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Abstract: Sea fog is a natural phenomenon that reduces the visibility of manned vehicles and vessels
that rely on the visual interpretation of traffic. Fog clearance, also known as fog dissipation, is
a relatively under-researched area when compared with fog prediction. In this work, we first
analyzed meteorological observations that relate to fog dissipation in Incheon port (one of the
most important ports for the South Korean economy) and Haeundae beach (the most populated
and famous resort beach near Busan port). Next, we modeled fog dissipation using two separate
algorithms, classification and regression, and a model with nine machine learning and three deep
learning techniques. In general, the applied methods demonstrated high prediction accuracy, with
extra trees and recurrent neural nets performing best in the classification task and feed-forward
neural nets in the regression task.

Keywords: sea fog dissipation; prediction of fog dissipation; machine learning; deep learning

1. Introduction

Sea fog is an important meteorological phenomenon, similar to wind and precipitation.
It influences the daily operations of air, sea, and land transportation and has estimated
negative economic effects [1]. Fog impedes visibility and is conducive to traffic crashes. A
study in the USA demonstrated that depending on the state, the weather can contribute to
over 21% of all crashes, and fog together with snow and rain contributed to 31,514 traffic
crashes between 2000 and 2007 [2].

Sea fog is a type of fog that generally occurs from advective fog when relatively wet
and warm air moves over the sea surface with its temperature falling below the dew
point [3]. Sea fog can also be born onshore and be moved to the sea surface or be a mix
of on- and off-shore fog [4]. In South Korea, fog occurs mostly on the west coast. It has a
seasonal pattern, with most of the fog occurring during monsoon in June and July [5].

Fog prediction is mostly performed using either numerical or machine learning meth-
ods [6,7]. Neural networks have been used for fog prediction for a long time with varied
success. Unlike other domains, fog data are relatively scarce, while neural networks work
best in a data abundance regime [8–10]. Furthermore, fog occurs seldom and leads to a
data imbalance, with most data being in the non-fog cluster.

While fog prediction is a well-studied [11] and established area, fog dissipation is
scarce in the literature. Fog dissipation refers to the clearing of fog from the air and
improving visibility. Some numerical approaches have been suggested to model fog
dissipation. One way in which dissipation happens is when the fog droplets become
larger and drop to the ground [12]. Predicting fog dissipation is important for air flight
planning [13] and cargo working times [14].
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In this paper, our goal is to find suitable machine learning and deep learning algo-
rithms for sea fog dissipation data. The structure of this paper is as follows: in Section 2, we
analyze the weather data and present a predictive modeling method; Section 3 introduces
the classification and regression models used in the sea fog prediction; in Section 4, we
summarize the results of the sea fog prediction performed with each model; lastly, in
Section 5, the results concluded in Section 4 are further discussed.

2. Weather Data and Prediction Modelling
2.1. Data sources and Preprocessing

Data from two sites were used: Incheon port and Haeundae beach. The observation
data were obtained from the Korean Metrological Administration (KMA) and Korea Hy-
drographic and Oceanographic Agency (KHOA). Incheon is a strategic port in the west
of the Korean Peninsula facing the Yellow Sea, while Haeundae beach is popular in the
southeast of the peninsula (Figure 1).
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Figure 1. Incheon port and Haeundae beach labeled with white circles (image source: Google Maps).

For Incheon, the period of observations is seven years from 1 January 2012 to 31 May
2019, and for Haeundae, the period is over five years from 1 January 2014 to 31 July 2019.
The objective of our study was to develop a prediction model of the sea fog dissipation
to be operated on the KHOA system. The amount of sunlight in the data we collected
was not considered in the preliminary feature selection, because it was not observable
in real time in the KHOA system. Moreover, the cumulative precipitation was excepted,
because it was confirmed to decrease the performance of the sea fog prediction when
added to the learning dataset [15]. Out of the total number of variables available, seven
were selected as base features: air temperature, sea surface pressure, relative humidity,
sea surface temperature, visibility, u-component wind, and v-component wind. Using
these given features, we created additional features: air and sea temperature difference
(ASTD), dew point temperature (DT), air and dew point temperature difference (T_DT),
and sea surface temperature and dew point temperature differences (sst_DT). A list of the
given and created features are listed in Table 1. We resampled1-minute observations into
10-minute observations. Sea surface temperature is available once in an hour, and therefore
its value was assigned to six 10-minute observations.
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Table 1. Eleven features (seven base features and four derived features).

Item Variable Name Unite of
Measurement Note Observation

Frequency

Time Date timestamp n/a n/a
Air temperature air_temp ◦C feature 1 1 min

Sea surface pressure sea_air_pre hPa feature 2 1 min
Relative humidity Humidity % feature 3 1 min

Sea surface temperature sea_temp ◦C feature 4 1 h
Visibility Vis m feature 5 1 min

U wind (10 m) U m/s feature 6 1 min
V wind (10 m) V m/s feature 7 1 min

Air and sea
Temperature difference ASTD ◦C feature 8 1 min

Dew point temperature DT ◦C feature 9 1 min
Air and dew point

temperature difference T_DT ◦C feature 10 1 min

Sea surface temperature and dew
point temperature difference sst_DT ◦C feature 11 1 min

Dissipation L [0,1] label n/a

Time to dissipation ttd minutes continuous
target 10 min

Air and sea temperature difference, air and dew point temperature difference, sea
surface temperature and dew point temperature difference are all derived by simple
subtraction operation. The dew point temperature was calculated using the formula
suggested in [16] as follows:

DT = air_temp−
(

100− humidity
5

)(
air_temp + 273.15

300

)2
(1)

where DT is the dew temperature, air_temp is the air temperature, and humidity is relative humidity.
For a given time Ti in the observed period and a feature set fi = [air_tempi, sea_air_prei,

humidityi, sea_tempi, visi, ui, vi, ASTDi, DTi, T_DTi, sst_DTi], we created the past one-
hour feature vector v1i = [ fi, fi−1, . . . , fi−5, fi−6], and past three-hour feature vector
v3i = [ fi, fi−1, . . . , fi−35, fi−36]. Then, we used these feature vectors separately to observe
their effects on the training. The same set of features was used for all the models as is
described in Section 2.2.

2.2. Dissipation as a Classification and Regression Task

Dissipation is the natural outcome of the fog. Once the fog clears and the visibility
returns to normal ranges, the fog is said to have dissipated. We define fog as the visibility
with less than or equal to 1100 m. The visibility may drop below or rise above this threshold
at any given consecutive period. Due to this variability, fog dissipation does not always
occur after the rise in visibility above the 1100 m threshold. Therefore, fog dissipation
prediction is performed, even for the cases when the visibility is over 1100 m but is preceded
by a fog period.

