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Abstract: Public bikesharing systems have rapidly expanded across many cities in the United States (US).
Previous studies in the literature found that, in general, bikesharing is associated with public transit
ridership. However, the interdependencies between public transit usage and bikesharing behaviors
have been mixed and have not been fully understood. Therefore, the objective of this research is
to examine the associations between the frequency of public transit usage and the probability and
frequency of bikesharing usage in the US using data from the 2017 National Household Travel Survey.
The respondents were asked how many times they had used public transit and bikesharing in the last
30 days. Zero-inflated negative binomial regression models were conducted to assess the associations
between the frequency of public transit usage and the probability and frequency of bikesharing
usage. The results show that, in general, a one-unit increase in the frequency of public transit usage
is significantly associated with a 4.0% increase in the probability of bikesharing usage and a 1.4%
increase in the frequency of bikesharing usage. The significantly positive relationship between
the frequency of public transit usage and the frequency of bikesharing usage is more pronounced
among those living in areas with higher population density or with rail service. The empirical
results demonstrate that public transit usage is significantly positively associated with bikesharing
usage, and suggest policy implications that improving public transit usage tends to increase the
usage of bikesharing. This study also provides significant empirical evidence for the formulation
of interventions and policies targeting to promote integrated transportation systems that support
multimodal transportation and mutually sustainable transport networks.
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1. Introduction

Bikesharing systems are also called public bicycle systems, in which bicycles are available at
docking stations that are located throughout a city for shared use. The systems provide publicly
available bicycles to customers for temporary rental and allow for users to borrow a bicycle from
any nearby station and to return it to another station with an available dock belonging to the
system. Bikesharing programs have existed for more than 50 years since the first program in 1965 in
Amsterdam [1]. Due to the development of IT and mobile IT devices, bikesharing systems have rapidly
expanded throughout the world over the last decade [2,3]. Contemporary bikesharing systems include
technologies that allow for scheme operators to track the movements of all the bicycles with integrated
global positioning system (GPS) throughout the network.

Bikesharing programs have numerous benefits, offering flexible mobility by providing alternatives
to active transportation; reducing car usage and emissions; contributing to healthy living and physical
activity benefits; reducing the incidence of various diseases (e.g., diabetes and obesity); reducing fuel
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use, total vehicle miles travel and traffic congestion; contributing to individual money savings; and,
providing support for multimodal transport connections [1,2,4–8]. The previous studies on bikesharing
investigated aspects, such as demand estimation [9,10], rebalancing strategies [11–15], and factors that
influence bikesharing usage [16–22].

Previous studies in the literature found that, in general, bikesharing is associated with public
transit ridership [23–25]. However, the interdependencies between public transit usage and bikesharing
behaviors have been mixed and have not been fully understood. Bikesharing may be associated with
public transit ridership in a number of ways. First, a bikesharing system may have a substitute
relationship with the existing public transit network. A person can use bikesharing as a substitute for
public transit, resulting in a loss of public transit ridership. Second, a bikesharing system may have
a complementary relationship with the public transit system. The complementary association may
lead to an increase in public transit ridership, which is common in solving the first-mile/last-mile
problem [1]. Third, bikesharing could be used for recreational purposes, which would have no impact
on public transit usage. For different users or at different times, bikesharing usage could be interrelated
with public transit ridership in any of these three ways.

The number of bikesharing systems in the US has steadily increased year over year since 2010
when the first modern bikesharing systems were launched, from four systems with 1600 bikes in 2010
to 55 systems with 42,000 bikes in 2016 [26]. The vast majority of all bikesharing rides are generated by
the country’s largest systems. The five largest bikesharing systems generate 85% of all bikesharing
trips, which are Citi Bike in New York, Citi Bike in Miami, Divvy in Chicago, Capital Bikeshare
in Greater Washington DC, and Hubway in Greater Boston. Figure 1 documents the expansion of
bikesharing trips across the US from 2010 to 2016. The introduction of large bikesharing systems in
2013 resulted in the explosive growth of bikesharing ridership: from just 0.32 million (M) trips in 2010
and 4.5 million trips in 2012, to 13 million trips in 2013 and over 28 million trips in 2016.
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Figure 1. Expansion of bikesharing trips in the US from 2010 to 2016 (The data used in this figure are
from NACTO (https://nacto.org/bike-share-statistics-2016/)).
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However, it remains unclear how bikesharing is associated with public transit usage. Previous
studies used the data from particular cities or systems [23–25] to understand the associations between
bikesharing and public transit usage, and did not consider the characteristics of those who rarely
or never used the bikesharing service. The objective of this research is to examine the associations
between the frequency of public transit usage (FPTU, the number of times of respondent’s public
transit usage in the last 30 days) and probability of bikesharing usage (PBSU, whether the respondent
has used at least once or never used bikesharing in the last 30 days) and frequency of bikesharing usage
(FBSU, the number of times of respondent’s bikesharing usage in the last 30 days) in the US using the
2017 National Household Travel Survey (NHTS) data, in which the respondents were asked how many
times they had used public transit and bikesharing in the last 30 days. Zero-inflated negative binomial
regression models (ZINB) were used to assess the associations between FPTU and PBSU and FBSU.
The results show that, in general, a one-unit increase in FPTU is significantly associated with a 4.0%
increase in PBSU and a 1.4% increase in FBSU. Empirical results demonstrate that public transit usage
is significantly positively associated with bikesharing usage and suggest the policy implications that
improving public transit usage tends to increase the usage of bikesharing. This study also provides
significant empirical evidence for the formulation of interventions and policies targeting to promote
integrated transportation systems that support multimodal transportation and mutually sustainable
transport networks.

The rest of the paper is organized as follows. Section 2 offers a brief review of previous studies on
associations between public transit and bikesharing. In the third section, we describe the data that was
used in this analysis. Section 4 presents the methodology, and results are provided in the fifth section,
followed by the discussion of the model estimation results in the sixth section. Finally, we conclude in
the last section.

