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Abstract: In order to achieve the carbon emission reduction targets in Xinjiang, it has become a
necessary condition to study the carbon emission of households in small and medium-sized cities in
Xinjiang. This paper studies the direct carbon emissions of households (DCEH) in the Ebinur Lake
Basin, and based on the extended STIRPAT model, using the 1987–2017 annual time series data of
the Ebinur Lake Basin in Xinjiang to analyze the driving factors. The results indicate that DCEH in
the Ebinur Lake Basin during the 31 years from 1987 to 2017 has generally increased and the energy
structure of DCEH has undergone tremendous changes. The proportion of coal continues to decline,
while the proportion of natural gas, gasoline and diesel is growing rapidly. The main positive driving
factors affecting its carbon emissions are urbanization, vehicle ownership and GDP per capita, while
the secondary driving factor is residents’ year-end savings. Population, carbon intensity and energy
consumption structure have negative effects on carbon emissions, of which energy consumption
structure is the main factor. In addition, there is an environmental Kuznets curve between DCEH
and economic development, but it has not yet reached the inflection point.

Keywords: Xinjiang; the Ebinur Lake Basin; direct carbon emissions; household; driving factors;
STIRPAT model

1. Introduction

Since the industrial revolution, with the rapid development of the economic level
of various countries, the world’s consumption of fossil fuels has continued to increase,
resulting in the continuous increase in carbon dioxide and other greenhouse gas emissions.
The 36th meeting of IPCC in 2013 reviewed and accepted the full report “Climate Change
2013. The Physical Science Basis”, which pointed out that the average temperature of the
global land and ocean increased by 0.85 ◦C between 1880 and 2012, and the report indicated
human activities is the main cause of global warming [1]. As an emerging market, China
has become the world’s largest carbon emitter with a long-term growth model of high
consumption and high pollution while simultaneously developing industrialization and
urbanization. At present, China’s carbon emissions exceed that of the United States, and
it has become the world’s second largest country in energy consumption and the largest
country in greenhouse gas emissions [2].

Household consumption is an important source of greenhouse gas emissions. House-
hold carbon emissions are divided into direct carbon emissions and indirect carbon emis-
sions. About 20% of global greenhouse gas emissions came directly from household con-
sumption, most of which came from fuel used for heating, cooling, cooking, illumination
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and private car [3]. Several studies have shown that household carbon emissions cannot be
ignored [4,5]. In fact, it has become one of the main sources of carbon emissions in China [6].

In the past 20 years, a large number of scholars have conducted multiple studies
on household carbon emissions. Kenny and Gray [7] used a model specifically designed
for Ireland to calculate the carbon dioxide emissions of Irish households and the results
show that the higher the occupancy rate, the more the energy efficiency of households.
Weber and Perrels [8] used the input–output method to analyze the impact of household
lifestyles in countries such as France, Germany, and the Netherlands on carbon emissions.
Germany and the Netherlands have higher carbon emissions than France. Spangenberg
and Lorek [9] used the ecological footprint method to analyze the carbon emissions from
the energy consumed by households in the daily life, and the impact on the ecological
environment. Song et al. [10] used an environmentally expanding multi-regional input-
output model to analyze the carbon footprint of American households. The proportion
of American households’ overseas carbon footprints continues to expand and the main
sources of domestic carbon footprints in the United States are housing and transportation.
Liu et al. [11] combined consumer lifestyle methods with input–output analysis to measure
the indirect carbon emissions of Chinese urban households, and found that more than
58% of indirect carbon emissions came from 40% of high-income people. Hu et al. [12]
came to an interesting conclusion that, in China, households with a large proportion of
middle-aged and elderly people are beneficial to reducing household energy consumption.
The conclusions of these studies are very meaningful and valuable. However, the country
is a large research area, and the economic and environmental differences of provinces and
regions within each country are huge, so many scholars have begun to conduct research on
provincial units. Fan and Fang [13] breakdown the carbon emission factors of residents in
Qinghai Province. The results show that household consumption level is the main factor,
followed by carbon emission intensity and economic structure. Zeqiong et al. [14] studied
the direct residential carbon emissions in Guangdong Province, the energy consumption
structure and the urban and rural population structure have little impact, and the per
capita consumption and population size have a significant impact.

