the impact of
space–frequency characteristics of CSI on localization accuracy.

Fortunately, the indoor localization method based on CSI–multiple-input multiple-
output (CSI-MIMO) can overcome the above shortcomings. In order to obtain more
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reliable and valuable CSI information for high-precision indoor localization, researchers
have proposed a variety of localization methods based on CSI-MIMO. Chapre et al. [8]
proposed a CSI-MIMO fingerprint localization system with multiple access points, which
effectively reduced the mean distance error by utilizing the frequency and space diversity
of CSI. In [9], Song et al. proposed an algorithm of CSI-based indoor localization for
narrowband IoT (Internet of Things), which uses the CSI of multiple narrowband signal
transmitters as fingerprints to achieve indoor localization. In [10], Tian et al. proposed an
indoor localization method based on the angle of arrival (AoA) of CSI-MIMO, which has
better performance than SpotFi [11]. Although the above-mentioned indoor localization
methods based on CSI-MIMO can obtain rich and reliable CSI measurements, all of these
methods face some challenges, such as noise, high data dimensions, and complex hardware
deployment.

To overcome the above-mentioned shortcomings, we designed the SICD, a novel
indoor localization scheme based on CSI-MIMO. In SICD, the localization fingerprint
reflecting the time–frequency and space–frequency characteristics of CSI-MIMO under a
single access point (AP) was first designed. Then, we developed a dimensionality reduction
algorithm to map the high-dimensional CSI-MIMO amplitude data to a low-dimensional
space. Finally, we leveraged the log-normal distribution to calculate the conditional
probability of the naive Bayes classifier, which was used to predict the moving object’s
location. Moreover, in order to verify the performance of SICD we conducted extensive
experiments in a real indoor environment.

The SICD scheme makes the following key contributions.

(1) We proposed a method to construct localization fingerprints. The method collects
MIMO-based CSI measurements under a single access point (AP), and extracts the
amplitude information of the CSI-MIMO to construct a localization fingerprint.

(2) We developed a dimensionality reduction algorithm based on locally linear em-
bedding and low rank. The algorithm can map CSI-MIMO amplitude data from
high-dimensional space to low-dimensional space and reduce the data redundancy.

(3) We leveraged the log-normal distribution to calculate the conditional probability of
the naive Bayes classifier, which can improve the classification performance of the
classifier.

(4) Single AP indoor localization based on CSI-MIMO with a dimensionality reduction
method was proposed. The experiments were conducted in the laboratory, and the
results show that the proposed method is superior to the state-of-the-art method.

The remaining structure of the paper is demonstrated as follows. The related work
of CSI and the truncated nuclear norm is briefly reviewed in the next section. In Section
3, we describe the structure and algorithm of SICD in detail. The simulation settings and
experimental results are discussed in Section 4. We summarize the paper and look forward
to future work in Section 5.

2. Related Work

An indoor localization method based on WIFI signals can be divided into received
signal strength (RSS)-based and CSI-based methods, which are briefly reviewed in this
section.

2.1. RSS-Based Indoor Localization

RSS is MAC (Media Access Control) layer information, which describes the attenuation
of wireless signals during the propagation. It has been widely used in indoor localization.
RSS-based localization methods mainly include geometric localization and fingerprint
localization.

For geometric localization methods, localization is performed by converting RSS
measurements into the distance. In [12], Mazuelas et al. proposed a dynamic estimation
propagation model which uses trilateration to calculate the location of mobile station. In or-
der to ensure the strong correlation between the actual distance and the RSS measurement
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distance, Wang et al. proposed a measurement distance calculation method based on
tree-ring distance [13]. Wang et al. proposed an algorithm based on filtering technology
and an optimization method to reduce measurement error [2]. Furthermore, Carlino et al.
proposed an RSS-based distributed cooperative localization method with good robustness
in a mixed line-of-sight and non-line-of-sight environment [14].