2. Literature Review

There are three possible relationships between bikesharing and public transit: complementary
relationship, substitution relationship, or no relationship [24]. Ricci [27] notes that many researchers
have paid attention to understanding the modal shift from public transit to bikesharing and the
findings regarding how much bikesharing may shift people away from public transit are mixed.
Numerous studies have found that bikesharing usage can be predicted by variables relating to public
transit ridership [19,28–31]. A limited number of studies have examined the associations between
bikesharing and public transit. We have found several most relevant studies on these themes and
discussed them in detail in the following paragraphs.

Concerning the complementary situation, bikesharing operators locate stations and infrastructure
near public transit stops in order to facilitate conjunction between these two transport modes [2].
Bikesharing systems set bicycles at locations next to public transit stations to offer efficient solutions
to complete first-mile/last-mile connections to public transit networks [1] and reduce pressure
on expanding public transit services [32,33]. Noland et al. [33] found that, in New York City,
the bikesharing usage was higher in the bikesharing stations that were located next to subway stations
with a high frequency of average monthly subway ridership. Using regression analysis, Ma et al. [32]
found that a 10% increase in Capital Bikeshare ridership was interrelated with a 2.8% increase in
Metrorail trips. A strong relationship was found between bikesharing docking station trips and
train station boardings in Melbourne, Australia, and this relationship was most pronounced during
peak hour periods [34]. In Jiangyin, China, 42% of bikesharing trips were found to be connected to
public transit stations [35]. In addition, Yang et al. [36] found that in Beijing, China, 58.4% of people
reported that they combined metro systems with bikesharing programs, while the number was 55% in
Shanghai, China.

The substitution situation refers to trips made by bikesharing that were previously made by
public transit [2]. Bikesharing provides an affordable alternative to public transit for short-distance
trips, particularly during the peak hour when bikesharing may move faster than public transit systems
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within dense transportation networks. In bikesharing member surveys, many people report that they
will reduce their public transit usage as a result of bikesharing, although the effect sizes may vary
across cities and even within a city [37–41]. In London, 35% of bikesharing users report that they shift
away from underground rail systems to bikesharing usage [42]. Murphy and Usher [41] conducted
a survey and found that, in Dublin, Ireland, 34.6% of the respondents use bikesharing as a substitute
for public transit. Fuller et al. [40] found that 3% of people who did not use bikesharing reported
that they would shift to public transit as a result of bikesharing. Martin and Shaheen [23] conducted
a survey in several cities in the US (Washington DC, the Twin Cities, Montreal, and Toronto), and found
that 17% to 47% of respondents reported that they shifted away from bus systems usage to bikesharing
usage, while only 2% to 14% of the respondents reported that they increased their bus usage as a result
of bikesharing. The authors also found that in Washington DC, bikesharing members who live in the
urban core areas had a higher possibility of reporting that they decreased their bus systems use as
a result of bikesharing, while the respondents who live in the urban periphery areas showed a higher
possibility of reporting increases in bus use. Therefore, depending on different circumstances of the
travelers and the urban built environments, bikesharing may increase or decrease individuals’ public
transit usage. Shaheen et al. [38] also pointed out that, most of the respondents used bikesharing as
a substitution for bus systems, while some members used bikesharing as a complement to buses.

In the situation with no relationship between the two modes of travel, bikesharing may be used
for recreational purposes, which would have no impact on public transit ridership. In Chattanooga,
Tennessee, Webster and Cunningham [43] studied individuals’ beliefs and attitudes toward bikesharing
in order to have a better understanding of the best way to implement bikesharing programs in the
city using data from a series of focus groups. The respondents believed that bicycling could be a good
form of physical activity, but they would not choose biking as a primary transportation mode.

Table 1 lists several studies that have examined the associations between bikesharing and public
transit in different cities and countries. Table 1 shows that the literature relies on different data
sources and variables to analyze the relationship between these two transport modes. Previous studies
focusing on the associations between bikesharing and public transit relied on bikesharing systems’
data, which consider people who use bikesharing, but not those who rarely or never use bikesharing.
In addition, the variables that were used in previous studies for examining the interrelationships
between two modes are mainly count of trips for bikesharing docking stations and public transit
stations, or the modal shift to bikesharing from public transit, there are few studies considering the
associations between the number of times of bikesharing usage by individuals and the frequency of
public transit usage. This study developed ZINB models to examine the associations between the
frequency of public transit usage and the probability and frequency of bikesharing usage using the
2017 NHTS data.

Table 1. Studies and variables used for examining the associations between bikesharing and
public transit.

Study Country/City Data Source Main Variables

Campbell and
Brakewood (2017) [24] US/New York Station-level data Bikesharing docks and daily unlinked bus

station trips

Noland et al. (2016) [33] US/New York Station-level data Count of trips for each bikesharing docking station
and monthly subway station ridership data

Murphy and Usher
(2015) [41] Ireland/Dublin Survey Whether or not respondent uses bikesharing as

a substitute for public transit

Ma et al. (2015) [32] US/Washington DC Station-level data Average daily weekday Metrorail station ridership
and total ridership of all CaBi bikesharing stations

Martin and Shaheen
(2014) [23] US/Washington DC and Minneapolis Survey The ordinal variable of bus usage as a result

of bikesharing

Shaheen et al. (2013) [38] US and Canada/Twin Cities,
Washington DC, Montreal and Toronto Survey The ordinal variable of bus usage as a result of

bikesharing

Buck et al. (2013) [39] US/Washington DC Survey Percent of public transit trips replaced by
bikesharing ridership

Shaheen et al. (2011) [35] China/Hangzhou Survey Self-assessment of the impact of bikesharing on
public transit usage (5-point Likert scale)
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3. Data