The increase in global temperature has more obvious impacts on the ecological en-
vironment of arid regions. Elevated temperature has led to the increase in evaporation
of rivers and lakes, and the transpiration of plants has become more intense, which has
aggravated the contradiction between the supply and demand of water resources in arid
regions, and the land desertification has become serious. In the process of humans and the
natural environment competing for the few water resources, the ecological environment
has been destroyed, triggering a variety of natural disasters, and damaging the quality
of social and economic development. In order to better understand the environmental
impact of household energy use, we have narrowed the research area. We selected the
Ebinur Lake Basin (Figure 1) in the Xinjiang Uygur Autonomous Region as the research
area. There have been many studies on carbon emissions in Xinjiang, but the research on
carbon emissions in Xinjiang started relatively late, and the research areas involved are
not large. Wang and Wang [15] research results show that in Xinjiang, per capita GDP
growth is the most important driving force for the rapid growth of carbon emissions, and
changes in the production structure have become a new main driving force for the rapid
increase in carbon emissions. Gunther et al. [16] quantified the carbon footprint of cotton
production in Xinjiang, and analyzed the spatial and temporal differences and driving
factors of agricultural carbon emissions in Xinjiang. Zhou et al. [17] calculated the carbon
emissions from thermal power industry in Xinjiang. Cui et al. [18] studied the spatial
pattern of industrial carbon emissions in prefecture-level cities in Xinjiang. Although the
research on DCEH is deepening, there are still some shortcomings. First of all, there are few
studies on carbon emissions in Xinjiang on the whole, especially those involving DCEH.
Secondly, there are great differences among different regions in Xinjiang, both in terms of
DCEH itself and its influencing factors. The Ebinur Lake is the largest saltwater lake in
Xinjiang, maintaining the ecological balance of the entire northern Xinjiang. However, it is
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a lake in an arid area with typical desert ecological environment, with sparse precipitation
(89.80–169.70 mm) [19]. As for the Ebinur Lake Basin, because of the existence of abundant
water resources and tourism resources, its agriculture and tourism are relatively developed.
Compared with other regions in Xinjiang, the rural economy in the Ebinur Lake Basin
is relatively developed. Due to tourism and agriculture, the DCEH in the rural areas of
Ebinur Lake Basin is also greatly different. At present, the environmental problems of
the Ebinur Lake Basin are very acute, facing serious problems such as lake shrinkage,
water level decline, and rapid desertification. Therefore, the direct carbon emissions of
households in the Ebinur Lake Basin can be calculated to understand its dynamic devel-
opment trend and provide a benchmark for regional carbon neutral. The key direction
of carbon emission reduction in the Ebinur Lake Basin can be identified by analyzing the
impact of different factors in different periods. Moreover, the Ebinur Lake Basin not only
has a large amount of fossil energy such as oil and natural gas, but also has abundant
renewable energy, such as wind energy and solar energy [20]. Therefore, studying the
direct household carbon emissions and driving factors in this area has practical operability
and policy implementation.

Figure 1. The Ebinur Lake Basin administrative region

2. Materials and Methods
2.1. The Calculation Method of DCEH

In this study, according to the administrative division of the Ebinur Lake Basin, the
DCEH of the Ebinur Lake Basin is calculate. Calculated energy sources include raw coal,
coke oven gas, other gas, gasoline, kerosene, diesel oil, liquefied petroleum gas, other
petroleum products and natural gas. At this stage, some rural households in the Ebinur
Lake Basin still use raw fuelwood for cooking and heating (2–10%) [21,22]. However,
when government departments collect energy consumption data, fuelwood is not included.
Therefore, the actual energy consumption of rural households will be higher than the
results calculated in this paper.