In this work, dissipation prediction is formulated as binary classification (dissipate or
non-dissipate) and regression problems. To this end, we grouped all fog cases that occur
within close proximity (within one, two or three hours depending on the prediction period)
into grouped fog periods of [Ti, Ti+k] consisting of k cases. The period of [Ti, Ti+k] mostly
consists of cases of continual fog periods with intermittent and short non-fog cases.

For the binary classification task, each case from the [Ti, Ti+k] period is labeled as
either 1 or 0 depending on if the fog dissipates over 60, 120, or 180 min from that point. The
grouping period depends on the prediction period, and for prediction horizons of 60, 120,
or 180 min, the grouping period is 60, 120, or 180 min, respectively. In Figure 2, visibility
dropped below 1100 m for 20, 30, 40, 120, 130, 140, and 150 min, and these are labelled as
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fog. When the prediction period is 60 min, and hence the same length grouping period is
used, the mentioned fog occurrences are grouped into the same 20–40 and 120–150 min
intervals. However, if the prediction period, and hence the grouping period of 120 min, is
used, these two intervals and the interval between them are all grouped together into the
20–50 min interval. Then, the data from these intervals are included in the training.
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As can be seen, the longer the period, the more cases were grouped, and the more
non-fog were cases included. In practice, this also leads to an increase in the training data
for longer periods but not as linearly as the increase in the period. This is because we
removed grouped cases with any missing observations in base features. In Figure 2, if any
base features from the interval 20–40 are missing, then only this interval is excluded from
the training, provided the interval 120–150 does not have any missing values. At the same
time, when grouping and predicting for 120 min, the total 20–150 interval is excluded if
any base features are missing.

The regression task aims to predict the time to dissipation for each case in the grouped
[Ti, Ti+k] period. All cases in the grouped [Ti, Ti+k] period have the same dissipation
time Ti+k+1, and their time to dissipation has a monotonically decreasing characteristic:
{10 ∗ k minutes, 10 ∗ (k− 1) minutes, . . . , 20 minutes, 10 minutes}. Thus, for a given case
at index i∈ {i, i + 1, . . . , i + k− 1, i + k}, its time to dissipation is given:

ttdi = (k− i + 1) ∗ 10minutes (2)

Formally, given a prediction time period t ∈ {60, 120, 180} representing 10-min
intervals in 60, 120, or 180 min, a grouped fog period [Ti, Ti+k], which consists of fog cases
within the prediction time proximity t from each other, is labelled Lt

i as

Lt
i =

{
True, ttdi > t ∗ 10
False, otherwise

(3)

L = the dissipation within t hours is true; L = the maintenance within t hours is false.
In general, the later the case within the grouped fog period [Ti, Ti+k], the sooner the

time to dissipation. Given that the longest period that we aimed to group fog cases together
is three hours, we grouped fog cases that occur within three hours of proximity into distinct
grouped fog periods. In practice, grouping for even longer periods yielded more non-fog
cases being included in the training and, thus, presented less interest.

2.3. Data Characteristics

Data came from both Incheon port and Haeundae beach (Busan) of the Republic
of Korea. Incheon is located in the northwest and Haeundae beach in the southeast.
These geographical differences play a role in the distribution of the base features and
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fog frequency. Fog cases represent 0.8% and 2.8% of all the observations for Incheon
port and Haeundae beach, respectively. Therefore, the resulting number of selected data
points is small despite the relatively long periods of observations. Furthermore, during the
observation period from 1 January 2012 to 31 May 2019 for Incheon, and from 1 January
2014 to 31 July 2019 to Haeundae beach, 1or more of the 11features were missing, and this
further led to a reduction in the size of the selected data. In such cases, the total observation
period was removed, even though only one or a few observations had missing values.

Among the base features (10-min average), air temperature, sea surface pressure,
humidity, and the sea surface temperature were slightly higher in Incheon port than
Haeundae beach during the observation period (Table 2). Similarly, derived features,
such as air and sea temperature difference (ASTD), dew point temperature (DT), air and
dew point temperature difference (T_DT), and sea surface temperature and dew point
temperature difference (sst_DT), demonstrated similar characteristics. There were two
optical visibility meters, with a limit of 20,000 m for the VAISALA visibility and 3000 m
for the AANDERAA visibility system. The visibility was capped at 3000 m for both sites,
and we decided to use the visibility value of the VAISALA system after comparing CCTV
images of both sites.

Table 2. Data statistics for Incheon and Haeundae.

Variables (a) Incheon (1 January 2012–31 May 2019) (b) Haeundae (1 Janury 2014–31 July 2019)

Average Median Std Min Max Average Median Std Min Max

air_temp 11.28 10.40 7.84 −6.60 27.50 18.38 19.10 4.60 0.50 29.30
sea_air_pre 1012.21 1012.30 7.16 987.70 1035.50 1009.13 1029.10 5.83 992.50 1029.10
humidity 96.91 98.80 4.55 46.20 99.90 92.15 100.00 9.52 20.40 100.00
sea_temp 10.80 8.30 6.61 1.10 25.90 17.26 28.7 3.71 11.30 28.70
vis 683.91 541.00 642.66 28.40 3000.00 1048.64 750.00 923.27 10.00 3000.00
u −0.81 −0.79 1.57 −7.99 6.04 −0.20 −0.08 3.26 −11.61 11.98
v −0.35 −0.46 1.82 −7.73 9.87 0.07 −0.04 3.36 −14.02 12.76
ASTD 0.49 1.00 3.37 −14.70 9.60 1.12 1.20 2.84 −12.60 8.80
DT 10.79 10.04 8.00 −12.79 27.33 16.97 17.66 5.14 −9.38 26.55
T_DT 0.50 0.18 0.83 0.01 12.15 1.41 0.78 2.20 −0.00 20.85
sst_DT 0.02 −9.14 3.51 −9.14 21.69 0.28 −0.17 3.54 −8.31 1.36
ttd 231.27 0.00 278.53 0.00 2310.00 484.40 320.00 521.32 0.00 3220.00

Weather conditions are related to each other, and despite a high variance in each
individual feature, there is a considerable correlation among some features, as shown in
Figure 3. Air temperature has a strong correlation with sea surface temperature, air and sea
temperature difference (ASTD), and sea surface temperature and dew point temperature
difference (sst_DT). Air temperature is a component of the latter two and, therefore, a high
correlation is expected. There are strong and negative correlations between air temperature
and sea surface pressure, and sea surface temperature and dew point temperature differ-
ences (sst_DT). Again, the latter feature is derived from air temperature, and therefore a
high correlation is inevitable.