There are two stages for the localization methods based on fingerprints: the training
stage and the test stage. RSS measurements are collected at each location and converted
into fingerprints during the training stage. The location is estimated by matching the
target fingerprint with the offline fingerprint database during the test stage. In [15],
Fang et al. designed a time-insensitive localization system based on RSS, which can reduce
the localization error caused by RSS fluctuation. The distance measurement of fingerprint
matching is the key factor of fingerprint-based localization. The relationship between
location distance and RSS similarity is considered [16]. In order to reduce the impact of
environmental changes on localization accuracy, Wang et al. proposed a multi-fingerprint
localization method based on subspace and RSS [17].

However, there are some disadvantages of RSS-based localization methods. Firstly,
RSS is sensitive to time-varied multipath fading, so it is easily affected by multipath and
shadow fading. Secondly, RSS is a kind of coarse-grained channel information that averages
the received signal amplitudes, making it difficult to obtain the accurate value.

2.2. CSI-Based Indoor Localization

The disadvantages of RSS restrict its applications in the field of indoor localization. CSI
is subcarrier-level channel information. It can better describe the influence of the moving
object on surrounding signals. Therefore, CSI-based indoor localization has attracted more
and more attention. Indoor localization based on CSI was proposed in [18,19]. In [20],
Yang et al. compared the difference between CSI and RSSI in indoor localization. In [21],
Li et al. proposed a technique that uses CSI to reduce the impact of multipath. Moreover,
the software development for extracting CSI has also promoted the research of indoor
localization based on CSI [22].

In this paper, we used the space and frequency diversity of a single AP to collect CSI.
In order to overcome the high-dimensionality problem of CSI-MIMO data, we proposed
a data dimensionality reduction algorithm. We used a Bayesian classifier based on the
lognormal distribution for localization.

3. Preliminaries
3.1. Channel State Information

CSI is fine-grained information from the physical layer, which can reflect the channel
characteristics of the wireless communication link. It describes the channel quality between
devices of the transmitted and received. When the CSI-MIMO system works on a flat
fading channel, the signal collected by the received device is defined as

R=HS+N, (1)

where
H=[H1, . . . , Hi, . . . , Hn]

T, (2)

R and S represent the signal vectors of the received and transmitted, respectively. H and
N represent the matrix of CSI and the vector of Gaussian white noise, respectively. n is
the index of sub-carriers. T represents transposition of a matrix. The CSI value of the i-th
sub-carrier is expressed as

Hi = |Hi| exp{j∠Hi}, (3)

where |Hi| and ∠Hi represent the amplitude and phase of CSI of i-th sub-carrier, respec-
tively.
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3.2. Truncated Nuclear Norm

In [23], Hu et al. proposed the idea of truncated nuclear norm (TNN), which holds
that the TNN of matrix Z ∈ Ra×b is equal to the sum of min(a, b)− r minimum singular
values. The TNN can be formulated as

‖Z‖r =
min(a,b)

∑
j=r+1

σj(Z), (4)

where ‖Z‖r is the truncated nuclear norm and σj(Z) is the j-th minimum singular value of
Z.

TNN is non-convex and is very difficult to directly solve (4). Therefore, singular
value decomposition (SVD) of Z is used to approximate the solution. Equation (4) can be
rewritten as

‖Z‖r =
min(a,b)

∑
j=1

σj(Z)−
r

∑
j=1

σj(Z) = min
Z
‖Z‖∗ − max

CCT=I,DDT=I
tr
(

CZDT
)

, (5)

where
C = (u1, . . . , ur)

T, (6)

D = (v1, . . . , vr)
T, (7)

tr
(
CZDT) = tr

(
(u1, . . . , ur)

TUΣVT(v1, . . . , vr)
)

= tr
((

(u1, . . . , ur)
TU
)

Σ
(
VT(v1, . . . , vr)

))
= tr

((
Ir 0
0 0

)
Σ

(
Ir 0
0 0

))
= ∑r

j=1 σj(Z),

(8)

‖Z‖∗ denotes the nuclear norm, and tr(Z) denotes the trace of matrix Z. UΣVT denotes
the SVD of Z, where U = (u1, . . . , ua) ∈ Ra×a, Σ ∈ Ra×b, and V = (v1, . . . vb) ∈ Rb×b. Ir
denotes a r-order identity matrix.

4. System Model

This section will show how to use the CSI collected from the network interface card
(NIC) to estimate the moving object’s location in the indoor environment.