CO2 emissions are calculated according to IPCC guidelines, and carbon dioxide
emissions related to fossil fuels can be calculated as energy consumption multiplied by
emission factor, as follows:

CEenergy = ∑ ∑ CEij = ∑ ∑ Eij × LCVi × EFi × Oi (1)
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where CEij is carbon dioxide emissions from the burning of fossil fuel i in sector j, Eij is
fossil fuel consumption (104 tons of standard coal equivalent, Mtce), LCVi represents the
lower calorific value of fuel I, EFi represents the carbon dioxide emission factor of fuel
i (the numerical value is equal to the fuel i carbon emission factor multiplied by 44/12,
where 44/12 is the ratio of carbon dioxide to carbon molecular weight), and Oj represents
the oxidation rate of fuel i. The combustion emission parameters of 9 fuels involved
in this paper are from IPCC [23], National Development and Reform Commission [24],
and [25,26] (Table 1)

Table 1. The combustion emission parameters of fossil fuels.

Energy Types LCV (MJ/t, Mm3) CF (t ce/t, 103 m3) Oxidation Rate EF (t CO2/TJ)

Raw coal 20.9 0.714 0.94 96.51
Coke oven gas 16.1 0.593 0.94 78.8

Other gas 8.3 0.624 0.94 78.8
Gasoline 43.1 1.471 0.98 69.3
Kerosene 43.1 1.471 0.98 71.87
Diesel oil 42.7 1.457 0.98 74.07
Liquefied

petroleum gas 50.2 1.714 0.98 63.07

Other
petroleum
products

43.0 1.429 0.98 74.07

Natural gas 38.9 1.330 0.99 56.17

2.2. STIRPAT Model

The IPAT model, which was proposed by Eheilich and Holden in the 1970s [27],
shows that the three direct factors affecting the environment are population, wealth and
technology, and the interaction. The equation is as follows:

I = P × A × T (2)

In the model, I represents the environmental pressure, P is the population factor, A
is affluence, and T is technology factor. The IPAT model reflects the relationship between
the four factors while keeping other variables unchanged, and the coefficients between the
factors are equal to 1, which is a conceptual description and is only suitable for qualitative
research. There are some limitations in the application of this model. With the complexity
of the study, its disadvantages have gradually emerged.

In order to overcome the limitations in research, two scholars, Dietz and Rosa, pro-
posed the STIRPAT random model based on the IPAT model extension [28]

I = βPa AbTcµ (3)

where β is the model parameter, a, b and c are the index terms of population factors,
affluence and technology level, and µ is the error term of the model. STIRPAT model has
strong flexibility and can be extended according to the research content. Perform logarithm
processing on Equation (3) to obtain Equation (4):

ln I = ln β + a ln P + b ln A + c ln T + ln µ (4)

Take ln I as the dependent variable, lnP, lnA and lnT as independent variables,
lnβ as the constant term, and lnµ as the error term. According to the concept of elastic
coefficient, when other influencing factors remain unchanged, each 1% change in driving
force influencing factors (P, A, T) will cause I to change by a%, b%, and c%, respectively.

Based on the actual situation of the Ebinur Lake Basin, the population size and ur-
banization rate are selected as two variables of the population factor (P) to explore the
impact of changes in population number and population structure on carbon emissions.
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Motor vehicle ownership (including agricultural machinery), GDP per capita and resident
year-end savings are selected as three variables of affluence to represent the impact of afflu-
ence on carbon emissions. At the technical level, carbon intensity and energy consumption
structure are introduced to study the impact of changes in energy consumption structure
on carbon emissions. The specific variable interpretation is shown in Table 2:

Table 2. Descriptive analysis of variables.

Variable Definition Measuring Method Unit

carbon emissions (I) DCEH in the Ebinur Lake Basin 104 tons
Population size (P1) Total population of Ebinur Lake Basin 104 people
Urbanization (P2) Percentage of urban population in total population %

Motor vehicle ownership (A1) The number of motor vehicles in Ebinur Lake Basin 104 unit
GDP per capita (A2) The ratio of GDP to total population 104 yuan

Resident year-end savings (A3) The total amount of resident savings at various savings
institutions at the end of each year 100 million yuan

Carbon intensity (T1) The ratio of carbon emissions to GDP t/104 yuan
Energy consumption structure (T2) Percentage of coal consumption to total energy consumption %

Based on the expansion of STIRPAT model, the above 7 variables are introduced into
model (4). The specific model equation is obtained as follows:

ln I = ln β + a1 ln P1 + a2 ln P2 + b1 ln A1 + b2 ln A2 + b3 ln A3 + c1 ln T1 + c2 ln T2 + ln µ (5)

where lnβ represents constant term, lnµ represents error term. lnI is dependent variable,
lnPi, lnAi and lnTi are independent variables. ai, bi and ci are elasticity coefficients of lnPi,
lnAi and lnTi, respectively.