There were other correlations, both positive and negative, among the rest of the
features in both Incheon port and Haeundae beach. Despite these highly correlated features,
due to the low count of the number of features available, all of them were included in the
training. Therefore, we could not choose a linear model as a learning model. The list of
base seven features was extended with derived features, such as air and sea temperature
difference and dew point temperature, for the same reason. Overall, as weather conditions
are highly dependent on each other, the observed correlation is inevitable.
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The count of the final selected data is summarized in Table 3. Despite the shorter
observation period, there are more data available for Haeundae than Incheon since fog was
more frequent in Haeundae beach during the observation period. Moreover, Haeundae
beach had more missing values, and therefore more data points were removed as a result.
A similar effect was observed when the past three-hour features were selected instead of
the past hour-hour features: the number of missing values increased, and more data points
were removed as a result.

Table 3. Input data counts for (a) Incheon (period 1 January2012 to 31 May 2019) and (b) Haeundae (period 1 January
2014 to 31 July 2019). Data counts with past one- and three-hour features. n/diss and diss denote non-dissipation and
dissipation, respectively.

Predicting Fog Dissipation Within

1 h 2 h 3 h
n/diss Diss Total n/diss Diss Total n/diss Diss Total

(a) Incheon

base
features

4598 1975 6573 3891 3024 6915 3247 3962 7209
(69%) (31%) (57%) (43%) (45%) (55%)

1-h
features

4332 1850 6182 3641 2872 6513 3007 3768 6775
(70%) (30%) (55%) (45%) (44%) (54%)

3-h
features

3755 1630 5385 3123 2540 5663 2575 3331 5906
(70%) (30%) (55%) (45%) (43%) (57%)

(b) Haeundae

base
features

6848 2204 9052 7320 2918 10,238 7294 3658 10,952
(75%) (25%) (71%) (29%) (66%) (34%)

1-h
features

6474 2080 8554 6908 2765 9673 6830 3492 10,322
(75%) (25%) (71%) (29%) (66%) (34%)

3-h
features

5886 1876 7762 6228 2566 8794 6119 3222 9341
(76%) (24%) (71%) (29%) (65%) (35%)

As the grouping period is extended, the probability of the fog dissipation also increases
and is reflected in more data being in the dissipation class than in the non-dissipation class.
The grouped fog period contains observations with a visibility less than or equal to 1100 m
(considering the 10% error of the optical visibility equipment) that are within one (two or
three) hour apart and other observations in between them. In both of the studied sites,
if not grouped, consecutive fog periods had a median of 0.67 and 0.33 h for Incheon and
Haeundae, respectively (Figure 4). However, visibility fluctuates around the threshold,
and fog tends to go and come back before final dissipation. Therefore, periods of fog were
grouped within one-, two-, and three-hour intervals, and the median duration increased
to 1.33, 1.67, and 2.17 h in Incheon port and 1.17, 1.67, and 2.17 h in Haeundae beach,
respectively. On average, Haeundae has longer fog durations than those of Incheon.

The time to dissipation is a continual measurement that we model for predictions.
Figure 5 shows the distribution of the time to dissipation for both sites. The time to
dissipation was calculated by grouping fog cases that are within 3 h apart from each other.
The time to dissipation was left-skewed, with half of the fog dissipation within 2.5 h in
Incheon and 5.33 h in Haeundae beach. Haeundae beach hada longer time to dissipation
on average than that of Incheon port and was more difficult to predict, as is discussed in
Section 4.
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3. Classification and Regression Algorithms

Each of the below-discussed methods was used for the two purposes of classification
and regression. Model selection criteria were based on the simultaneous presence of a
classifier and regressor (AdaBoost, bagging, extra trees, gradient boosting, random forest,
k-nearest neighbors, and decision model), except for linear models and multiclass models.
In addition, nine machine learning models were selected by replacing the HistGradient-
Boosting existing in Scikit-learn with the famous Light GBM model. Finally, since our goal
was to perform predictive performance tests on deep learning models, we selected the
most famous models of FFNN, CNN, and RNN. The hyperparameters used are the default
ones of Scikit-learn version 0.21, unless otherwise mentioned, and they are given in the
Appendix A.

3.1. k-Nearest Neighbors (k-NN)

k-NN is one of the non-parametric classifiers that uses the distance between a data
point and its closest k neighbors to decide on the class [17]. The most represented class in
the neighborhood of the data point is decided on the class of the data. The algorithm needs
an appropriate number of neighbors to be selected for classification. Depending on the
number of k, the algorithm may take longer or shorter, and most importantly, choose an
appropriate class.

k-NN regression attempts to predict the value of the output variable by using a local
average. We used default settings and deemed the number of closest neighbors to be 7.

3.2. Decision Tree (DT)

The decision tree classifier is one of the widely used early classification algorithms
in data mining. The model is derived from the research paper on the classification and
regression trees (CART) [18]. The decision tree is built by splitting the data on the basis of
the Gini impurity measure, which is calculated as

Ig(p) = 1−
J

∑
i=1

p2
i (4)

where Ig is Gini impurity, J is the number of classes from p ∈ {0, 1}, and pi is the fraction
of items with label i (=sea fog dissipation). Thus, each step is decided until the minimum
number of items is left with the node, which then becomes the leaf, and the splitting is then
discontinued on that node.
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In the case of regression, a similar tree construction algorithm is employed with a
mean square error being the measure function. In both classification and regression, we
did not change the default hyperparameters.

3.3. Support Vector Machine (SVM)

SVM represents another class of discriminative classifiers that separate data points by
building a hyperplane in a dimension. Originally proposed by [19], we used the specific im-
plementation provided in Scikit-learn [20], i.e., the C-Support vector classification algorithm.

In practice, a support vector machine for classification and regression has been shown
to perform the worst among the algorithms. We spent some time trying to tune it, but it
turned out that the model itself was not well suited for the task at hand. The only hyper-
parameter we decided to change was the gamma option, which is the kernel coefficient
for ‘radial base function’, ‘polynomial’, and ‘sigmoid’ for which we chose ‘scale’ in the
Scikit-learn package.

3.4. Bagging and Boosting Ensemble Models
3.4.1. Random Forest (RF)

The random forest classifier is a type of randomized tree ensemble that uses an
ensemble of decision trees [21]. Each decision tree is trained separately on the random
subsample of the training data with replacement, and the final decision is made on the
basis of the average of the trees in the ensemble.

