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Abstract: This study aims to examine the determining factors of teachers’ continuance intention to
integrate technology in a smart classroom of schools in underserved areas. Smart classrooms provide
a supportive learning environment for students by equipping them with advanced multi-functional
and mobile technologies. A smart classroom can provide opportunities for teaching and learning by
facilitating curriculum implementation and encouraging student success. The sustainable integration
of technology in a smart classroom depends on the teacher’s ability to effectively utilize digital
technology in the classroom. We assessed teachers’ perceptions of their technology integration by
building a research model for sustainable technology integration in an underserved area in South Korea.
For this, we included four aspects of teachers’ perceptions: the frequency of technology integration,
the effort toward instructional practices, student change, and continuance intention. Data were
gathered via a self-administered online survey with a sample of teachers who are participating
in a smart school program and were analyzed using partial least squares structural equation
modeling. The findings of the study show that teachers in smart classrooms are motivated to continue
technology integration when they experience positive changes among students after employing smart
classroom technologies. The research findings can contribute to the efforts of educators, scholars,
and policy-makers to pursue sustainable development in underserved area schools.
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1. Introduction

With the increased availability of smart technologies and high-speed Internet, educational
informatization has become an important aspect of enriching students’ experiences as well as improving
educational administration and management [1]. Emerging technologies are becoming an increasingly
vital part of education, both in terms of providing instructional tools and in shaping curricula.
Most school curricula have adopted information and communication technologies as an integral
part of teaching and learning. The availability of digital technology has been perceived as a social
equalizer and a means of sustainable development in education [2]. Yet, rural areas with students
from low-income families, who have low motivation and lower academic performance, are still at
a digital disadvantage thanks to various constraints such as the availability of financial and human
resources and the limits of geographical isolation [3,4]. Digital technologies offer opportunities for
excluded learners and learners at risk of exclusion by providing resources for teachers and students in
underserved area schools [5]. However, with unequal access to high-quality educational resources,
the gap between urban and rural education remains [2].
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In harnessing digital technologies for sustainable development in underserved area schools,
the key to successful implementation is teachers who have the pedagogical capability to integrate
technology into existing curricula [6–8]. The role of the teacher in a technology-integrated classroom
is to effectively utilize digital technology to promote student engagement and reach target learning
outcomes [9]. However, rural schools face ongoing practical disadvantages. For example, teachers
are often responsible for multiple subjects and grades in a single classroom while also holding
additional responsibilities such as leading extracurricular activities and providing support programs
and infrastructure for students’ success [10]. The challenges teachers face can hinder the innovation that
might bridge the gap in student performance caused by the geographical location of the school and/or
the social background of the students [11]. Major factors for the sustainable integration of technology
in the classroom include professional development in technology integration; the accessibility of
technology equipment; the development of technology-integrated curricula; school climate and culture;
and teacher motivation, which can be influenced by self-efficacy, internal and external values, and the
intention to use [6,12].

2. Background and Hypotheses

The traditional teacher-centered approach to learning can be amended by digital technology,
which provides the tools to transform classrooms into student-centered environments and enhance the
engagement of both teachers and students [13–15]. Smart classrooms integrate advanced technologies to
increase teachers’ instructional capabilities and engage students in their learning experience [13,15–18].
The multi-functionalities and connectivity of advanced technologies as well as pedagogical capabilities in
smart classrooms enable a more student-centered environment by facilitating a 1:1 setting. Smart classrooms
provide an alternative solution to educational opportunities not typically available in underserved area
schools. The adoption of advanced technologies in smart classrooms requires teachers to integrate
technology into their pedagogical activities and to continue doing so in the long term [12].