2.3. Data Sources

The Ebinur Lake Basin includes Bortala Mongolian Autonomous Prefecture, Kuitun
City, Usu City, Toli Country and Dushanzi District of Karamay. Due to the lack of statistical
data in Dushanzi District, it is not available, so its energy consumption is not considered in
the calculation. The economic and social development data of the above regions are from
“Xinjiang 50 Years Data” [29], “Xinjiang Statistical Yearbook” [30], “Bortala Autonomous
Prefecture Statistical Yearbook” [31], “Ili Kazakh Autonomous Prefecture Statistical Year-
book” [32] and their government bulletins. The data before 1987-2004 comes from “Xinjiang
50 Years Data “, which is a comprehensive statistical data set published at the 50th anniver-
sary of the founding of Xinjiang. The data included is comprehensive and credible. The
data after 2005–2017 comes from statistical yearbooks and government bulletins. The data
of I is calculated in Equation (1).

The energy consumption for life from 1987 to 2004 comes from the “50 Years of
Xinjiang”, and the energy consumption for life from 2005 to 2017 is calculated by the
Energy Balance Sheet (EBT). EBT is a summary table that reveals the balance between
the output, conversion and final consumption of energy in a region. It can reflect the
form of energy balance and energy flow in a region. The consumption of fossil fuels in
EBT can be used to calculate carbon emissions data related to fossil fuels. Xinjiang’s EBT
is from the China Energy Statistics Yearbook [33]. However, most prefecture-level and
county-level cities in China do not have EBT. Therefore, we derive the EBT of the city from
the corresponding provincial energy balance sheet [26]; see Equations (3) and (4):

P = Indexcity/Indexprovince × 100% (6)

EBTcity = EBTprovince × P (7)

Using the percentage of cities and provinces P, we narrow the provincial energy
balance to the city level. For household consumption, we use population as an indicator.
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2.4. Uncertainty and Monte Carlo Simulation

The collected data contain possible uncertainty caused by various reasons, e.g., the
statistical estimation or human errors; therefore, estimating uncertainty is important for
research [34]. As a method recommended by the IPCC, Monte Carlo simulations are widely
used in the analysis of uncertainty [35], which is also employed in this study.

After repeating the simulation 10,000 times in Monte Carlo analysis, the average
uncertainty of the data was calculated with a 95% confidence interval. Table 3 shows the
uncertainty of each type of data every 10 years. In general, A2 has the smallest uncertainty,
I has the greatest uncertainty. Since the Ebinur Lake Basin energy balance data is derived
from provincial data, the potential uncertainty in the carbon emissions data may be higher.
The credibility of the basic data is relatively high.

Table 3. Uncertainties of data.