In the experiments, we found that setting the number of estimators to 100 facilitated
good performance, and we left the other hyperparameters unchanged for both classification
and regression. The same hyperparameters as those in other models were applied as one
value in order to make comparisons in similar states.

3.4.2. Extremely Randomized Trees (ET)

An extremely randomized classifier is another type of randomized tree ensemble,
very similar to the random forest classifier, except that the several decision thresholds for
the splits are selected randomly, and the best threshold among these is chosen as the split
threshold [22].

Similarly to the random forest, we left the default hyperparameters of extremely
randomized classifiers and regressors unchanged.

3.4.3. Bagging

The bagging classifier is very similar to the random forest classifier except that it is a
metaclassifier that can build its ensemble from any classifier and not only a decision tree.
Given a metaclassifier, it builds several estimators that are fit to a random subsample of the
data generated with replacement. The final decision is based on the average of all models’
performances [23].

For both tasks, we chose the decision tree as the base classifier. Regression is achieved
in a similar fashion to that of classification.

3.4.4. AdaBoost (AB)

The AdaBoost classifier is a representative classifier for model boosting, which, unlike
bagging, relies on a set of weak classifiers. Each classifier is trained successively and not
in parallel, concentrating on the error of the previous one. Such an ensemble of weak
classifiers then produces a cascading effect with a net-positive effect on the accuracy of the
final result [24].

3.4.5. Gradient Boosting (GB)

Gradient boosting can be seen as another boosting algorithm, but it is more general
than the AdaBoost classifier. The main difference between the AdaBoost classifier and
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gradient boosting is that the latter identifies the shortcomings of each weak classifier by its
gradient [25,26]. This difference is expressed in the particular loss function of each classifier.

The learning rate was set to 0.1, and the remaining parameters were set to default.

3.4.6. Light GBM (LGBM)

While there are many boosting classifiers based on decision trees, they have the
disadvantage of an extensive training time. In this regard, Light GBM classifier is 20 times
faster in terms of training when compared with the other algorithms while providing
almost the same accuracy [27]. This is achieved by gradient-based, one-side sampling and
exclusive feature bundling.

Similar to other cases, the classification and regression models used the same hyper-
parameters, and no change was made to the default hyperparameters.

3.5. Neural Network-Based Architectures
3.5.1. Feed-Forward Neural Network (FFNN)

The simplest neural network, in terms of its architecture, is a feed-forward neural
network that builds a layer of perceptrons on top of another layer [28]. Such a simple
architecture has been proven effective for most classification tasks. In the case in which
the past time steps are required, they may be incorporated by concatenating with the
current time step. For both of the tasks, we concatenated base features for each time step
to the base features. Then, there were three deep layers of 512, 256, and 256 neurons that
were each followed with batch normalization and ReLU activation layers. The final layer
was a logistic regressor/classifier with the sigmoid activation function. In the case of the
regression, the output was used as it was, while for the classification case, the results that
were equal to or higher than 0.5 were treated as ones or zeros otherwise.

3.5.2. Convolutional Neural Network (CNN)

One of the earliest versions of the CNN was designed to recognize hand-written
digits [29]. Although originally designed mostly for image-related tasks, the CNN has been
adopted to a broad range of tasks, such as text classification, spatiotemporal data analysis,
and weather forecasting.

We modeled our classification and regression tasks as convolutions over time steps
with each time step having 11 dimensional features (seven base features and four derived
features). Similar to the FFNN, we concatenated each time step but did not flatten them.
Thus, each input was similar to an image with just one filter. There were two convolution
layers with output filter sizes of 512 and 256 that were each followed by the ReLU activation
layer. The final layer was passed to a perceptron with the same activation case as in the
case of the FFNN.

3.5.3. Recurrent Neural Network (RNN)

Composed of LSTM cells, the RNN is able to interact with and remember long-term
dependencies [30]. Therefore, unlike the FFNN and CNN, the RNN is well suited for
time-series data, such as fog dissipation [31]. Unlike the other neural network architectures,
inputs are not concatenated in the case of the RNN. Instead, each time step is an input with
11 features and the 1-h past features represent 6 past time steps, while 3 and 6 h represent
18 and 36 past time steps, respectively.

There are two layers of recurrent LSTM cells that are stacked. Each recurrent layer
passes its output forward with the third recurrent layer returning only the last LSTM cell’s
output. Each LSTM cell has 64 neurons, and the last recurrent layer’s output is passed to a
perceptron just like the other two architectures with the same activation function for the
classification and regression tasks.
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3.6. Evaluation

For the binary classification task, we evaluated each model’s performance using
the critical success index (CSI) score, precision score, recall score, and F1 score. The
CSI score is a verification measure of categorical forecast performance equal to the total
number of correct event forecasts (hits) divided by the total number of correct forecasts
plus the number of misses. The precision score is the ratio of correctly predicted positive
observations to the total predicted positive observation, while the recall score is the ratio
of correctly predicted positive observations to the total number of events observed. The
F1 score is the harmonic mean of the precision score and recall score. Given a confusion
matrix, the scores are calculated as follows:

CSI score = TP/(TP+FP+FN) (5)

Precision score = TP/(TP+FP) (6)

Recall score = TP/(TP+FN) (7)

F1 score = 2
precision× recall
precision + recall

(8)

where TP—true positive, TN—true negative, FP—false positive, and FN—false negative.
For the binary classification task, we evaluated each model’s performance using Mean

Squared Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and
the coefficient of determination (R2). The mean squared error measures the average of the
squares of the errors. Taking the square root of MSE yields the Root Mean Square Error,
which has the same units as the quantity being estimated. The mean absolute error is an
arithmetic average of the absolute errors. R squared represents the proportion of variance
(of y) that has been explained by the independent variables in the model. All of the scores
are calculated as follows:

MSE =
1
n

n

∑
i
(yi − ŷi)

2 (9)

RMSE =
√MSE (10)

MAE =
1
n

n

∑
i
|yi − ŷi| (11)

R2 = 1− Unexplained Variation
Total Variation

(12)

where yi is ground truth, ŷi is the predicted value or data point at index i, and y is the mean
of all values.

4. Results

For the experiments, we used an ordinary desktop computer with the Microsoft
Windows 10 operating system, an Intel-based CPU of 2.90 GHz with two cores, NVIDIA
GeForce GTX 1660 GPU accelerator, and two DDR 4 RAMs of 8 GB. We ran each model
five times and report here their median performance.