4.1. System Architecture

Figure 1 shows the architecture of the SICD system. The SICD is composed of two
stages, namely the offline stage and online stage. In the offline stage, we first collect the
data of CSI and construct localization fingerprints. Then, the dimension of preprocessed
data is reduced by leveraging the algorithm of dimensionality reduction based on locally
linear embedding (LLE) [24–27] and low rank. Finally, the mean and standard deviation
of fingerprints at each location are calculated. In the online stage, we use naive Bayes
classifier to predict the location of the moving object and output the result of localization.
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4.2. CSI Data Collection

To collect CSI data, we selected the TP-LINK wireless router with two antennas as the
access point (AP) and the desktop computer with the NIC5300 as the terminal. Moreover,
the wireless network card has three antennas. We placed the AP and terminal at two ends
of the test area, respectively. However, the acquisition of CSI data must meet the hardware
mentioned above conditions and requires the use of a software collection tool based on
Linux 802.11n, namely, the CSI TOOL [28].

The CSI TOOL is used to analyze the data which are received by the terminal. The data
contains various types of information, e.g., the rate, the number of received and transmitted
antennas, and the CSI. For simplicity, we selected CSI amplitude as the data feature.
The traditional localization method based on CSI-MIMO requires multiple APs or terminals
to construct the MIMO system [29–31]. In SICD, we use a single AP and terminal with
multiple antennas to construct MIMO system. As shown in Figure 2, each transmitted and
received antenna forms a data link. The CSI amplitude patterns of different received and
transmitted antenna pairs are different, as shown in Figure 3. If we do not process the CSI
amplitudes of all antenna pairs together, much valuable information related to MIMO will
be lost.
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4.3. Localization Fingerprint Construction

We collect m data packets of CSI for each sub-carrier from every antenna pair, and then
the CSI amplitude matrix of the i-th antenna pair is defined as

|H|i =

 |H11| · · · |H1n|
...

. . .
...

|Hm1| · · · |Hmn|

. (9)

In SICD, we combine the CSI amplitude matrix of all antenna pairs as∣∣∣∣ ^
H
∣∣∣∣=[|H|1, . . . , |H|i, . . . , |H|g

]
, (10)

where g denotes the number of antenna pairs. Figure 4 shows the CSI amplitude of 10
packets from three different locations. We can see that the amplitude pattern is quite
different in different locations. It means that the CSI-MIMO amplitude fingerprint based
on a single AP can be used for indoor localization.
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In order to facilitate the data dimensionality reduction processing in the following
sub-section, we take l of the m data packets to form a fingerprint, and arrange them into
the form of a one-dimensional vector as∣∣∣ ~

H
∣∣∣=[|H1,1|, . . . ,

∣∣H1,n×g
∣∣, |H2,1|, . . . ,

∣∣H2,n×g
∣∣, . . . ,

∣∣∣Hl,n×g

∣∣∣]. (11)

4.4. Data Dimensionality Reduction
4.4.1. Outlier Elimination

In the indoor wireless environment, the CSI will be affected by noise. This means that
the amplitude data of CSI-MIMO contains some outliers, which are not conducive to the
extraction of features for localization from the amplitude data. However, outliers generally
deviate significantly from the average. As shown in Figure 5a, the CSI values marked by
a red square at sub-carrier 31 and sub-carrier 32 deviate greatly from other values of the
two corresponding sub-carriers, respectively. Before reducing the dimensionality of the
CSI-MIMO amplitude data, the outliers in the data should be eliminated. We use the Pauta
criterion to eliminate outliers in the CSI amplitude data [32,33].
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The
∣∣∣ ~
H
∣∣∣ is an input sample of Pauta. The mean and standard deviation of

∣∣∣ ~
H
∣∣∣ are

calculated as

mean =
∑
∣∣∣Hl,n×g

∣∣∣
l × n× g

, (12)

std =

√
(|H1,1| −mean)2 + (|H1,2| −mean)2 + · · ·+

(∣∣∣Hl,n×g

∣∣∣−mean
)2

. (13)

According to (12) and (13), the outlier decision rule is set as∣∣∣∣∣∣Hl,n×g

∣∣∣−mean
∣∣∣ > 3std. (14)