Year Sector Lower Limit Upper Limit Sector Lower Limit Upper Limit

1997

I −4.6% 10.5% A2 1.4% 2.2%
P1 2.0% 6.7% A3 2.5% 7.6%
P2 3.7% 8.1% T1 −9.6% 8.3%
A1 −1.7% 2.1% T2 −1.4% 9.2%

2007

I −3.3 11.7% A2 −0.7% 1.1%
P1 2.2% 6.3% A3 4.8% 10.5%
P2 1.5% 9.6% T1 −5.4% 3.9%
A1 −1.4% 3.5% T2 −0.9% 8.4%

2017

I −3.6% 8.0% A2 0.3% 0.9%
P1 0.1% 1.2% A3 1.2% 6.7%
P2 −0.6% 3.3% T1 −7.1% 5.8%
A1 −1.8% 2.1% T2 0.9% 6.0%

3. Analysis of Carbon Emissions and Energy Consumption Structure
3.1. Change in the Total Amount of DCEH

As shown in Figure 2, from 1987 to 2017, DCEH showed an overall growth trend, from
4.505 × 105 t in 1987 to 1.922 × 106 t in 2017, with an average annual growth rate of 5.2%.
The proportion of DCEH by urban and rural households in Ebinur Lake Basin is shown in
Figure 3. The proportion of direct carbon emissions of urban household consumption was
the lowest in 1987, 36.82%, and the highest in 2004, 56.10%. From 1987 to 2014, although
the proportion of urban areas fluctuated occasionally, the overall gap between urban and
rural areas was narrowing, and the proportion of urban areas in some years even exceeded
that of rural areas. The main reasons are as follows: (1) the growth rate of urban population
exceeds that of rural population; (2) there are large numbers of rural people moving to
cities; (3) urban household motor vehicle ownership is growing rapidly [36]. After 2014,
the proportion of urban areas has gradually decreased, which is mainly due to the change
of energy structure.

Figure 2. Direct carbon emissions of household from 1987 to 2017.
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Figure 3. The ratio of DCEH from urban and rural households in the Ebinur Lake Basin from 1987 to 2017.

3.2. Analysis of Driving Factor
3.2.1. Population (P)

As shown in Figure 4, the total population of the Ebinur Lake Basin increased from
58.84 × 104 in 1987 to 94.99 × 104 in 2017, with an average annual growth rate of 1.67%.
Generally speaking, it is growing steadily, but at a slow rate.

Figure 4. The change of Population (P) from 1987 to 2017.

The level of urbanization increased slowly from 1987 to 2004, increasing by 8.1%.The
urbanization fluctuations after 2008 were relatively large, indicating that the population
flow speed was fast, and the household registration system began to be relaxed. In the next
10 years, the level of urbanization, however, has hardly changed, only increasing by 0.3%.
By 2017, the level of urbanization fell back to 47.3%.

3.2.2. Affluence (A)

Figure 5 shows the change of the three factors in the level of Affluence (A)
(1987–2017). The GDP per capita of the Ebinur Lake Basin increased from 1600 yuan
in 1987 to 6.78 × 104 yuan in 2017, an increase of about 42.4 times, with an average annual
growth rate of 13.8%.

Economic development and urban expansion have rapidly increased the number
of vehicles (agricultural machinery) that consume fossil fuels. Motor vehicles are an
important contributor to carbon emissions, and the annual growth rate of carbon emissions
in Xinjiang’s transportation industry exceeds 30% [37]. The number of motor vehicles in
the Ebinur Lake Basin increased from 1.49 × 104 in 1987 to 14.72 × 104 in 2017, an increase
of 9.88 times.

The year-end household savings in the Ebinur Lake Basin increased from 173.2 million
yuan in 1987 to 17.08 billion yuan, an increase of 97.6 times, far exceeding the growth
rate of GDP per capita. This not only shows that the residents of the Ebinur Lake Basin
have a strong sense of saving money, on the other hand, it also suggests that the resi-
dents may be conservative in the consumption of living energy and have a strong carbon
emission potential.
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Figure 5. The change of Affluence (A) from 1987 to 2017

3.2.3. Technology (T)

As shown in Figure 6, The carbon intensity of the Ebinur Lake Basin decreased from
4.86 × 104 yuan/ton in 1987 to 3 thousand yuan/ton in 2017, a 16.2 times reduction. The
degree of reduction is higher than the degree of local development. There were certain
fluctuations between 1995 and 1999. Although carbon intensity cannot fully reflect the
level of energy efficiency, it suggests a certain extent that energy use during this period
of development was extensive and the efficiency was extremely low. Generally speaking,
the economic growth of the Ebinur Lake Basin has gradually reduced the driving force of
carbon emissions.

Figure 6. The change of technology (T) 1987 to 2017.