4.1. Classification Results

When modeled as a classification task, the models showed performance that is con-
sistent over the prediction times of one, two, and three hours, as shown in Tables 4–6,
respectively. As the prediction time is extended, the prediction of dissipation (occurrences)
becomes more accurate. Another dimension along which improvement is achieved is the
past time steps—more features resulted in better accuracy for all models. The accuracy was
higher for three-hour features as compared with the one-hour ones. The performance of the
models over the prediction periods was averaged and ranked. The rankings derived in this
way demonstrate relative consistency when compared to the number of past time steps.
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Table 4. Performance of classification models (one-hour).

Model Name Incheon Haeundae
Features CSI PAG POD F1 CSI PAG POD F1

FFNN base 63.58 75.85 80.51 77.74 55.5 69.39 74.38 71.38
1H 65.76 80.05 78.65 79.35 58.12 72.95 73.08 73.51
3H 73.89 84.5 85.28 84.98 70.29 83.06 83.2 82.56

CNN base 53.04 64.35 78.99 69.32 44.69 53.78 69.61 61.78
1H 61.23 73.91 78.11 75.95 51.56 68.54 68.51 68.04
3H 72.09 82.06 85.58 83.78 62.78 75.98 77.87 77.13

RNN base 60.72 73.2 77.47 75.56 51.15 63.45 73.02 67.68
1H 72.55 85.52 83.51 84.09 65.56 77.91 80.53 79.2
3H 81.36 87.61 89.26 89.73 79.67 87.53 89.87 88.68

k-NN base 43.49 71.74 52.03 60.62 33.96 65.85 41.27 50.7
1H 43.41 73.18 51.62 60.54 38.24 69.66 46.63 55.32
3H 53.39 77.95 62.88 69.61 47.61 74.92 55.73 64.51

DT base 48.13 65.02 64.94 64.98 44.41 61.78 61.22 61.5
1H 42.69 61.21 60 59.84 34.8 52.67 51.2 51.64
3H 47.45 64.31 64.72 64.36 35.88 53.1 52.53 52.82

SVM base 18.99 70.53 20.76 31.92 10.4 82.54 10.66 18.84
1H 18.18 75.61 18.92 30.77 11.19 75.71 11.54 20.13
3H 25.21 77.5 27.3 40.27 14.84 79.71 15.2 25.85

AB
base 45.42 66.45 59.37 62.46 30.97 58.05 39.23 47.29
1H 50.43 70.66 63.78 67.05 36.49 58.81 48.8 53.47
3H 61.07 79.52 72.09 75.83 48.25 70.29 58.67 65.09

Bagging base 62.61 83.24 71.65 77.01 51.12 82.89 57.14 67.65
1H 58.25 82.52 66.76 73.62 41.7 85.12 44.71 58.86
3H 66.76 90.8 71.47 80.07 45.36 89.19 46.93 62.41

RF base 69.3 87.92 76.46 81.87 51.46 86.93 55.78 67.96
1H 69.15 90.73 75.14 81.76 46.35 88.74 48.8 63.34
3H 74.93 95.45 78.83 85.67 52.59 91.52 54.67 68.93

ET base 76.04 88.91 83.67 86.39 61.38 88.55 66.67 76.07
1H 81.16 92.02 86.49 89.6 62.81 91.84 66.11 77.16
3H 82.61 93.57 87.42 90.48 68.91 93.38 73.87 81.59

GB base 32.05 72.29 36.58 48.51 16.67 72.55 17.91 28.57
1H 33.49 72.91 37.84 50.18 20.09 68.67 21.63 33.46
3H 39.17 78.04 44.48 56.29 24.11 71.33 25.87 38.85

LGBM base 57.41 81.4 65.7 72.94 41.8 81.27 46.26 58.96
1H 60.05 85.02 68.65 75.04 40.95 81.3 45.67 58.1
3H 72.16 90.71 77.91 83.83 49.27 84.58 54.13 66.02

Median of
Models

base 55.38 73.37 69.62 71.28 44.94 70.93 55.44 62.01
1H 58.92 79.13 67.3 74.15 41.71 74.18 48.8 58.87
3H 68.11 83.06 75.31 81.03 49.33 82.46 57.87 66.06

Among the studied sites, the predictions of Incheon port in terms of the CSI score,
being the median of the models, were about 11% higher than those of Haeundae beach. The
prediction accuracy improved as the prediction period was extended. The most accurate
predictions came from some of the ensembles and neural network models. Extremely
random trees and random forest were the strongest among the ensemble methods, while
RNN was best among neural network-based classifiers.

The SVM performed the worst among all of the models. Its performance for one-hour
prediction was below the random guess in terms of the class distribution of the training
data. SVM classifies on the basis of the separating planes in high dimensions, and it seems
that for the fog dissipation within one hour, it could not find an accurate plane with the
radial basis function (RBF) kernel. Other kernels with different gamma and penalty values
did not show any improvement over the default RBF kernel.
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Table 5. Performance of classification models (two-hour).

Model Name Incheon Haeundae
Features CSI PAG POD F1 CSI PAG POD F1

FFNN base 78.40 87.88 87.60 87.89 73.68 83.12 86.30 84.85
1H 81.05 89.48 90.61 89.53 71.49 79.80 86.62 83.38
3H 86.74 93.08 91.93 92.90 83.90 91.07 91.42 91.25

CNN base 67.99 77.64 84.13 80.94 57.18 63.95 83.05 72.75
1H 77.66 88.19 85.74 87.43 70.66 80.87 84.09 82.81
3H 85.30 91.62 91.93 92.07 77.34 90.51 87.13 87.22

RNN base 75.15 86.17 84.79 85.81 70.51 82.78 83.39 82.71
1H 83.60 92.10 90.61 91.07 81.32 88.77 88.97 89.70
3H 89.98 95.03 94.09 94.73 87.82 92.88 94.35 93.51

k-NN base 66.38 82.32 76.69 79.79 54.64 79.79 63.18 70.67
1H 66.97 82.46 77.91 80.21 57.23 81.17 65.82 72.80
3H 75.66 88.84 83.46 86.14 69.82 87.55 78.17 82.23

DT base 68.45 82.23 80.33 81.27 55.51 71.28 73.97 71.39
1H 65.61 79.17 79.30 79.24 50.34 65.68 66.18 66.97
3H 66.78 81.47 78.74 80.08 55.37 70.41 70.57 71.28

SVM base 51.36 66.99 68.60 67.86 17.79 80.87 18.49 30.21
1H 47.59 70.33 58.96 64.49 19.43 76.87 20.98 32.54
3H 55.63 75.46 68.11 71.49 24.58 84.31 25.93 39.47