3.1. Data Source

The 2017 NHTS is the most recent population-based nationwide survey conducted by the U.S.
Department of Transportation (USDOT), which collects information on personal travel behaviors
that were undertaken by members of selected households on a randomly assigned survey day [44].
The NHTS provides data on individual and household travel behavior trends linked to economic,
demographic, and geographic factors that influence travel decisions and are used to forecast travel
demand. The data collection comprised of two phases: a household recruitment survey (phase 1) and
a person-level retrieval survey (phase 2). The 2017 NHTS used address-based sampling with mail-back
as the primary recruitment survey response mode and the phone or web as secondary response
options, while the person-level retrieval survey phase offered both phone and web response options.
The data had a weighted household-level response rate of 30.4% and a person-level response rate of
51.4%, and the overall weighted response rate was 15.6%. The 2017 NHTS, which was conducted from
March 2016 to May 2017, included detailed travel data on 264,234 individuals belonging to 129,696
households. The 2017 NHTS collected data on respondent demographic characteristics (gender, age,
driver and worker status, etc.) and household socio-economic characteristics (income, number of
workers, and housing type/neighborhood characteristics).

In this study, data from nine states in the US (California, Texas, New York, North Carolina,
Georgia, South Carolina, Iowa, Florida, and Illinois) were included in our analysis because bikesharing
is more popular in these states. 20,925 people in these nine states answered the question of bikesharing
usage (how many times have you used bikesharing in the last 30 days). We excluded 3105 people
from our analysis because there were missing data on key variables (e.g., the number of times of
public transit usage, age, gender, household income level, etc.), leaving 17,824 individuals for analysis.
The statistical software STATA 13.1 was used for all of the analyses in this study.

3.2. Descriptive Analysis of Bikesharing Usage

Respondents were asked to report the number of times that they had used bikesharing and public
transit (e.g., bus travel and rail travel) in the last 30 days. Figure 2 shows that most of the respondents
reported that they have not used bikesharing at all or that they have used it only once in the last
30 days. In total, 16,850 (94.54%) people have not used a bikesharing service in the last 30 days, and 974
(5.46%) respondents have used the bikesharing service 1~99 times. Among those who have used
bikesharing 1~99 times in the last 30 days, 203 (20.84%) people have used it once, and the majority
have used it no more than five times (556, 57.08%), meanwhile, 187 (19.20%) individuals have used it
6~10 times; 161 (16.53%) individuals have used it 11~20 times; and, 70 (7.19%) individuals have used
bikesharing 21~99 times.

For count outcome, ZINB models were conducted in this study. The sample size is 17,824,
with 16,850 zero counts and 974 non-zero counts for the number of times of bikesharing usage
in the last 30 days. A two-sided p-value of less than 0.05 was considered to be statistically significant
in our study. Statistical power was estimated on the basis of a binomial test with unequal sizes
(ratio = 0.0546/0.9454, the proportion of zero counts/the proportion of non-zero counts). In this case,
the sample size of 17,824 with a significance level of 0.05, the statistic power is 1. So, the sample size of
17,824 is sufficiently large to provide sufficient statistical power.

Figure 3 shows how the average monthly bikesharing usage for each person per month varies
by monthly public transit usage. For all of the following figures, part (a) includes those who use
bikesharing more than once in the last 30 days, and part (b) includes all of the people in the sample.
In general, the monthly frequency of public transit usage is positively associated with individual’s
average monthly bikesharing ridership. The average monthly bikesharing ridership for all the people
in the sample is 0.46, while for those who have used bikesharing in the last 30 days, the number is 8.36.
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Figure 2. Frequency distribution of monthly bikesharing usage for those who use bikesharing in the
last 30 days: (a) 0~99 times; (b) 1~99 times.
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Figure 3. Average monthly bikesharing usage varying by public transit usage for those who use
bikesharing in the last 30 days: (a) 1~99 times; (b) 0~99 times.

Figures 4 and 5 show how the associations between bikesharing ridership and public transit
usage vary by personal characteristics, including gender, age, education level, race, worker status and
driver status. In all of the following figures, the X-axis represents the frequency of public transit usage:
0 = 0 times, 1 = once, 2 = twice, 3 = 3 times, 4 = 4 times, 5 = 5 times, 6 = 6~10 times 7 = 11~20 times,
8 = 21~30 times, 9 = 31+ times. On average, men use bikesharing more frequently than women.
Very similar patterns for the associations between bikesharing and public transit usage are observed for
males and females, white and non-white people, and workers and non-workers, while the relationships
are more sensitive to different age groups, education levels and driver status. For the 18~ 44 age group,
bikesharing ridership is positively associated with public transit usage, and those who are under
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17 years old use bikesharing less frequently than people in other age groups do. Individuals with lower
education levels use bikesharing more frequently than those with higher education levels. The curve
increases rapidly in most cases from value 8 on the x-axis shows an obvious positive relationship
between public transit usage and bikesharing ridership, indicating that those who have used public
transit more than 21 times in the last 30 days use bikesharing more frequently.
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Figure 4. Associations between bikesharing and public transit varying by gender, age, and education
level for those who use bikesharing in the last 30 days: (a) 1~99 times; (b) 0~99 times.
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Figure 6 shows how the associations between bikesharing ridership and public transit usage
vary by household characteristics, including annual household income level and count of household
vehicles. There are no major differences among households with different income levels. Individuals
in households without any vehicles show the highest frequency of bikesharing usage, and also those in
households with only one vehicle show a higher frequency of bikesharing usage than those with more
than one vehicle. Individuals in households with more than one vehicle show no positive relationships
between bikesharing ridership and public transit usage.

Figure 7 shows how the relationships between bikesharing ridership and public transit usage vary
by regional characteristics, including population density (persons per square mile at home location),
rail service status and urban status. The relationships are similar among different groups, meaning
that bikesharing ridership is positively associated with public transit usage within all of the groups.
Generally, the higher the population density at the home location, the more frequently individuals
would use bikesharing. People who live in areas with heavy rail service also have higher frequency of
bikesharing usage than those that are living in areas without heavy rail service.