Figures 6–8 are used to show structural change in energy consumption of household.
From 1987 to 2003, the energy consumption structure remained basically unchanged, and
coal was in an absolute dominant position. After that, the share of coal began to decrease,
down to 0.5–0.6. Since there was no detailed energy balance sheet before 2000, for the
analysis of the detailed energy structure, the time span of the data we selected is from
2000 to 2017. Figures 7 and 8 are the energy structure of direct carbon emissions from
urban and rural households from 2000 to 2017, respectively. The energy structure of urban
consumption has undergone tremendous changes. Raw coal and liquefied petroleum gas
have been gradually replaced by natural gas. The consumption of raw coal has decreased
year by year, from 89.6% in 2000 to 21.6% in 2015. Urban natural gas consumption increased
year by year, from 0.4% in 2000 to 40.9% in 2014. Liquefied petroleum gas has experienced
a process of increasing and decreasing, which indicates that it is rapidly eliminated after
being used in a large number in energy structure conversion. The main reason for the
above changes is that Xinjiang has implemented a large-scale “coal to gas” policy [38].
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Figure 7. Urban DCEH to the energy structure in the Ebinur Lake Basin from 2000 to 2017.

Figure 8. Rural DCEH to the energy structure in the Ebinur Lake Basin from 2000 to 2017.

Almost all of the rural energy consumption before 2005 comes from coal. After 2005,
the rural energy structure has become rich. However, the lowest proportion of coal is
more than 85%. In winter, rural households rely heavily on coal and its derivatives, and
large amounts of coal are used for heating, which directly leads to high environmental
pollution, especially carbon dioxide emissions [39]. Some towns close to the city are
gradually included in the urban planning, and some households have begun to use natural
gas and liquefied petroleum gas, so the proportion of them has increased.

The proportion of gasoline consumption is also increasing year by year, from 3.8 to
24.8% in cities and from 0 to 6.4% in rural areas. This suggests that the living standards of
families are constantly improving, and that private car ownership is continuing to increase.
From 2011 to 2017, the consumption of gasoline in rural areas increased rapidly due to
the increase in private cars and public transportation. Similarly, from 2011 to 2015, the
proportion of diesel fuel consumption in rural areas increased very fast, mainly due to
the large increase in agricultural machinery. In 2016 and 2017, the proportion of diesel
energy consumption decreased. The possible reasons are as follows: (1) relocation of
remote villages reduces the use of diesel vehicles [40]; (2) rural road optimization makes
the growth rate of small gasoline cars and family motorcycles higher than that of diesel cars.

4. Results and Discussion of STIRPAT Model
4.1. Multicollinearity Analysis

Logarithmically process each variable and analyze the correlation of each variable. The
results are shown in Table 4. There is a significant correlation between each factor and LnI,
and there is a high correlation between variables, so there may be serious multicollinearity.

Table 4. Pearson’s correlation test results.

lnI lnP1 lnP2 lnA1 lnA2 lnA3 lnT1 lnT2

LnI 1.000 0.939 ** 0.843 ** 0.997 ** 0.971 ** 0.947 ** −0.930 ** −0.896 **
LnP1 1.000 0.979 ** 0.960 ** 0.946 ** 0.974 ** −0.946 ** −0.785 **
LnP2 1.000 0.934 ** 0.942 ** 0.960 ** −0.950 ** −0.794 **
LnA1 1.000 0.976 ** 0.961 ** −0.943 ** −0.886 **
LnA2 1.000 0.980 ** −0.990 ** −0.903 **
LnA3 1.000 −0.982 ** −0.824 **
LnT1 1.000 0.868 **
LnT2 1.000

** Correlation was significant at the 0.01 level (2-tailed).
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The logarithmic STIRPAT model is a typical multivariate linear equation. Therefore,
in the process of model analysis, this article chose ordinary least squares (OLS). Intuitive
judgment of multicollinearity is generally reflected by variance inflation factor (VIF).
The larger VIF is, the more serious the collinearity is. When 0 < VIF < 10, there is no
multicollinearity; when 10 ≤ VIF < 100, there is strong multicollinearity; when 100 ≤ VIF,
there is serious multicollinearity. The analysis results are shown in Table 5. R2 is 0.998,
adjusted R2 is 0.997, F statistic is 1347.370, and Sig is significant. All these indicate that there
is a significant multivariate linear relationship between model factors. VIF values of all
factors were greater than 10, the minimum LnT2 was 11.725, and the maximum LnA3 was
229.480, which further indicated that there was major multicollinearity among variables.

Table 5. OLS results.