AB
base 58.08 75.13 70.58 73.48 39.04 65.81 49.32 56.15
1H 65.17 79.86 77.91 78.91 44.79 66.14 57.14 61.87
3H 75.26 86.60 84.84 85.88 58.37 77.87 69.98 73.72

Bagging base 82.34 90.95 89.75 90.32 73.08 93.01 78.08 84.44
1H 81.59 90.00 89.39 89.86 65.64 92.94 69.08 79.25
3H 85.82 92.52 91.73 92.37 70.92 94.97 73.68 82.99

RF base 85.14 92.82 91.90 91.97 72.26 92.95 76.71 83.90
1H 87.87 94.16 93.22 93.54 73.06 96.44 75.05 84.44
3H 91.38 95.98 95.47 95.50 79.81 96.18 81.87 88.77

ET base 88.75 94.20 93.88 94.04 78.48 93.45 83.05 87.94
1H 91.50 95.64 95.65 95.56 84.06 96.39 86.80 91.34
3H 93.73 96.48 96.26 96.76 86.42 96.43 88.89 92.72

GB base 56.32 73.79 70.41 72.06 27.81 82.84 29.62 43.52
1H 56.21 73.94 70.09 71.96 29.12 77.45 32.01 45.11
3H 62.38 79.38 74.41 76.83 34.06 81.53 36.65 50.81

LGBM base 77.79 88.33 87.11 87.51 58.77 89.15 63.70 74.03
1H 80.16 89.46 88.70 88.99 60.70 89.08 66.18 75.54
3H 87.39 93.37 93.50 93.27 71.35 93.64 75.24 83.28

Median of
Models

base 72.14 84.12 84.46 83.81 58.70 82.27 74.14 73.97
1H 78.92 88.07 88.43 88.22 63.13 81.30 69.35 77.40
3H 84.87 91.56 91.34 91.82 71.39 90.30 77.29 83.31

Another classifier that performed worse than others but better than SVM was the gra-
dient boosting-based ensemble model. Gradient boosting builds an ensemble sequentially
by using weak classifiers with each next one building on the error of the previous one.
While tuning it for better performance, the number of estimators appeared to be the most
important among other hyperparameters. The current results were calculated using an
ensemble of 10,000 estimators.

Other non-neural network-based models demonstrated reasonable results with their
default settings in Scikit-learn package [32]. Neural networks were tuned on the number
of layers and the number of neurons at each layer. Among the three neural network-based
architectures, the RNN was the best, except when used with the base features. When
used with the base features, there are no past time steps that can recur, and therefore the
model cannot learn from the past time steps. On the contrary, when the past time steps are
input to the model, fog dissipation is usually best captured by the recurrent nets. Overall,
among the neural network-based models, the RNN demonstrated higher performance for
Haeundae beach than for Incheon port as compared with extremely random trees.
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Table 6. Performance of classification models (three-hour).

Model Name Incheon Haeundae
Features CSI PAG POD F1 CSI PAG POD F1

FFNN base 84.21 92.45 90.79 91.43 78.65 85.48 90.57 88.05
1H 86.67 92.86 92.31 92.86 79.54 87.76 88.70 88.60
3H 93.01 96.55 96.10 96.38 90.55 95.39 95.04 95.04

CNN base 75.06 86.29 85.75 85.75 64.42 71.70 86.07 78.36
1H 84.45 93.14 90.05 91.57 76.90 84.11 89.99 86.94
3H 90.32 95.37 95.05 94.92 85.86 93.09 92.71 92.39

RNN base 81.79 90.09 90.04 89.98 74.55 83.00 89.34 85.42
1H 90.11 95.09 94.69 94.80 87.33 94.06 92.70 93.24
3H 94.23 97.46 97.45 97.03 92.73 95.57 96.90 96.23

k-NN base 75.60 85.90 86.76 86.11 63.08 81.82 73.09 77.36
1H 76.48 88.40 85.28 86.67 65.40 84.78 74.11 79.08
3H 85.21 92.78 91.90 92.01 80.95 92.61 85.74 89.47

DT base 79.38 88.97 88.90 88.51 67.63 81.77 79.78 80.69
1H 75.57 84.44 86.21 86.09 57.70 73.85 73.96 73.18
3H 77.32 86.90 87.41 87.21 59.60 76.24 73.49 74.68

SVM base 58.64 71.00 74.91 73.93 23.36 75.52 25.27 37.87
1H 61.23 71.26 81.17 75.96 28.76 78.80 31.19 44.67
3H 67.69 75.89 86.66 80.73 42.54 82.83 47.29 59.69

AB
base 68.72 80.15 82.60 81.46 42.96 66.72 54.78 60.10
1H 73.97 84.81 85.54 85.04 51.22 71.61 63.52 67.74
3H 84.20 91.67 91.90 91.42 65.18 81.80 75.97 78.92

Bagging base 88.95 92.71 95.08 94.15 80.77 93.24 86.61 89.36
1H 89.47 92.33 96.02 94.44 77.11 95.07 80.97 87.08
3H 91.31 94.82 96.40 95.46 80.09 96.47 81.71 88.94

RF base 89.89 93.77 96.47 94.68 81.22 94.00 85.66 89.64
1H 93.04 95.67 97.48 96.39 85.16 96.42 87.41 91.99
3H 94.68 96.03 98.20 97.27 87.21 97.64 89.92 93.17

ET base 92.64 95.42 97.10 96.18 83.77 94.44 88.11 91.17
1H 95.12 96.86 98.14 97.50 90.79 97.31 92.13 95.18
3H 95.64 97.32 98.35 97.77 91.98 98.03 94.26 95.82

GB base 65.57 75.42 85.88 79.20 33.62 76.18 37.70 50.32
1H 68.45 75.45 88.06 81.27 37.79 78.78 42.49 54.85
3H 72.87 79.17 89.06 84.31 44.23 85.07 48.06 61.34

LGBM base 84.13 89.81 93.44 91.38 68.06 89.37 73.63 80.99
1H 88.67 91.57 95.89 94.00 72.36 92.47 76.39 83.96
3H 91.85 94.73 97.00 95.75 82.79 95.06 85.89 90.58

Median of
Models

base 80.66 89.18 89.03 89.30 67.84 83.21 81.28 80.84
1H 85.72 92.03 91.71 92.31 74.36 86.15 78.83 85.29
3H 90.70 94.64 95.65 95.12 82.03 94.33 85.81 90.13

In general, the longer the period of prediction, the more accurate the models’ perfor-
mances and the less the difference between them. Using only base features is also effective
in predicting fog dissipation with most of the models. Fog dissipation in Incheon port is
more predictable than in Haeundae beach, although slightly more data are available for the
latter. This could be due to the meteorological conditions in Haeundae beach being more
complex than those in Incheon port.