Figure 8 shows how bikesharing ridership varies by month and how the associations between
bikesharing ridership and public transit usage vary by season. The mean number of bikesharing
ridership shows that individuals use bikesharing more frequently in summer and fall than in winter
and spring. This may be because people feel more comfortable to ride bicycles under the pleasant
weather and thus, people are more willing to engage in bikesharing usage under such conditions.
Concerning the relationships between two modes, summer and fall show similar trends, while winter
and spring show similar trends. In general, individuals who travel in summer or autumn show a higher
frequency of bikesharing usage than those who travel in spring or winter do.
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Figure 6. Associations between bikesharing and public transit varying by household characteristics for
those who use bikesharing in the last 30 days: (a) 1~99 times; (b) 0~99 times.
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Figure 8. Average monthly bikesharing ridership varying by month and season for those who use
bikesharing in the last 30 days: (a) 1~99 times; (b) 0~99 times.

3.3. Variable Definitions and Descriptive Statistics

The dependent variable, Bikeshare, is the number of times that a respondent reported that she/he
had used bikesharing in the last 30 days. The mean number of bikesharing usage for the whole sample
is 0.46. The main independent variable, Ptused, is the frequency of public transit usage in the last
30 days. The average public transit ridership for each person is 1.60. Variable definitions and their
descriptive statistics are shown in Table 2.
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Table 2. Variable definition and descriptive statistics.

Variable Definition Obs Mean Std. Dev. Min Max

Dependent variable

Bikeshare Frequency of bikesharing usage in the last 30 days 17,824 0.457 3.170 0 99

Independent variables

Ptused Count of public transit usage in the last 30 days 17,824 1.602 5.656 0 190

Individual characteristics

Female Respondent is female (Yes = 1, No = 0) 17,824 0.385 0.487 0 1

Age Respondent’s age (years) 17,824 48.297 16.388 16 92

Education Respondent’s education level: 1 = less than high school, 2 = high school/GED, 3 = some college/associate,
4 = bachelor, 5 = graduate/professional 17,824 3.662 1.171 1 5

White Respondent’s race is white (Yes = 1, No = 0) 17,824 0.843 0.364 0 1

Worker Respondent is a worker (Yes = 1, No = 0) 17,824 0.655 0.475 0 1

Driver Respondent is a driver (Yes = 1, No = 0) 17,824 0.925 0.264 0 1

Household characteristics

HHincome
Household income level: 1 = less than $10,000, 2 = $10,000 to $14,999, 3 = $15,000 to $24,999, 4 = $25,000 to $34,999,
5 = $35,000 to $49,999, 6 = $50,000 to $74,999, 7 = $75,000 to $99,999, 8 = $100,000 to $124,999, 9 = $125,000 to
$149,999, 10 = $150,000 to $199,999, 11 = $200,000 or more

17,824 6.827 2.694 1 11

HHvehcount Count of household vehicles 17,824 2.214 1.236 0 12

Geographical characteristics

Pdensity Population density (persons per square mile) in the census block group of household’s home location in log 17,824 7.499 1.685 3.91 10.31

Rail Home location has heavy rail service (Yes = 1, No = 0) 17,824 0.166 0.372 0 1

Urban Household is in an urban area (Yes = 1, No = 0) 17,824 0.828 0.378 0 1

Season

Spring The survey was conducted in March, April, or May 17,824 0.179 0.383 0 1

Summer The survey was conducted in June, July, or August 17,824 0.396 0.489 0 1

Fall The survey was conducted in September, October, or November 17,824 0.210 0.407 0 1

Winter The survey was conducted in December, January, or February 17,824 0.216 0.411 0 1
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We controlled for four groups of variables that may affect individuals’ bikesharing behaviors.
First, NHTS provides a wide range of individual characteristics. The demographics of travelers are
measured by gender (Female), age (Age), level of education (Education), whether the respondent’s
race is white (White), whether the respondent is a worker (Worker), and whether the respondent is able
to drive (Driver). Second, a respondent’s household is characterized by the household income level
(HHincome) and count of household vehicles (HHvehcount). Third, the regional characteristics are
measured by the population density at the home location (Pdensity), whether there is heavy rail service
in the region (Rail), and whether the home is located in an urban area (Urban). Finally, the season
(Season) is also considered as a control variable.

4. Methodology

4.1. Model Selection

In this analysis, the dependent variable was the number of times of bikesharing service usage,
which was coded as a discrete non-negative count variable in the dataset. The most appropriate
methodological techniques for frequency modeling of count variable as a predicted variable of
a statistical model include Poisson regression, negative binomial regression (NB), zero-inflated Poisson
regression (ZIP), and zero-inflated negative binomial regression (ZINB) [45,46].

The Poisson regression count model requires that the variance of the data must be approximately
equal to the mean; however, the possibility of over-dispersion (meaning that the variance is obviously
larger than the mean of the data) may lead to biased, inefficient coefficient estimates [47]. NB regression
models are more suitable to be used as the statistical models when the data are over-dispersed [48].
However, the Poisson regression model and the NB model could not address the possibility of
zero-inflated problems when the data have excess zero counts for the predicted variable [49]. The ZIP
models and ZINB models could account for the zero-inflated counting processes, by dividing the
counting processes into two different processes (the true zero-state process and the count-data process)
and allowing for factors to affect both processes [50]. The ZIP models have a limitation that the variance
and the mean should be equal, while the ZINB models relieve the restriction [50].