According to (14), the output of Pauta algorithm is represented as

∣∣∣Hl,n×g

∣∣∣∗ =
 mean,

∣∣∣∣∣∣Hl,n×g

∣∣∣−mean
∣∣∣ > 3std∣∣∣Hl,n×g

∣∣∣, ∣∣∣∣∣∣Hl,n×g

∣∣∣−mean
∣∣∣ ≤ 3std

. (15)

After being processed, the amplitude data of CSI-MIMO are improved, with noise
greatly suppressed, as shown in Figure 5b.
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4.4.2. Dimensionality Reduction Algorithm

To reduce the redundancy in the CSI-MIMO amplitude data and improve localization
accuracy, we designed a dimensionality reduction algorithm based on LLE and low-rank
(DRLL). The general framework of the DRLL can be formulated as

argmin
w

L(W) + αrank(W) + β f (W), (16)

where L(W) is the loss function, and rank(W) is the regularization term used for low-rank
constraint. f (W) is the regularization term used to ensure that the points close to each
other in the original space after mapping are also close to each other in the new space.
W ∈ Rd×e is the projection matrix. α and β are balance parameters.

In this paper, we use the least square loss function to evaluate the approximate error
of data before and after dimensionality reduction. The loss function is defined as

argmin
w

L(W) = ‖Y−XW‖2
F, (17)

where Y= [y1, y2, . . . , yc] ∈ Rc×e is the data after dimensionality reduction. X= [x1, x2, . . . , xc] ∈
Rc×d (d� e) indicates the data before dimensionality reduction. ‖•‖F represents the Frobenius
norm of a matrix.

The rank function is non-convex, and its solution is NP (Nondeterministic polynominal)-
hard. Therefore, we impose a low-rank constraint on the projection matrix W by using the
truncated nuclear norm to approximate the rank of the matrix [34–37]. The truncated nuclear
norm is defined as

‖W‖r = min
W
‖W‖∗ − tr

(
CWDT

)
. (18)

In order to keep the data structure after dimensionality reduction consistent with the
raw data, we use locally linear embedding (LLE) as the regularization term.

f (W)=
1
2

c

∑
i=1
‖yi −

k

∑
j=1

oijyj‖
2

F

= tr
(

WTXTQXW
)

, (19)

where
Q= (I−O)T(I−O), (20)

k is the number of nearest neighbors, and o is the weight coefficient. I refers to an c-order
identity matrix. O is the weight matrix, which is composed of the weight coefficient o.

According to (16) and (18)–(20), the model of the DRLL algorithm can be expressed as

argmin
w
‖Y−XW‖2

F + α
[
‖W‖∗ − tr

(
CWDT

)]
+ βtr

(
WTXTQXW

)
. (21)

4.4.3. Optimal Solution

In order to solve the optimization problem of (21), we use the method of augmented
Lagrangian multiplier [38,39] to find the optimal solution, which is shown in detail as
follows.

At first, we convert (21) to the following equivalent problem as

argmin
w
‖Y−XW‖2

F + α
[
‖J‖∗ − tr

(
CGDT

)]
+ βtr

(
WTXTQXW

)
s.t. W = J, W = G. (22)

This problem can be solved by the augmented Lagrangian multiplier method, which
aims to minimize the following augmented Lagrangian function of

argmin
W,J,G,η,ξ

‖Y−XW‖2
F + α

[
‖J‖∗ − tr

(
CGDT)]+ βtr

(
WTXTQXW

)
+ λ

2 ‖W− J‖2
F + tr

(
ηT(W− J)

)
+ λ

2 ‖W−G‖2
F + tr

(
ξT(W−G)

) , (23)
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where λ > 0 is a penalty parameter. η and ξ are the Lagrangian multipliers. We use the
alternating iteration method to solve problem (23) by fixing four of the five variables (W, J,
G, η, and ξ).