Unstandardized Coefficients t Statistic Sig. VIF

C 4.135 2.471 0.021
LnP1 0.053 1.806 0.084 49.100
LnP2 0.076 0.852 0.403 11.725
LnA1 0.601 6.448 0.000 214.918
LnA2 0.086 1.314 0.202 217.306
LnA3 0.011 0.186 0.854 229.480
LnT1 −0.163 −0.403 0.691 173.467
LnT2 −0.026 −0.261 0.797 16.435

R2 0.998
adjusted R2 0.997
F statistic 1364.487

Sig. 0.000

4.2. Principal Component Analysis

In order to solve the multicollinearity problem of the STIRPAT model, the principal
component analysis method is used to combine multiple indicators into a few independent
new variables that can fully reflect the overall information for further analysis. Principal
component analysis is carried out on the variables mentioned above, and the results are
shown in Table 6.

Table 6. Total variance interpretation.

Indicators
Initial Eigenvalue Extraction Sums of Squared Loadings

Total Variance Cumulative% Total Variance Cumulative%

1 6.574 93.911 93.911 6.574 93.911 93.911
2 0.287 4.100 98.011 0.287 4.100 98.011
3 0.070 0.994 99.005
4 0.052 0.736 99.741
5 0.011 0.155 99.896
6 0.007 0.100 99.996
7 0.000 0.004 100.000

It can be seen from Table 5 that the seven independent variables have been analyzed to
extract two principal components, represented by Z1 and Z2. The two principal component
variables can explain 98.011% of the original variable, indicating that Z1 and Z2 can
well summarize the characteristics of the independent variable. According to the score
coefficient of the principal component, the relationship between Z1 and Z2 and the original
seven independent variables is:

Z1 = 0.148 ln P1 + 0.147 ln P2 + 0.149 ln A1 + 0.151 ln A2 + 0.150 ln A3 − 0.150 ln T1 − 0.136 ln T2 (8)

Z2 = 0.686 ln P1 + 0.628 ln P2 − 0.109 ln A1 − 0.197 ln A2 + 0.386 ln A3 − 0.033 ln T1 + 1.555 ln T2 (9)
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Taking Z1 and Z2 as independent variables and lnI as the dependent variable, a
regression model was established. The R2 of the regression equation was 0.952, which
passed the significance test at 0.01 level. The relationship between the principal component
variables Z1, Z2 and lnI is as follows:

ln I = 0.930Z1 − 0.208Z2 (10)

Substitute Equations (8)–(10), calculate the logarithmic relation of STIRPAT model.

ln I = −0.005 ln P1 + 0.006 ln P2 + 0.161 ln A1 + 0.181 ln A2 + 0.059 ln A3 − 0.133 ln T1 + 0.450 ln T2 (11)

According to Equation (11), the main factors promoting carbon emission growth
are motor vehicle ownership (A1) and GDP per capita (A2), while the secondary factor
is residents’ year-end savings (A3) and population urbanization (P2). The reduction of
carbon intensity (T1) has a certain negative effect on the growth of carbon emissions, and
energy consumption structure (T2) has a strong negative effect on the growth of carbon
emissions. The population size (P1) has not become a positive factor for the growth of
carbon emissions, but to a certain extent hindered the growth of carbon emissions.