On the basis of the value with the highest prediction performance among base features,
1H features, and 3H features, we plotted a comparison graph for the prediction performance
and the learning model selected by CSI score (Figure 6). When checking the overall
performance index, we found that most of the models showed very good PAG performance,
but POD performance showed large regional variations in Incheon and Haeundae. Among
the tree-based models, the POD performance of the ET algorithm was the best. Learning
sea fog dissipation prediction as a classification model has shown that algorithms such as
FFNN, RNN, RF, and ET are superior to the other models.
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4.2. Regression Results

For the regression task, we grouped fog cases that are three hours apart. Then, we fit
models to predict the time to dissipation given each case within the grouped fog period.
Similar to the classification case, we experimented with base features, past one- and three-
hour features. Unlike the classification model, the regression model showed that a larger
number of features did not always result in more accurate predictions. For a number
of tree-based ensemble models, such as bagging and random forest, their performance
with only base features was on par with their past three hours feature models, as can be
observed in Table 7.
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Table 7. Performance of regression models.

Model Name Incheon Haeundae
Features MSE RMSE MAE R2 MSE RMSE MAE R2

FFNN base 5402 74 47 0.93 19,149 138 91 0.93
1H 3071 55 36 0.96 17,787 133 80 0.93
3H 1135 34 18 0.99 7130 84 35 0.97

CNN base 37,894 195 148 0.51 184,169 429 314 0.31
1H 29,236 171 133 0.61 166,720 408 290 0.36
3H 18,213 135 100 0.80 91,632 303 218 0.66

RNN base 62,590 250 168 0.19 255,395 505 375 0.04
1H 38,000 195 137 0.50 128,844 359 259 0.51
3H 23,045 152 118 0.75 33,467 183 131 0.88

k-NN base 14,719 121 78 0.81 86,397 294 176 0.68
1H 12,426 111 74 0.84 118,534 344 210 0.55
3H 12,382 111 64 0.86 94,441 307 173 0.65

DT base 11,040 105 51 0.86 41,457 204 80 0.84
1H 19,704 140 61 0.74 58,394 242 90 0.78
3H 16,206 127 56 0.82 74,997 274 99 0.72

SVM base 54,080 233 171 0.30 191,451 438 309 0.28
1H 45,071 212 157 0.41 179,937 424 306 0.31
3H 40,680 202 152 0.55 163,382 404 292 0.40

AB
base 34,946 187 152 0.55 212,144 461 360 0.20
1H 31,870 179 145 0.58 202,946 450 352 0.22
3H 35,420 188 150 0.61 188,680 434 333 0.30

Bagging base 5653 75 48 0.93 18,885 137 79 0.93
1H 7048 84 57 0.91 25,154 159 91 0.90
3H 6103 78 54 0.93 25,020 158 93 0.91

RF base 5738 76 48 0.93 19,064 138 80 0.93
1H 7126 84 58 0.91 24,644 157 91 0.91
3H 6137 78 54 0.93 25,054 158 92 0.91

ET base 3478 59 34 0.96 14,605 121 68 0.95
1H 2681 52 31 0.96 9427 97 53 0.96
3H 2311 48 29 0.97 8016 90 45 0.97

GB base 24,558 157 122 0.68 113,195 336 245 0.58
1H 18,605 136 106 0.75 114,988 339 248 0.56
3H 17,593 133 105 0.81 94,924 308 222 0.65

LGBM base 9135 96 72 0.88 37,383 193 141 0.86
1H 7722 88 64 0.90 34,972 187 131 0.87
3H 5942 77 53 0.93 33,502 183 118 0.88

Median of
Models

base 13,118 114 75 0.83 64,784 251 159 0.76
1H 15,176 123 69 0.80 89,510 296 171 0.66
3H 12,382 111 63 0.86 64,554 254 118 0.76

Among the neural network-based models, the FFNN was the most accurate, with the
convolutional and recurrent architectures being much less accurate. Given three hours of
past features, FFNN presented an R2 of 0.99 and 0.97 for Incheon port and Haeundae beach,
respectively, and this ranks it as the best model. Given base and past one-hour features,
it ranks as the second-best for Incheon port and fourth and second for Haeundae beach.
Recurrent neural nets demonstrated the worst performance of 0.04 among the models
given base features, which is not surprising since the prediction was made only with a
single LSTM cell at each recurrent layer. Overall, except for the FFNN, both the RNN and
CNN ranked much worse than the other models when compared with their ranking in the
classification case.

Extremely random trees performed the best in most of the cases, just as in the clas-
sification case. Other tree-based ensemble models, such as bagging, random forest, and
Light GBM, performed on par with each other. The worst performance was demonstrated
by AdaBoost and SVR, with k-nearest neighbors performing slightly better. Overall, the
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regression results appeared to be quite accurate, and the dissipation time was predicted
within reasonable accuracy ranges.

Observing the median value of the overall performance of the regression models for
sea fog dissipation, we found the R2 values of Incheon and Haeundae to appear to be
similar, but the MSE, RMSE, and MAE of Incheon were observed to be lower by more than
half when compared with those of Haeundae (Figure 7). What is noteworthy here is that
the RNN model, which did not have a large difference in classification model prediction
performance in the features experiment, distinctively differed in prediction performance in
the regression models. The R2 difference between the model using base features and the
model using 3H features was 0.84. We confirmed once again that time-lagged data must be
used when using the RNN model as a regression model.
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5. Discussion

The tree-based ensemble models, together with neural network-based models, demon-
strated relatively high performance on both classification and regression tasks. In the
classification task, higher prediction accuracy was achieved when the period of predic-
tion lengthened from one hour to three hours. This was partly expected as more of the
cases fell under the dissipation case rather than non-dissipation as the prediction period
was extended.

The length of fog duration rose as the period of prediction increased since we grouped
fog cases that were within the prediction time frame. In Incheon port, the median duration
of fog was 0.67 h initially, and this doubled to 1.33 h under one-hour prediction and rose to
1.67 and 2.17 h under two- and three-hour prediction regimes, respectively. For Haeundae
beach, median fog duration started at 0.33 h and then rose to 1.17, 1.67, and 2.17 h as
the prediction period was extended. In both sites, as we grouped fogs that were within
one, two, and three hours, the median fog duration rose but not at the same pace as the
prediction time frame. This influenced non-dissipation and dissipation class distribution.
For Incheon under a one-hour prediction regime, 70% of the cases fell within the non-
dissipation class and 30% within the dissipation class. When the prediction period was
extended to three hours and the fog cases that were grouped were within three hours,
the distribution of the prediction classes changed, with 45% of the data falling within the
non-dissipation class and the rest within dissipation. Under the three-hour prediction
regime, the most extreme cases were grouped and fell within non-dissipation classes. Such
cases were outliers, more exceptional, and occurred under more differentiated weather
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conditions. This should make detecting non-dissipation cases easier than under the one- or
three-hour regimes, and similar assumptions should hold for the case of Haeundae beach.