When J, G, η, and ξ are fixed, we can optimize W by

argmin
W
‖Y−XW‖2

F + βtr
(
WTXTQXW

)
+ λ

2 ‖W− J‖2
F + tr

(
ηT(W− J)

)
+ λ

2 ‖W−G‖2
F + tr

(
ξT(W−G)

)
. (24)

The closed-form solution of optimal W∗ is represented as

W∗ =
(

2XTX + 2βXTQX + 2λId

)−1(
2XTY + λJ + λG− η− ξ

)
, (25)

where Id denotes a d-order identify matrix.
To optimize the J, we first need to fix W, G, η, and ξ, and then solve the following

problem as

argmin
J

α‖J‖∗ +
λ

2
‖W∗ − J‖2

F + tr
(

ηT(W∗ − J)
)

. (26)

The optimal J∗ is represented as

J∗ = argmin
J

α

λ
‖J‖∗ +

1
2
‖W∗ − J +

ηT

λ
‖

2

F
, (27)

which can be solved by the singular value threshold operator [40].
With the W, J, η, and ξ being fixed, variable G is optimized by

argmin
G

λ

2
‖W∗ −G‖2

F + tr
(

ξT(W∗ −G)
)
− αtr

(
CGDT

)
. (28)

According to (28), the optimal G∗ can be calculated by

G∗ = W∗ +
1
λ

(
αCTD + ξ

)
. (29)

At each step, we optimize the Lagrangian multipliers by

η∗ = η+ λ(W∗ − J∗), (30)

ξ∗ = ξ + λ(W∗ −G∗). (31)

The detailed solution procedures of the DRLL model are listed in Algorithm 1. Moreover,
the ADMM (Alternating Direction Multiplier Method) guarantees the convergence of the
DRLL model solution [23].

Algorithm 1. Solution of the DRLL model

Input: X, C, D, k, α, β, λ, t, e;
Output:W∗;

1 Initialize projection matrix W as the matrix with orthogonal column vectors, W = J = G, η = ξ

= 0;
2 for T = 1:t
3 Optimize W by

W∗ =
(
2XTX + 2βXTQX + 2λId

)−1(2XTY + λJ + λG− η− ξ
)
;

4 Optimize J by J∗ = argmin
J

α
λ‖J‖∗ +

1
2‖W

∗ − J + ηT

λ ‖
2

F;

5 Optimize G by G∗ = W∗ + 1
λ

(
αCTD + ξ

)
;

6 Optimize η by η∗ = η+ λ(W∗ − J∗);
7 Optimize ξ by ξ∗ = ξ + λ(W∗ −G∗);
8 end
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4.5. Naive Bayes Classification for Localization

The device-free indoor localization based on CSI can be converted into a classification
problem to obtain the moving object’s location information. To this end, we use the
naive Bayes classification algorithm [41] in machine learning to achieve indoor localization.
Naive Bayes classification is a method based on the Bayesian theorem. The method assumes
that the characteristic conditions are independent of each other. The Bayesian theorem is
defined as

P(φ|δ ) = P(δ|φ )·P(φ)
P(δ)

, (32)

where P(·|∗ ) denotes the conditional probability, and P(·) denotes the probability of the
event.

According to (32), the naive Bayes classifier in SICD is formulated as

P(Lci|Ft ) =
P(Ft|Lci )·P(Lci)

P(Ft)
, (33)

where Lci represents i-th location point, and Ft represents the feature to be classified.
In order to predict the location of the moving object, we choose the location point of the
category with the highest probability as the final location of the moving object, which can
be calculated by

Lc← argmax P(Lci|Ft )= argmax
P(Ft|Lci )·P(Lci)

P(Ft)
. (34)

Since P(Lci) and P(Ft) are known, (34) can be written equivalently as

argmax P(Lci|Ft )= argmax P(Ft|Lci ). (35)

To calculate the maximum value of P(Ft|Lci ), we assume that it obeys the log-normal
distribution as

P(Ft|Lci ) =
1[

2π(STD)2(Ft)2
]1/2 exp

[
− (ln(Ft)− µ)2

2(STD)2

]
, (36)

where (STD)2 and µ denote the variance and mean, respectively.

5. Experiment Validation

The implementation and performance evaluation of SICD are introduced in this
section. The environment of the experiment is first described. Then, we analyze the
influence of setting different experimental parameters on the SICD. Finally, we compare
the SICD with other off-the-shelf methods.