2.1. Technology Integration in Smart Classrooms

Smart classrooms can broaden teachers’ pedagogical imaginations and students’ active engagement
without alienating them during instruction. Smart classrooms are equipped with modern technologies
such as tablets, interactive whiteboards, high-speed networks, learning management systems, applications,
and other educational resources to support the teacher and students [19–21]. The emergence of mobile
handheld devices in the classroom can foster a more interactive environment that encourages students to
actively engage in the learning process and contribute to their learning experience [14,22]. Interactive
and cooperative digital learning technologies enable engagement, such as cloud-based learning
management systems, touch-screen electronic whiteboards with shared classroom materials, authoring
tools for digital textbooks, and learning resources for mobile handheld devices [23]. When smart
classrooms were conceptualized [24,25], they were focused on the use of technology in traditional
teaching contexts. Then, evolving mobile technologies facilitated hyper-personalized learning [19],
more advanced interactivity between teacher and students and among students, and access to a wide
variety of instructional content and applications.

One of the goals of smart classrooms is to address student disengagement from learning. The classroom
ratio of one teacher to many students has been the norm for a long time. Student disengagement in public
schools has been a serious detriment to their academic achievement and satisfaction [26], and can often be
attributed to factors such as a high student-to-teacher ratio, limited classroom space, socioeconomic status,
and other socio-cultural factors [27–29]. Students in public schools in underserved areas are more likely to
be disengaged in the classroom due to the lack of available resources, geographical isolation, and limited
support [26]. Smart classroom technology can resolve disengagement when the goals of technology use
and teachers’ preparedness are aligned, and when students demonstrate positive changes in the new,
technology-driven environment [30,31]. The primary reason students do not succeed in school is lack
of appropriate methodology and materials to motivate student interest, thus indicating the need for
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technology [31]. Technology can assist teachers in capturing learners’ attention in a variety of ways
that traditional methods cannot [31]. Due to the availability of many types of technology, learners with
different needs and learning styles can be engaged and motivated toward learning [30,31]. For example,
instructional presentation has been improved through the use of interactive whiteboards, PowerPoint,
and VoiceThread, which support visual and auditory learners [30,31]. The use of tablets can further
improve learning based on students’ interest; several educational apps are available and students can
choose what appeals to them [32].

2.2. Teachers’ Technology Integration and Perceived Student Change

When teachers implement new instructional practices, a negative response from students can
discourage teachers from continuing to use the new method or explore other practices [33]. According to
Howley, Wood, and Hough [6], teachers in rural schools are influenced by students’ attitudes,
preparedness for using technology, and the availability of technology, rather than the school’s location
or students’ socioeconomic status. Technology can play a significant role in students’ lives and
education, and teachers have a profound influence on the way technology is integrated into lessons.
The integration of technology in smart classrooms is possible only when teachers take the time to
become familiar with the technology and acquire the equipment needed to support learning. Beyond
this, teachers must find ways to incorporate the new technology into their teaching. This must be done
in such a way that the teaching provides complex cognitive engagement that, in turn, invites students
to become invested in the learning process [34]. Teachers’ appropriate integration of technology in
smart classrooms may have a positive influence on student change. We therefore hypothesize the
following relationship:

Hypothesis 1 (H1). The frequency of technology-integrated instruction in smart classrooms has a positive
influence on teacher-perceived student change.

2.3. Teachers’ Technology Integration and Effort toward Instructional Practices

The effectiveness of technology integration in schools is dependent on teachers’ actual practice,
the ability to integrate technology, their training in technology, the availability of educational software,
and the degree to which school infrastructure supports integration [35,36]. In smart classrooms, teachers
need to implement new technologies based on a student-centered approach to teaching that fosters
technology-appropriate skills, knowledge, and attitudes. The technologies in smart classrooms support
student-centered learning in more constructivist ways [15]. Recently, the shift from teacher-centered
to student-centered learning in the educational paradigm has altered teachers’ beliefs about successful
instruction. It is important to be consistent in the use of technology even if teachers apply it in simple
ways [37]. Teachers’ effort toward instructional practices, including professional development and
the application of innovative instructional methods, can manifest in several ways at the personal,
school, district, and national levels. These efforts can impact instructional effectiveness, knowledge,
skills, and student growth as perceived by teachers. However, teachers’ ability to practice in
innovative environments such as smart classrooms has been hampered by the absence of professional
development and related equipment. Thus, teachers in favor of technology integration should ensure
the localization of their professional experiences to increase the effectiveness of instructional practices
in the classroom [38,39]. Teachers’ efforts to adopt technology-based instructional practices into the
classroom can catalyze technology-integrated classrooms, whereas teachers who make little effort have
little influence on classroom changes. Thus, we hypothesize the following relationships:

Hypothesis 2 (H2). The frequency of technology-integrated instruction in smart classrooms has a positive
influence on teachers’ effort toward instructional practices.
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Hypothesis 3 (H3). Teachers’ effort toward instructional practices in smart classrooms has a positive influence
on teacher-perceived student change.

2.4. Perceived Student Change and Teacher Continuance Intention

According to technology acceptance models regarding technology integration [40–42], teachers’
continuance intention toward technology use is connected to their actual use of technology in classrooms [9].
Thus, teachers’ continuance intention toward technology integration in smart classrooms is an important
predictor of long-term practice. However, teachers in rural schools have difficulties sustaining technology
integration due to insufficient time, technical limitations, and inadequate support [43]. These difficulties
may partly be the result of a passive approach toward technology integration—an unsupportive
environment can provoke negative attitudes toward the technology-integrated environment. Teachers’
perception of student characteristics and behaviors can also influence teachers’ implementation and
continuance of new and innovative practices [33]. To examine the relationship between student change
and teacher continuance intention toward technology integration in smart classrooms, we postulate
the following:

Hypothesis 4 (H4). The frequency of technology-integrated instruction in smart classrooms has a positive
influence on teachers’ continuance intention toward technology integration in the classroom.

Hypothesis 5 (H5). Teachers’ efforts toward instructional practices in smart classrooms have a positive
influence on teachers’ continuance intention toward technology integration in the classroom.

Hypothesis 6 (H6). Teacher-perceived student change has a positive influence on teachers’ continuance
intention toward technology integration in the classroom.

The research model for this study is shown in Figure 1.
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3. Materials and Methods

3.1. Sample and Data Collection

A total of 54 respondents from 21 elementary and middle schools participated in this study,
including teachers who work in smart classrooms donated by a community relations program for
underserved rural schools and education institutions (e.g., hospital schools and community youth
centers). The classrooms have been provided with high-tech learning environments and mentoring
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groups since 2012. The program donates to around ten educational institutions each year. Teachers
who were working in such classrooms at the time of this study were invited to participate in a survey
to assess their experience in the smart classrooms. Therefore, the number of possible respondents was
limited. Basic background information regarding the participants is shown in Table 1.

Table 1. Descriptive statistics.

Background Information Frequency %

Gender Female 24 42.6
Male 30 57.4

School Level Elementary school 37 68.5
Middle school 17 31.5

Age 20–25 3 5.5
26–30 11 20.4
31–35 15 27.8
36–40 12 22.2
41–45 7 13.0

46 (or older) 6 11.1

Teaching Experience

5 years or less 23 42.6
6–10 years 10 18.5

11–15 years 11 20.3
16–20 years 4 7.4
21–25 years 3 5.6

26 years or more 3 5.6

An online survey was conducted via SurveyMonkey, an online survey tool, to collect data
regarding teachers’ experiences operating in smart classrooms.