The ZINB models are often used in transportation safety research fields [48]. Crash-frequency data
are non-negative, discrete count values, and the ZINB model could account for the over-dispersion
problem and handle datasets that have excess zero-crash observations [48]. A review of studies on
traffic safety shows that the zero-inflated models are more appropriate for the analyses than the other
models when the zero counts in the observations are over 65% [51]. Shen and Neyens [52] conducted
ZINB models to examine the relationship between hospital length of stay of teen drivers with the
crash-related characteristics, and the zero counts of hospital length of stay are 94.2% and 96.7% for male
and female teen drivers, respectively. As the data for our analysis are over-dispersed (the variance of
bikesharing usage in the last 30 days is significantly greater than the mean) and zero-inflated (zero
counts of bikesharing usage in the last 30 days are 94.54%), the ZINB model is the best model to fit
the data.

4.2. Zero-Inflated Negative Binomial Regression Model

The following sections present ZINB distributions, the general forms of the ZINB mixed model,
and provide brief descriptions of its application in our analysis.

4.2.1. ZINB Distribution

The ZINB models assume that there are two different data generation processes [53,54]. The first
process is a zero-count process (zero state, odds of always 0) with probability p, and the second
process is a count process (non-zero state, odds of not always being 0) that is governed by an NB with
a probability of (1 − p), which also generates zero counts in this process. To get the overall probability
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of zero counts, we should combine the probability of zeros from both of the two processes. Thus, with Y
denoting the number of times of bikesharing usage, the ZINB distribution [55] could be written as:

P(Y = 0) = p + (1− p)
(

r
µ + r

)r
(1)

P(Y = y) = (1− p)
Γ(y + r)

Γ(r)Γ(y + 1)

(
r

µ + r

)r( µ

µ + r

)y
y = 1, 2, 3, ... (2)

where µ is the mean and r−1 is the dispersion parameter of the underlying NB distribution. The mean
and variance of the ZINB random variable are:

E(Y) = (1− p)µ (3)

Var(Y) = (1− p)
(

1 +
µ

r
+ pµ

)
µ (4)

As r → ∞ , r−1 → 0 , Var(Y)→ (1− p)(1 + pµ)µ , the ZINB distribution reduces to the
ZIP distribution.

4.2.2. ZINB Mixed Model

Let Yij(i = 1, 2, ...m; j = 1, 2, ...ni and
m
∑

i=1
ni = n represents the total number of observations) be

the ZINB distributed random variable of the j-th observation in the i-th cluster. We can see from
Formulas (5) and (6) that, in the regression setting, both logit(pij) and log(µij) are assumed to depend
on a linear function of covariates. The covariates that appear in these two formulas could be different
and they are not necessarily the same. The ZINB mixed model is defined, as follows:

logit(pij) = Xij
T

β + µi (5)

log(µij) = Zij
T

γ + νi (6)

where Xij are the vectors of covariates for the logistic component and Zij are the vectors of covariates
for the NB component; β and γ are, respectively, the corresponding vectors of coefficients of these two
regression models. Let µ = (µ1, ..., µm)

T and ν = (ν1, ..., νm)
T . For simplicity, we assumed the random

effects µ and ν to be independent and distributed as N(0, σ2
µ Im) and N(0, σ2

ν Im) , respectively, where Im

denotes an m×m identity matrix. For model estimation, we use maximum likelihood methods to
estimate the coefficients of the ZINB models.

4.2.3. Application of ZINB Model

To achieve the overall goals of this study, we used three ZINB models to estimate the associations
between the bikesharing ridership and public transit usage. The zero-inflated problem (large number
of zero counts of bikesharing usage in the last 30 days) could potentially be addressed by a two-state
process, in which the frequency of bikesharing usage could belong to one of two states: a zero state
(odds of always 0) and a non-zero state (not always 0). For our ZINB regression model, Xij and Zij
are the same. The logistic component (zero state) is used to examine the association between FPTU
and PBSU, while the NB component (non-zero state) is used to examine the association between FPTU
and FBSU.

5. Results

We conducted ZINB models to examine the associations between bikesharing behaviors and
public transit usage. Overall, the results indicate a significant positive relationship between bikesharing
ridership and public transit usage. Locating bikesharing stations in areas with more residential
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population tends to lead to more bikesharing usage [33], so we conducted ZINB models to examine
how the associations between bikesharing and public transit usage vary by population density at home
location. Noland et al. [33] found that, in New York City, bikesharing stations that are located near
subway stations saw higher bikesharing ridership, so we also conducted ZINB models to examine
how the relationship between bikesharing and public transit usage varies by rail service status at
home location.

5.1. Results for Associations between Bikesharing and Public Transit Usage

Table 3 presents the results from the ZINB model. The marginal effects (eγ − 1) in the non-zero
state represent the percentage of change in the monthly FBSU for a one-unit change in an independent
variable, holding all the other variables constant. A one-unit increase in public transit usage
significantly increases a respondent’s FBSU by 1.4%, and the result is significant at the 0.05% level.
The marginal effects (eβ − 1) for the zero state refer to the change in the PBSU for a one-unit change in
an independent variable, holding all the other variables constant. A negative marginal effect indicates
that the respondent is less likely to have a zero times of bikesharing usage and thus is more likely to
use bikesharing at least once in the last 30 days, meaning a higher PBSU. A one-unit increase in public
transit usage significantly increases a respondent’s PBSU by 4.0%, and the result is significant at the
0.001% level.

Table 3. ZINB model results (dependent variable: Bikeshare).