5.1. Experimental Setup

In the performance verification experiment of SICD, we used a single TP-link wireless
router as the access point. The model of the router was TL-WR840N, which carries two
antennas. A Lenovo M736E desktop computer with the NIC5300 was used as the termi-
nal. A ThinkStation P720 server with NIVIDA Quadro P2200 Graphic Card worked on
predicting location. Table 1 shows the system configuration of measurements.
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Table 1. System configuration of measurements.

Parameter Value

Transmitted antenna height 0.45 m
Received antenna height 0.06 m

Number of transmitted antennas 2
Number of received antennas 3

Bandwidth 20 MHz
Center frequency 2.4 GHz

Number of subcarriers 30

The CSI measurement experiments were conducted in the laboratory of Nanjing
University of Posts and Telecommunications. The laboratory has some obstacles, such as
chairs, tables, and computers. Simultaneously, we selected 10 locations to train and test
in an experimental area of approximately 3× 6.8 m2. Figure 6 reveals the environment
of the CSI measurement experiments and the equipment required for the measurement.
When the moving object is located in different indoor locations, the terminal receives the
data packets from the AP. During the data collection, the moving object does not change
his posture. The AP sent data packets with the interval of 0.01 s, and we collected 30,000
data packets at each location. We divided the entire data sets into training set and test set
with a ratio of 7:3.
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5.2. Convergence and Complexity of DRLL
5.2.1. Convergence of DRLL

To study the convergence of the DRLL algorithm, we calculated the value of (22) by
leveraging the CSI amplitude data, as shown in Figure 7. From Figure 7, we can observe
that the value of the objective function gradually decreases as the number of iterations
increases, and gradually converges after a certain number of iterations. This indirectly
explains that our DRLL algorithm is feasible.
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5.2.2. Complexity of DRLL

In order to study the complexity of DRLL, we can decompose it into five equation: Equa-
tion (25), Equation (27), Equation (29), Equation (30), and Equation (31). For each iteration,
Equation (25) needs to construct

(
2XTX + 2βXTQX + 2λId

)
and

(
2XTY + λJ + λG− η− ξ

)
,

which will cost O
(
d3 + d2c + dc2 + edc

)
. The main cost of Equation (27) is to calculate

the singular value threshold operator for which the complexity is min
{

O
(
de2), O

(
d2e
)}

.
The complexity of Equation (29) is O(de). The complexity of Equation (30) and Equation
(31) is O(de), because they only need matrix addition and subtraction. In summary, the
complexity of DRLL is O

(
d3 + d2c + dc2 + de2).

5.3. Analysis of Parameter Setting
5.3.1. Impact of Number of Nearest Neighbors

In DRLL, we use LLE to ensure that the data structure after dimensionality reduction
is consistent with the raw data. To verify the impact of the k nearest neighbors (KNN) in
the LLE on the proposed SICD localization method, we conducted a specific experiment
with different k values.

Figure 8 reveals the recognition rate of SICD with different number of nearest neigh-
bors at each location. Figure 8 shows that when k = 9, SICD has the highest recognition rate
at most locations. Thus, we set the number of nearest neighbors to nine.
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5.3.2. Impact of Number of Data Packets in the Sample

In the experiments, we used 3*2 MIMO technology and combined different antenna
pairs of each received antenna according to (11). In order to evaluate whether the number
of CSI data packets contained in each sample had an impact on the SICD localization
method, we used the amplitude information carried by 30, 60, 90, 120, and 150 data packets
to construct the respective fingerprint samples.

Figure 9 shows the recognition rate of SICD with different numbers of data packets
in the sample. As shown in Figure 9, when the number of data packets constituting the
sample was 60, SICD had the highest recognition rate. Therefore, we chose 60 CSI data
packets to construct the localization fingerprint.
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5.3.3. Impact of the Dimension of Classification Samples

In order to verify the impact of the dimensionality of the classification samples on
the localization effect, we first leveraged the proposed DRLL algorithm to reduce the
dimension of the CSI amplitude data to 60, 120, 180, and 240, respectively. Then, these
dimensionality-reduced samples were input into the classifier for localization verification.