3.2. Measures

All variables were measured according to criteria developed by the researchers. The background
information for the teachers included gender, the school level they were teaching, age, years of
teaching experience, and their technology proficiency level. Additionally, the frequency of technology
integration was measured by three items using a 7-point scale (Cronbach’s alpha = 0.77); for example,
“How many times have you used the smart classroom environment for your instruction in the last
month?” Teacher-perceived student change in smart classrooms was measured by four items [44,45]
using a 5-point Likert scale ranging from (1) strongly disagree to (5) strongly agree (Cronbach’s alpha
= 0.92); for example, “During my instruction in the smart classroom, students were actively engaged.”
Continuance intention was measured by two items [42,46,47] using a 5-point Likert scale ranging from
(1) strongly disagree to (5) strongly agree (Cronbach’s alpha = 0.79); for example, “I have continuously
used the smart classroom environment because of students’ satisfaction with it in previous classes.”
Teachers’ effort toward instructional practices (EE) was measured by two items [15,48,49] using a
5-point Likert scale ranging from (1) strongly disagree to (5) strongly agree (Cronbach’s alpha = 0.91);
for example, “I made an effort to improve my instructional skills for the smart classroom.”

3.3. Data Analysis

Data were analyzed using partial least squares structural equation modeling (PLS-SEM) to evaluate
the quality of the model and test the hypotheses. We used PLS-SEM because it can handle non-normal
data, as well as smaller sample sizes [50]—our sample size of 54 teachers was relatively small.
To validate the model, we used convergent validity and discriminant validity [50]. To examine loadings,
weights, average variance extracted (AVE), composite reliabilities (CR), and t-values, we performed
the bootstrapping process with 5000 resamples. Fornell and Larcker propose a cutoff value of 0.70
or greater as being acceptable for CR [51]. Both validities can offer proof of the goodness of fit of the
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model regarding the collected data [40]. The statistical analysis in this study was conducted using SPSS
26.0 for descriptive statistics of the data and using SmartPLS [52]. This study followed the guidelines
of PLS-SEM provided by Hair and colleagues [50,53].

4. Results

4.1. Evaluation of the Measurement Model

The properties of the measurement model were examined using convergent validity and
discriminant validity. Convergent validity can explain the indicators’ variance, which is the shared
variance between each item and its associated construct. The standardized loadings for each factor
model should exceed 0.70 [50]. As shown in Table 2, the standardized loadings of all items exceeded this
threshold. Additionally, the AVE, which measures the variance captured by the indicators relative to the
variance caused by the measurement errors of the indicators, should exceed 0.50 [51]. The acceptance
level of AVE was 0.5 or higher, which means that 50% or more of the indicators’ variance is accounted
for by the construct. Table 2 shows that all constructs met this threshold.

Table 2. Item reliability and convergent validity analysis.

Latent Variable Indicator Loading Alpha CR AVE

Continuance Intention
(CI)

CI1 0.935 0.791 0.904 0.825
CI2 0.881

Perceived
Student Change

(PS)

PS1 0.913 0.916 0.941 0.799
PS2 0.933
PS3 0.874
PS4 0.854

Integration Frequency
(IF)

IF1 0.732 0.766 0.866 0.685
IF2 0.831
IF3 0.910

Effort toward Instructional
Practices (EE)

EE1 0.951 0.911 0.957 0.918
EE2 0.964

Note: CR = Composite Reliability; AVE = Average Variance Extracted; Alpha = Cronbach’s Alpha.

To confirm the construct reliability, the values of Cronbach’s alpha and composite reliability
should exceed the threshold of 0.70 [54]. As shown in Table 2, the alpha from each response showed
a range of 0.766 or higher, yielding an internal consistency that exceeded the necessary threshold.
The CR values were in the range of 0.866 to 0.957, which exceeded the threshold of 0.80, showing that
the reliability of respondent scores was adequate with relatively little errors [54]. Thus, the results
of the standardized loadings, Cronbach’s alpha, CR, and AVE support the convergent validity and
reliability of the measurement model.