For the classification task, the reason why the predictive performance of the ET model
was high is thought to be because the decision boundary was generalized through extreme
random variable modeling for a slight overfitting caused by a small amount of training
data. The reason the SVM and AB algorithms showed low predictive performance was
considered to be due to the fact that the learning model was not sufficiently optimized
with the default hyperparameters.

For the regression task, the three-hour prediction regime was selected as the basis
for grouping fog cases that happened within this time frame. This made the median
and maximum time to dissipation 2.50 and 38.50 h for Incheon, and 5.33 and 53.66 h for
Haeundae beach, respectively. As the predictions were made for grouped fog cases under
this time frame, we do not know how the results would be if other time frames were
chosen. Each model’s performance varied in terms of the number of features used, but the
increase in the accuracy was not always achieved as more time steps were included in the
input. The increase was positive for neural network-based models, k-nearest neighbors,
SVR, and some tree-based ensemble models. An increase is expected when the models
learn to condition on the past and perform more accurately. This was most evident in
the case of recurrent and convolutional neural nets. However, in the case of the random
forest and decision tree, more features confused the models with a net drop in R2. Similar
observations for the same classifiers were observed in the classification case under a one-
hour prediction regime. Overall, more features meant better performance for most of the
cases for classification and regression tasks.

Despite relatively few base features and high intercorrelation for some of them, the
outcome of the experiments demonstrated accurate results due to the use of machine
learning models. Higher performance may be achieved by more weather data included in
the base features and a longer observation time span. The latter is especially beneficial in
the case of neural network-based models, as they thrive on large amounts of training data.
Another dimension for improvement is to include other models with different architectures,
such as transformers [33], logistic or linear regression, lazy learning (e.g., one of the time
series prediction models) [34], and/or other machine learning methods.

6. Conclusions

In this work, we addressed fog dissipation prediction in Incheon port and Haeundae
beach of the Korean peninsula. Fog dissipation is a relatively under-researched area, with
more research available on fog prediction and forecasting. This causes the current research
results to be less comparable with previous research, and no benchmarking datasets were
used to compare the results.

The Korean peninsula is in East Asia, and the weather contrast is more distinct from
north to south and from east to west due to the distinct geography of its location. Two
studied sites that are important for the Korean economy and recreation, Incheon port and
Haeundae beach, are located in the northwest and southeast of the country, respectively.
Fog is more frequent in Haeundae beach and lasts longer than in Incheon port. Through
the experiments, we found that this was also reflected in the less accurate predictions for
Haeundae beach than those for Incheon port.

Our results demonstrate high prediction accuracy when dissipation prediction is
modeled as classification and regression tasks. CSI scores were within 0.82 and 0.96 for the
best models of classification depending on the prediction horizon for the classification task.
The score was higher when the prediction period was longer and when more past time
steps were included. Regression accuracy was also improved when past time steps were
included, but not for all models. The best model’s R2 ranged from 0.93 to 0.99 for Incheon
port and from 0.93 to 0.97 for Haeundae beach, depending on the past time steps used for
prediction, as shown in Table 7.
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Appendix A. Model Hyperparameters

CLS indicates classification model and REG indicates regression model.

Table A1. Hyperparameters of Sea Fog Dissipation Prediction Models.

Model Name Incheon Haeundae

Parameter CLS 1H CLS2H CLS 3H REG CLS 1H CLS 2H CLS 3H REG

FFNN
num_layers 3 3
units [521,256] [521,256]

CNN
num_layers 2 2
kernel_size 2 2
units [521,256] [521,256]

RNN
num_layers 2 2
units 64 64

KNN
n_neighbors 7 6 5 6 8 8 8 6
weights distance uniform uniform uniform distance distance distance uniform

SVM
C 45 65 68 71 68 71 65 71
kernel rbf rbf rbf linear rbf linear rbf linear

RF
max_depth 65 13 86 29 19 59 29 54
max_features 0.59 0.75 0.57 0.56 0.85 0.86 0.56 0.80
min_samples_split 4 4 5 2 4 4 2 2
n_estimators 178 219 139 365 451 460 365 423

ET
max_depth 40 65 32 82 56 79 96 43
max_features 0.75 0.59 0.91 0.83 0.62 1.00 0.85 0.66
min_samples_split 3 13 4 8 3 3 9 13
n_estimators 358 359 427 339 163 128 223 219

AdaBoost
algorithm SAMME.R SAMME.R SAMME.R SAMME.R SAMME.R SAMME.R
learning_rate 0.94 0.69 0.85 0.59 0.99 0.84 0.80 0.45
n_estimators 412 470 370 59 499 150 102 75

GB
max_depth 12 24 42 9 10 11 9 32
max_features 0.53 0.73 0.71 0.53 0.52 0.72 0.53 0.89
min_samples_split 26 9 6 14 26 6 14 16
n_estimators 386 250 498 414 400 324 414 388
subsample 0.60 0.93 0.81 0.74 0.76 0.82 0.74 0.79

Bagging
bootstrap False False False False False False False False
bootstrap_features True False True True False True False True
max_features 0.69 0.52 0.63 0.52 0.81 0.86 0.62 0.53
max_samples 0.80 0.85 0.85 0.80 0.62 0.97 0.83 0.98

https://data.kma.go.kr/
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Table A1. Cont.

Model Name Incheon Haeundae

Parameter CLS 1H CLS2H CLS 3H REG CLS 1H CLS 2H CLS 3H REG

DT
criterion entropy entropy gini friedman_mse gini gini gini mse
max_depth 246 67 475 434 351 494 354 117
max_features 0.92 0.75 0.76 0.51 0.86 0.92 0.82 0.95
min_samples_split 5 2 5 5 5 5 7 2
splitter random best random random random best random best

LGMB
bagging_fraction 0.96 0.85 0.83 0.73 0.96 0.95 0.80 0.95
feature_fraction 0.62 0.68 0.85 0.66 0.96 0.86 0.63 0.72
learning_rate 0.20 0.20 0.20 0.05 0.20 0.20 0.05 0.10
num_leaves 24 30 24 20 21 23 30 26
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