Figure 10 presents the recognition rate of different classification sample dimensions.
The samples with dimension 240 achieved the highest recognition rate. The above exper-
imental results show that satisfactory localization recognition rate could be obtained by
reducing the CSI amplitude data to 240.
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5.3.4. Impact of Conditional Probability Distribution

When we calculate the conditional probability in the naive Bayes classifier, it needs to
obey the log-normal distribution. In order to study the impact of the conditional probability
distribution on the localization effect, we compared the localization accuracy of condi-
tional probability which obeyed the log-normal distribution and Gaussian distribution,
respectively.

As shown in Figure 11, when the conditional probability obeys the Gaussian distri-
bution, the recognition rate is lower than the log-normal distribution. Based on the above
phenomenon, we can conclude that when the conditional probability obeys log-normal
distribution, the localization performance of SICD can be greatly facilitated.
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5.4. Comparison with Existing Dimensionality Reduction Algorithms

We verified the performance of our DRLL algorithm and compared it with three
existing dimensionality reduction algorithms: LLE [24], PCA (Principal Component Analy-
sis) [42], and NPE (Neighborhood Preserving Embedding) [43]. We used the recognition
rate to evaluate the performance of the four algorithms.

Figure 12 shows the variation of the recognition rate of four dimensionality reduction
algorithms in different dimensions. With the increase in sample dimensions after dimen-
sionality reduction, the recognition rate gradually increased. When the dimension was
240, the recognition rate of DRLL could reach 98.2%. We could clearly observe that the
performance of the DRLL algorithm was better than that of the other three algorithms.
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5.5. Comparison with Existing Localization Methods

We verified the performance of our SICD method and compared it with three state-of-
the-art CSI-based localization methods, ConFi [44], PICN [32], and MaLDIP [45]. ConFi
is based on the theory of deep learning. PICN and MaLDIP are based on the Bayes and
support vector machine (SVM) theory, respectively. Here, the number of training samples
of the four localization methods is the same, and the number of test samples is also the
same.

Table 2 records the localization errors of the four methods mentioned above. The mean
and standard deviation (STD) of SICD error are 1.3730 m and 0.3762 m, respectively. It can
be clearly seen from the table that our SICD localization method is better than the other
three methods.

Table 2. Localization errors with CSI-based methods.

Method Mean Error (m) STD (m)

SICD 1.3730 0.3762
PICN 1.6791 0.7979
ConFi 1.7885 0.8261

MaLDIP 2.1386 1.1081

The average localization accuracy of the four methods is presented in Figure 13.
The average localization accuracy of our proposed SICD localization method is as high
as 98.2%, which is significantly higher than that of the other three localization methods.
We can conclude that SICD outperforms the other three methods, which confirms the
effectiveness of our method.
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Figure 14 shows the cumulative distribution function (CDF) of error distance with the
four localization methods. It can be seen from the figure that the CDF curve of SICD is at
the top of all curves. As can be seen from Figure 14, with our SICD method 92.59% of the
test data had a localization error of less than 2 m, in comparison to 63.46% for MaLDIP,
74.39% for ConFi, and 77.14% for PICN Therefore, we can conclude that the SICD method
had the best performance among these four localization methods.
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6. Conclusions

In this paper, we proposed the SICD, a single-access-point indoor localization method
based on CSI-MIMO with dimensionality reduction. In the SICD we used a single access
point to measure the CSI and constructed a fingerprint with rich localization information.
In order to reduce the redundant information in fingerprint data, we designed an effective
dimensionality reduction algorithm, namely the DRLL. In addition, we leveraged the
log-normal distribution to calculate the conditional probability in the naive Bayes classifier,
improving the classification performance of the classifier. Extensive experimental results
showed that the SICD achieved a localization accuracy of 98.2% in the mess laboratory.

7. Future Work

In this paper, we provided a unique understanding of CSI-MIMO based localization
and established a robust model. In the next step, we will focus on identifying the location of
multiple moving objects indoors. Specifically, the multi-link of CSI-MIMO will be used to
identify and extract the path reflection corresponding to each moving object. The location
fingerprint of each moving object will be further constructed as if there was only a single
object in the environment to promote the localization of multiple moving objects.
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