The discriminant validity was assessed using the Fornell–Larcker scale and cross-loadings,
as shown in Table 3. To confirm discriminant validity, the square root of AVE should be higher than
all correlations between constructs [55], which are given by the bold diagonal elements in Table 3.
The off-diagonal values represent the correlations between the constructs. As can be seen in Table 3,
the square root of each construct’s AVE was higher than the correlations between the constructs.
The square root of the AVE for a construct should be significantly higher than the variance between
that construct and other constructs within the model [50]. The square root of the AVE should also be
greater than 0.5 [55]. Table 4 shows the analysis of the correlations among the measurement items to
confirm that they do not cross-load on other factors. All items loaded higher than their own construct
and had a value higher than 0.5. Thus, all values were higher than the requisite thresholds and the
discriminant validity in the measurement model was confirmed.
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Table 3. AVE and the correlations of all constructs for discriminant validity.

Latent
Dimensions CI PS IF EE

Continuance
Intention (CI) 0.908

Perceived Student
Change (PS) 0.685 0.894

Integration
Frequency (IF) 0.446 0.515 0.828

Effort toward
Instructional
Practice (EE)

0.381 0.454 0.330 0.958

Note: The bold diagonal elements represent the square root of AVE; the off-diagonal elements represent correlations
between the constructs.

Table 4. Cross-loading of discriminant validity analysis.

Latent Variable Indicator CI PS IF EE

Continuance Intention
(CI)

CI1 0.935 0.699 0.469 0.390
CI2 0.881 0.524 0.324 0.291

Perceived
Student Change

(PS)

PS1 0.593 0.913 0.527 0.437
PS2 0.614 0.933 0.491 0.341
PS3 0.652 0.874 0.454 0.424
PS4 0.588 0.854 0.361 0.422

Integration Frequency
(IF)

IF1 0.302 0.394 0.732 0.237
IF2 0.344 0.312 0.831 0.346
IF3 0.446 0.544 0.910 0.249

Effort toward Instructional
Practice (EE)

EE1 0.347 0.413 0.272 0.951
EE2 0.381 0.454 0.354 0.964

Note: The bold diagonal elements represent the square root of AVE; the off-diagonal elements represent correlations
between the constructs.

4.2. Structural Model Evaluation and Hypothesis Testing

After evaluating the measurement model, we examined the structural model proposing that there
are causal relationships between constructs. The bootstrapping method was run using 5000 samples,
as well as bias-corrected and accelerated (BCa) confidence intervals with a two-tailed test at a 0.05 level.
The structural model was assessed according to the significance of the path coefficients, the level of
predictive power of the model using R2 value and Q2 of the endogenous variables, and the f 2 effect size.

All path coefficients of the model were statistically significant. As shown in Table 5 and Figure 2,
the results support all four hypothesized paths. The relationship between IF and EE was accepted,
with an effect size that proved to be small (β = 0.330, p = 0.017). The relationship between EE and PS
was accepted, also with a small effect size (β = 0.319, p = 0.009). The relationship between IF and PS
was accepted, with a medium effect size (β = 0.410, p = 0.000). The relationship between PS and CI
was accepted, with an effect size that proved to be large (β = 0.685, p = 0.000).

Table 5. Hypotheses, path coefficients, and results.

Hypothesis Path Path Coefficient T-Statistics p-Value f2 Conclusion

H1 IF→ PS 0.410 3.629 0.000 0.232 Supported
H2 IF→ EE 0.330 2.400 0.017 0.122 Supported
H3 EE→ PS 0.319 2.613 0.009 0.141 Supported
H4 IF→ CI 0.119 0.120 0.322 0.232 Not supported
H5 EE→ CI 0.074 0.524 0.600 0.008 Not supported
H6 PS→ CI 0.685 7.060 0.000 0.437 Supported

Note: IF = Integration frequency; EE = Effort toward instructional practice; PS = Perceived student change;
CI = Continuance intention.
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The coefficient of determination of the R2 value was determined by the predictive accuracy of the
model. The R2 value can be confirmed at 0.67 or higher, with values ranging between 0.33 and 0.67
being considered moderate, values in the range of 0.19 to 0.33 as weak, and values lower than 0.19 as
unacceptable. Hair et al. [50] suggested that a value of 0.25 indicates a weaker predictive relationship
while a value of 0.50 indicates a medium predictive relationship. The R2 for EE was 0.131, meaning
that 13.1% of the variance in EE can be explained by this model. The R2 for PS was 0.365, meaning that
36.5% of the variance in PS can be explained by this model. The R2 for CI was 0.510, meaning that
51.0% of the variance in CI can be explained by this model. Additionally, the predictive relevance of the
model was assessed by calculating Stone–Geisser’s Q2 values [56,57]. The Q2 values were 0.07 for EE,
0.334 for CI, and 0.258 for PS. All values of Q2 reached acceptable levels of predictive relevance [58].