Variables Coef. Std. Err. z Value p Value Marginal Effects

non-zero state (not always 0)

Ptused 0.014 * 0.006 2.37 0.018 1.4%
Female −0.199 * 0.101 −1.97 0.048 −18.0%

Age 0.002 0.003 0.69 0.488 0.2%
Education −0.067 0.048 −1.37 0.169 −6.4%

White 0.008 0.117 0.07 0.947 0.8%
Worker 0.120 0.116 1.04 0.299 12.8%
Driver −0.400 * 0.183 −2.18 0.029 −32.9%

HHincome 0.003 0.020 0.16 0.872 0.3%
HHvehcount −0.122 * 0.048 −2.56 0.011 −11.5%

Pdensity −0.008 0.043 −0.19 0.848 −0.8%
Rail 0.001 0.134 0.01 0.992 0.1%

Urban 0.046 0.191 0.24 0.811 4.7%
Spring −0.573 *** 0.161 −3.55 0.000 −43.6%

Summer −0.215 0.132 −1.63 0.103 −19.3%
Winter −0.471 ** 0.145 −3.26 0.001 −37.6%

Intercept 2.596 *** 0.375 6.92 0.000

zero state (odds of always 0)

Ptused −0.041 *** 0.006 −6.80 0.000 −4.0%
Female −0.260 *** 0.076 −3.42 0.001 −22.9%

Age 0.003 0.002 1.20 0.232 0.3%
Education 0.084 * 0.037 2.28 0.022 8.7%

White 0.522 *** 0.091 5.73 0.000 68.6%
Worker −0.188 * 0.088 −2.14 0.032 −17.2%
Driver −0.699 *** 0.150 −4.67 0.000 −50.3%

HHincome 0.072 *** 0.016 4.49 0.000 7.5%
HHvehcount 0.074 * 0.037 2.01 0.045 7.7%

Pdensity −0.049 0.033 −1.46 0.144 −4.7%
Rail −0.689 *** 0.096 −7.20 0.000 −49.8%

Urban 0.216 0.145 1.48 0.138 24.1%
Spring −0.006 0.124 −0.05 0.964 −0.6%

Summer −0.086 0.099 −0.88 0.381 −8.3%
Winter −0.267 * 0.111 −2.41 0.016 −23.4%

Intercept 2.299 *** 0.296 7.78 0.000

Number of obs 17,824
Nonzero obs 974

Zero obs 16,850
Log likelihood −6478.468

LR chi2 54.35 ***

p-value: * p < 0.05; ** p < 0.01; *** p < 0.001.
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Table 3 also shows the results for the control variables. Women are 22.9% more likely to use
bikesharing, but they use it 18% less frequently than men do. The likelihood of using bikesharing
is 8.7% higher among individuals with lower education levels than it is among those with higher
education levels. Being a worker significantly increases the likelihood of using bikesharing by 17.2%.
Being able to drive raises a traveler’s odds of using bikeshring by 50.3% but it shows a statistically
significant negative effect on FBSU, which means that those who are able to drive have a 32.9% lower
frequency of using bikesharing than non-drivers. When the household income level increases by one
level, the likelihood that the respondent uses bikesharing decreases by 7.5%. The number of vehicles in
a household has a significant negative effect on PBSU and FBUS. On average, one additional household
vehicle decreases a respondent’s PBSU by 7.7% and FBUS by 11.5%. It is not difficult to explain that
having more household vehicles decreases individuals’ frequency and probability of using bikesharing
because they have more opportunities to drive their own vehicles. Generally, people who travel in
spring and winter use bikesharing less frequently than those who travel in autumn. This result may be
because people are not willing to ride bicycles in uncomfortably cold weather.

5.2. Results Varying by Population Density

ZINB models were also used to examine how the relationships between bikesharing and public
transit vary by population density. Population density was divided into two groups: high population
density (more than 2000 persons per square mile at the home location) and low population density
(less than 2000 persons per square mile at the home location). The results were reported in Table 4.
The results show a significantly positively association between public transit usage and bikesharing
ridership for the high population density group, but it was not statistically significant for the low
population density group. For individuals living in an area of higher population density, a one-unit
increase in public transit usage significantly increases a respondent’s FBSU by 1.6%, and the result is
significant at the 0.05% level. This result suggests that this positive relationship between FPTU and
FBSU is more pronounced in the high population density group. The FPTU is significantly positively
associated with PBSU at the 0.001% level for both of the groups. One interesting observation is that
among the high population density group, those who live in urban area show a 496.7% increase in the
frequency of bikesharing usage. This may be explained by the higher bikesharing availability in urban
areas with higher population density.

5.3. Results Varying by Rail Service Status

Table 5 shows how the associations between bikesharing and public transit vary by rail service
status at the home location. If the area has rail service, a one-unit increase in public transit usage is
positively associated with a 2.1% increase in bikesharing usage with significance at the 0.01% level.
The relationship between FPTU and FBSU is not significant for those that are living in areas without rail
service. This suggests that people may use bikesharing as a complement to rail ridership. The FPTU is
significantly positively associated with PBSU at the 0.001% level for both groups.



Sustainability 2018, 10, 1868 15 of 20

Table 4. Associations between bikesharing and public transit varying by population density.

High Population Density (Dependent Variable: Bikeshare) Low Population Density (Dependent Variable: Bikeshare)

Variables Coef. Std. Err. z Value p Value Marginal Effects Coef. Std. Err. z Value p Value Marginal Effects

non-zero state (not always 0) non-zero state (not always 0)

Ptused 0.016 * 0.007 2.36 0.018 1.6% 0.014 0.013 1.09 0.277 1.4%
Female −0.114 0.117 −0.97 0.331 −10.7% −0.495 ** 0.181 −2.73 0.006 −39.1%

Age 0.004 0.004 1.13 0.260 0.4% −0.005 0.006 −0.88 0.377 −0.5%
Education −0.095 0.057 −1.67 0.094 −9.1% 0.087 0.091 0.96 0.336 9.1%

White 0.057 0.132 0.43 0.668 5.8% 0.101 0.242 0.42 0.676 10.6%
Worker 0.119 0.143 0.83 0.405 12.6% 0.051 0.204 0.25 0.803 5.2%
Driver −0.378 0.208 −1.81 0.070 −31.4% −0.541 0.365 −1.48 0.138 −41.8%