Further, we examined the effect size for the antecedents of endogenous variables using the value of
Cohen’s f 2 [59] shown in Table 5. According to Cohen’s guidelines, f 2 is a useful measure of effect size,
where f 2

≥ 0.02, f 2
≥ 0.15, and f 2

≥ 0.35 represent small, moderate, and large effects of the exogenous
latent variable, respectively [59,60].

As shown in Table 6, to assess the effects of specific paths in the model, we examined the mediation
effect of student change (PS), teacher effort toward instructional practices (EE), and integration frequency
(IF) on continuance intention (CI) using specific indirect effects after testing the bootstrapping routine
with the 5000 samples, and no sign changes for determining the 95% and BCa confidence intervals in
PLS-SEM [61–63]. The results of the mediation analysis showed that teacher-perceived student change
is the only significant mediator between integration frequency (IF) and continuance intention (CI).

Table 6. A summary of mediation effects.

Mediation Path Effect T-Statistics p-Value 95% Bias-Corrected
Confidence Interval

Mediation
Effect

IF→ EE→ CI 0.024 0.447 0.655 LLCI: −0.003,
ULCI: 0.175 No

IF→ PS→ CI 0.242 2.592 0.010 LLCI: 0.091,
ULCI: 0.451 Yes

EE→ PS→ CI 0.189 1.725 0.085 LLCI: 0.026,
ULCI: 0.435 No

IF→ EE→ PS→ CI 0.062 1.160 0.246 LLCI: 0.003,
ULCI: 0.212 No

IF→ EE→ PS 0.105 1.456 0.145 LLCI: 0.008,
ULCI: 0.288 No

Note: IF = Integration frequency; EE = Effort toward instructional practices; PS = Perceived student change;
CI = Continuance intention; LLCI = Lower-level confidence interval; ULCI = Upper-level confidence interval.
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5. Discussion

The goal of this study was to examine the role of teacher-perceived student change and teacher
continuance intention in integrating technology in smart classrooms in underserved area schools.
We developed six hypotheses to examine the role of key variables on teachers’ continuance intention
toward technology-integrated instruction in smart classrooms in rural schools.

Overall, except for hypotheses H4 and H5, our hypotheses were mostly supported by the data
collected in the study. Also, we found that teacher-perceived change is the only significant mediator
between the frequency of technology integration in smart classrooms and continuance intention.
Hence, if those teachers who are integrating technology in underserved area schools experience
positive changes in student engagement, they will be motivated to sustain technology integration in
smart classrooms.

To sustain technology integration in the classroom, teachers need to be both passionate and
professional [64]. In underserved schools with limited environments and educational resources, teachers
have an even greater role in bringing about positive changes in the classroom. Smart classrooms as
an innovative learning environment in underserved area schools should bolster teachers’ continuous
effort to help students actively engage in the classroom through professional development and
instructional practices.

Importantly, the direct effect of frequent technology integration in smart classrooms on continuance
intention is mediated by teacher-perceived student change in such classrooms, which may work as a
motivational factor for teachers to sustain instruction long term. The functionalities and pedagogical
possibilities of smart classrooms can enhance students’ experiences in learning. Providing active and
interactive technologies in a smart classroom may augment rural students’ learning experiences and
motivation [65]. Further, people’s behavioral intention toward technology can strongly predict their
actual use of technology. Smart classrooms can provide a richer learning environment for students
and teachers in rural areas if teachers can consistently and effectively integrate technology into their
classroom teaching. In this study, we expected to validate a research model to explain teachers’
experiences in smart classrooms in order to promote more successful integration of technology in
underserved area schools. The characteristics of underserved area schools were taken into consideration
to develop a plan for initiating positive change among students via technology integration.