HHincome −0.004 0.022 −0.20 0.845 −0.4% 0.013 0.043 0.31 0.758 1.3%
HHvehcount −0.132 * 0.054 −2.43 0.015 −12.4% −0.108 0.087 −1.24 0.215 −10.2%

Rail 0.037 0.139 0.26 0.793 3.7% −0.034 0.328 −0.11 0.916 −3.4%
Urban 1.786 * 0.736 2.43 0.015 496.7% 0.101 0.181 0.56 0.579 10.6%
Spring −0.425 * 0.187 −2.27 0.023 −34.6% −0.961 ** 0.297 −3.24 0.001 −61.8%

Summer −0.013 0.153 −0.08 0.933 −1.3% −0.836 *** 0.250 −3.35 0.001 −56.7%
Winter −0.370 * 0.170 −2.17 0.030 −30.9% −0.834 ** 0.261 −3.20 0.001 −56.6%

Intercept 0.604 0.740 0.82 0.414 3.075 *** 0.459 6.71 0.000

zero state (odds of always 0) zero state (odds of always 0)

Ptused −0.035 *** 0.006 −5.60 0.000 −3.4% −0.067 *** 0.014 −4.83 0.000 −6.5%
Female −0.276 ** 0.090 −3.08 0.002 −24.1% −0.228 0.141 −1.62 0.105 −20.4%

Age 0.005 0.003 1.72 0.085 0.5% −0.002 0.005 −0.38 0.701 −0.2%
Education 0.08 0.044 1.84 0.066 8.4% 0.101 0.068 1.49 0.137 10.6%

White 0.549 *** 0.104 5.28 0.000 73.2% 0.557 ** 0.189 2.95 0.003 74.6%
Worker −0.277 * 0.108 −2.57 0.010 −24.2% −0.053 0.153 −0.34 0.731 −5.1%
Driver −0.765 *** 0.170 −4.51 0.000 −53.5% −0.521 0.312 −1.67 0.095 −40.6%

HHincome 0.051 ** 0.019 2.72 0.007 5.2% 0.121 *** 0.031 3.86 0.000 12.9%
HHvehcount 0.170 *** 0.047 3.64 0.000 18.5% −0.072 0.057 −1.25 0.211 −6.9%

Rail −0.741 *** 0.101 −7.37 0.000 −52.3% −0.499 * 0.246 −2.03 0.042 −39.3%
Urban 1.241 0.728 1.70 0.088 245.9% −0.038 0.140 −0.27 0.786 −3.7%
Spring −0.029 0.146 −0.20 0.843 −2.9% 0.062 0.233 0.27 0.789 6.4%

Summer −0.036 0.116 −0.31 0.755 −3.6% −0.238 0.186 −1.28 0.200 −21.2%
Winter −0.25 0.131 −1.91 0.056 −22.1% −0.304 0.207 −1.47 0.142 −26.2%

Intercept 0.842 0.759 1.11 0.267 2.271 *** 0.396 5.74 0.000

Number of obs 12,104 5720
Nonzero obs 712 262

Zero obs 11,392 5458
Log likelihood −4666.202 −1789.664

LR chi2 48.26 *** 29.17 **

p-value: * p < 0.05; ** p < 0.01; *** p < 0.001.
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Table 5. Associations between bikesharing and public transit varying by rail service status.

Has Rail Service (Dependent Variable: Bikeshare) No Rail Service (Dependent Variable: Bikeshare)

Variables Coef. Std. Err. z Value p Value Marginal Effects Coef. Std. Err. z Value p Value Marginal Effects

non-zero state (not always 0) non-zero state (not always 0)

Ptused 0.021 ** 0.008 2.78 0.005 2.1% 0.008 0.008 1.03 0.305 0.8%
Female −0.351 * 0.148 −2.37 0.018 −29.6% −0.061 0.128 −0.48 0.634 −5.9%

Age 0.003 0.005 0.59 0.556 0.3% 0.004 0.004 0.90 0.368 0.4%
Education −0.159 * 0.074 −2.14 0.033 −14.7% −0.03 0.062 −0.49 0.622 −3.0%

White −0.025 0.160 −0.16 0.876 −2.5% −0.098 0.160 −0.61 0.539 −9.4%
Worker 0.231 0.191 1.21 0.227 25.9% 0.08 0.140 0.57 0.569 8.3%
Driver −0.369 0.245 −1.50 0.133 −30.8% −0.419 0.243 −1.72 0.086 −34.2%

HHincome 0.027 0.027 0.99 0.323 2.7% −0.025 0.027 −0.92 0.359 −2.4%
HHvehcount −0.123 0.075 −1.63 0.102 −11.6% −0.063 0.063 −1.00 0.318 −6.1%

Pdensity 0.037 0.067 0.55 0.584 3.7% −0.03 0.052 −0.58 0.563 −3.0%
Urban −0.469 0.564 −0.83 0.405 −37.5% 0.103 0.220 0.47 0.641 10.8%
Spring −1.124 *** 0.244 −4.61 0.000 −67.5% −0.276 0.219 −1.26 0.207 −24.1%

Summer −0.256 0.187 −1.37 0.172 −22.6% −0.152 0.169 −0.90 0.367 −14.1%
Winter −0.34 0.221 −1.53 0.125 −28.8% −0.475 ** 0.182 −2.61 0.009 −37.8%

Intercept 3.059 *** 0.811 3.77 0.000 2.456 *** 0.453 5.42 0.000

zero state (odds of always 0) zero state (odds of always 0)

Ptused −0.031 *** 0.007 −4.58 0.000 −3.1% −0.032 *** 0.008 −4.07 0.000 −3.2%
Female −0.244 0.142 −1.72 0.085 −21.6% −0.234 ** 0.090 −2.60 0.009 −20.8%

Age 0.000 0.005 −0.07 0.947 0.0% 0.004 0.003 1.37 0.171 0.4%
Education 0.046 0.072 0.63 0.527 4.7% 0.096 * 0.043 2.22 0.026 10.1%

White 0.367 * 0.157 2.34 0.019 44.4% 0.560 *** 0.111 5.03 0.000 75.0%
Worker −0.434 * 0.182 −2.38 0.017 −35.2% −0.128 0.101 −1.27 0.206 −12.0%
Driver −0.732 ** 0.255 −2.88 0.004 −51.9% −0.606 *** 0.180 −3.37 0.001 −45.4%

HHincome 0.021 0.029 0.72 0.470 2.1% 0.089 *** 0.020 4.52 0.000 9.3%
HHvehcount 0.231 ** 0.074 3.11 0.002 26.0% 0.027 0.042 0.63 0.526 2.7%

Pdensity −0.188 ** 0.068 −2.77 0.006 −17.1% 0.000 0.039 −0.01 0.992 0.0%
Urban 0.109 0.489 0.22 0.823 11.5% 0.064 0.161 0.39 0.693 6.6%
Spring −0.599 ** 0.227 −2.64 0.008 −45.1% 0.236 0.151 1.57 0.117 26.7%

Summer −0.178 0.180 −0.99 0.323 −16.3% −0.042 0.118 −0.36 0.720 −4.1%
Winter −0.081 0.206 −0.39 0.693 −7.8% −0.316 * 0.131 −2.40 0.016 −27.1%

Intercept 4.016 *** 0.756 5.31 0.000 1.632 *** 0.346 4.72 0.000

Number of obs 2956 14,868
Nonzero obs 290 684

Zero obs 2666 14,184
Log likelihood −1770.398 −4667.923

LR chi2 61.48 *** 52.06 ***

p-value: * p < 0.05; ** p < 0.01; *** p < 0.001.



Sustainability 2018, 10, 1868 17 of 20

6. Discussion

This study examined the associations between bikesharing ridership and public transit usage.
In general, our results show that a one-unit increase in public transit usage significantly increases
a respondent’s FBSU by 1.4% and PBSU by 4.0%, indicating that FPTU is significantly positively
associated with PBSU and FBSU, which means that individuals who use public transit more frequently
are more likely to use bikesharing and to use it more frequently than those who use public transit
less frequently. This finding may be explained by that bikesharing helps to solve first-mile/last-mile
problems by connecting public transit stations with trip destinations. The positive relationship between
these two modes was also found by other studies. Noland et al. [33] conducted a series of Bayesian
regression models and they found that in New York City, bikesharing stations that are located near
busy subway stations saw greater bikesharing usage. Ma et al. [32] examined the associations between
rail station ridership and the annual ridership of bikesharing stations by conducting a regression
analysis, and found that a 10% annual increase in annual bikesharing station ridership was significantly
associated with a 2.8% increase in average daily weekday Metrorail station ridership.

There are also differences in the relationship between FPTU and FBSU by population density and
rail service status: the significantly positive relationship between FPTU and FBSU is more pronounced
among those living in areas with higher population density or with rail service, while this relationship is
not significant among those that are living in areas with lower population density or without rail service.
The results suggest that the associations between bikesharing and public transit may be different
based on the regional environment. Access to bikesharing stations that are near public transit stops
may explain these regional differences. Noland et al. [33] found that in New York City, bikesharing
stations in areas with a higher population density saw more bikesharing usage. More urbanized areas
have more residential population and more advanced infrastructures, providing greater opportunity
to combine bikesharing systems with public transit systems [32,33,35,36]. Bikesharing may serve as
first-mile, last-mile facilitators that provide access to and from public transit systems in these areas.

This evidence supports the positive relationship between bikesharing usage and public transit
ridership. Some researchers also have pointed out that, even though public transit and bikesharing are
substitutes in the short term, they could be complementary in the long term [56]. This finding of how
public transit usage is associated with bikesharing behaviors is vital for future planning decisions and
policies to facilitate the coordination of multimodal transportation. It is therefore important to develop
strategies to connect these two transport modes to encourage bikesharing and public transit usage
among the public as a whole.

7. Conclusions

Public bikesharing systems have rapidly expanded across many cities in the US. Bikesharing is
recognized as an economic, efficient, healthy, and environment-friendly transport mode. Previous
studies in the literature found that, in general, bikesharing is associated with public transit ridership.
However, the interdependencies between public transit usage and bikesharing behaviors have been
mixed and they have not been fully understood. In this study, we conducted ZINB models to examine
the associations between public transit usage and monthly bikesharing ridership. Our results show that
a one-unit increase in FPTU is significantly associated with a 4.0% increase in PBSU and a 1.4% increase
in FBSU, which means that public transit usage is significantly positively associated with bikesharing
usage. The significantly positive relationship between FPTU and FBSU is more pronounced among
those living in areas with higher population density or with rail service.

This study provides significant empirical evidence for the formulation of interventions and
policies targeting to promote integrated transportation systems that support multimodal transportation
and mutually sustainable transport networks. The integration of biking systems and public transit
systems has been shown to strengthen the advantages of both of these two transport modes [57,58].
Individuals who use public transit more frequently also have higher FBSU and PBSU. The empirical
results demonstrate that public transit usage is significantly positively associated with bikesharing
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usage and suggest policy implications that improving public transit usage tends to increase the usage
of bikesharing. Identifying strategies that facilitate bikesharing by improving public transportation
accessibility could help to increase levels of bikesharing usage across the population as a whole.

There are some limitations to this study. First, bikesharing behaviors may also be affected by
other factors, such as household bike ownership, personal attitudes, or perceptions of safety and
convenience and with the 2017 NHTS dataset, we could not capture and control all of the factors that
may affect individuals’ bikesharing behaviors. Second, this study used the frequency of bikesharing
usage in the last 30 days; hence, it does not reflect individuals’ daily bikesharing behaviors or involve
the trip purposes, trip distance, and travel time in each bikesharing trip, which should be an area of
priority for future research to address.
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