Technology integration tends to confront several challenges, including the lack of training,
nonexistent equipment, and insufficient time in the curriculum to incorporate technology, among
others [6], often because of the challenges of adapting an appropriate educational program to
accommodate instruction goals or strategies [66]. However, recent classroom technologies with
greater mobility, interconnectivity, and multi-functionality can help to overcome the limits of previous
classroom technology integration using primarily personal computers. Technology integration is an
authentic instructional strategy to enhance students’ ability to connect what they learn to their everyday
lives [67]. Through technology, teachers can not only improve their teaching efficiency, but extend and
transform learning [68].

Contrary to our expectations, we found that frequent integration itself does not directly predict
teachers’ continuance intention toward integration in smart classrooms. The relationship can be
explained by teacher motivation. Teachers’ ultimate role is to support student growth through
curriculum and pedagogical expertise within enriched educational environments, including resources,
policies, and budget. However, in the limited environment of underserved areas, an innovative
learning environment cannot be sustained by teachers alone without additional effort or motivation,
such as positive changes observed in students.

This implies that technology integration in smart classrooms should be designed to ensure
the enrichment of student learning, rather than rote adoption without a plan. Teachers need to
experience students’ positive responses, such as strong engagement in learning activities for their
level of performance, gaining knowledge in subjects, or enjoying the activities in a way that reinforces
their motivation to learn. When teachers perceive positive changes in students, they tend to sustain
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their efforts and try new methods going forward. Positive change is a strong motivator for teachers in
smart classrooms.

This study has several limitations that should be considered. First, the findings may not generalize
to a more representative sample because the survey data came from underserved rural areas in
South Korea, among teachers who are engaged in a specific smart school program. Second, all of the
measurements of the study are limited to the teachers’ self-reported perceptions. Third, the sample
size is relatively small, which might limit the power of the study. Thus, increasing the sample size to
provide stronger evidence for the research model will be an important undertaking for future studies.
It may also prove beneficial to expand the research model to include additional predictors of teacher’s
technology integration in rural areas. Fourth, it is necessary to examine qualitative responses from the
teachers to expand the research model as well as generalize it in different contexts.

6. Conclusions and Future Research

In conclusion, our results show that teacher perceived student change affects their continuance
intention as it relates to technology in smart classrooms. The results indicate that teachers’ continuous
integration of technology in smart classrooms might be encouraged through motivation and additional
training on using technology in their lessons. Hence, we recommend that school leaders and
teacher educators support the continuous integration of technology by helping teachers use a more
student-centered approach that builds toward student satisfaction and achievement. The study results
will help teacher educators to plan training for in-service teachers in underserved area schools. In future
studies, the research model’s predictive ability and explanatory powers should be further validated
regarding their usefulness in urban contexts. While our data are from underserved area schoolteachers
in South Korea, additional studies may be able to generalize the findings to other areas and countries.
Furthermore, comparative studies across countries could be conducted to identify the cross-country
invariant variables that influence teachers’ continuous intention to integrate technology in underserved
area schools.

Author Contributions: H.J.K. conceived the research idea and designed the research framework; H.J.K. analyzed
the data; and H.Y.J. and H.J.K. wrote the draft. All authors have read and agreed to the published version of
the manuscript.

Funding: The authors acknowledge support from the Ministry of Education of the Republic of Korea and the
National Research Foundation of Korea (project NRF-2017S1A5A8021541). The views expressed in this article are
those of the authors and do not necessarily reflect those of the grant agencies.

Acknowledgments: The authors want to thank their anonymous reviewers.

Conflicts of Interest: The authors declare no conflict of interest.

References
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