4.3. Regression Analysis

The regression coefficient of population size (P1) is negative, indicating that popu-
lation growth has a negative effect on the growth of carbon emissions. The population
of the Ebinur Lake Basin is not only small in size, but also grows very slowly, from
5.88 × 105 in 1987 to 9.49 × 105 in 2017. The average annual population growth rate is
only 1.17%. The main reason is that the implementation of the family planning policy
and the economic growth and education level have led to a decline in the family’s desire
to have children [41]. Therefore, from this perspective, strict population policies and the
development of education can curb the increase in carbon emissions. Studies by many
scholars have shown that the impact of urbanization on carbon emissions is dynamic, and
there are great differences in different regions [42,43]. Population urbanization (P2) is a
positive driver with a low degree of contribution from 1987 to 2017 in the results of this
paper. Therefore, urbanization must be adapted to local conditions and cannot blindly
pursue the transfer of population from rural to urban areas. Motor vehicle ownership (A1),
and GDP per capita (A2) have a significant role in promoting the increase in DCEH. The fact
that an increase in motor vehicle ownership (A1) leads to an increase in carbon emissions
is obvious and is consistent with the results [36,44,45]. Based on the regression results
in this paper, there is an inverted U-shaped curve of the environmental Kuznets model
between the GDP per capita (A2) and the DCEH, but the inflection point has not yet been
reached. In general, rapid urbanization is synergistic with the increase in carbon intensity,
but with technological progress and economic growth, carbon intensity will gradually
decline, leading to the gradual reduction of carbon emissions [5,46]. Due to the strong
promotion of administrative forces in the Ebinur Lake Basin, the carbon intensity has been
rapidly reduced, which is of great importance. In China, Xinjiang and other provinces, the
energy consumption structure (T2) is the main driving factor for the reduction of carbon
emissions [47–49]. The energy structure has undergone tremendous changes and is the
most important driving factor for reducing carbon emissions. Natural gas and liquefied
petroleum gas is gradually replacing coal, so that carbon emissions are reduced when meet-
ing the same needs of family life. However, in some developed regions, energy structure
has become a secondary factor [14]. Therefore, the pressure on carbon emission reduction
in the Ebinur Lake Basin is still huge.

5. Conclusions and Policy Recommendations
5.1. Conclusions

After several decades of urbanization and industrialization, China’s household income
and consumption have been greatly developed, and the resulting carbon emissions have
also increased several times. As one of the energy bases, Xinjiang Ebinur Lake Basin has
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unique customs and family living habits. In order to achieve its carbon emission reduction
goals, it is necessary to breakdown the driving factors of its DCEH. Based on the extended
STIRPAT model, the paper uses multiple linear analysis and principal component analysis
to reveal the trends and causes of DCEH in the Ebinur Lake Basin from 1987 to 2017. The
main conclusions are as follows:

(1) From 1987 to 2017, the DCEH in the Ebinur Lake Basin suggested an overall upward
trend in growth. In most years, the proportion of rural consumption is higher than
that of urban consumption. On the whole, the carbon emission potential and carbon
emission reduction pressure of the Ebinur Lake Basin is great, and carbon emission
will continue to increase;

(2) From 2000 to 2017, the urban energy carbon emission structure changed greatly. Due
to changes in energy policies, raw coal and liquefied petroleum gas were gradually
replaced by natural gas. The rural energy structure has not changed much, and coal
has always occupied an advantageous position. With the economic development,
the increase in the number of motor vehicles has caused a huge change in the urban
energy structure, and it has also enriched the rural energy structure;

(3) There is a significant affluence effect on the DCEH in the Ebinur Lake Basin. Motor
vehicle ownership, GDP per capita, and residents’ year-end savings all play a positive
role in carbon emissions. The population of the Ebinur Lake Basin has been growing
at a slow rate, which has a slight negative effect on DCEH. The change in the structure
of energy consumption is the main driver. In addition, there is an environmental
Kuznets curve between DCEH and economic growth, but the inflection point has not
yet been reached.

5.2. Policy Recommendations

(1) Xinjiang’s renewable energy, especially wind energy and solar energy, is very rich.
Increasing the proportion of renewable energy in total energy consumption can
effectively optimize the energy consumption structure and has a significant positive
effect on carbon dioxide emissions [50]. Local governments should further promote
the use of clean energy and renewable energy, especially solar energy in family life;

(2) The use of fossil fuels should be changed from high-carbon coal to relatively low-
carbon petroleum, natural gas, and liquefied petroleum gas. At present, the heating,
cooking and other activities of rural households in the Ebinur Lake Basin are still
dominated by coal. In the reform process, it is necessary to fully consider that
Xinjiang’s energy consumption structure is still dominated by coal, and it is necessary
to continue to reduce the proportion of coal used in domestic energy consumption
and improve the quality of coal used in rural areas; to accelerate the integration
of rural areas around the city into the overall urban planning, optimize the quality
and progress of urbanization so that natural gas and liquefied petroleum gas will
gradually replace the niche occupied by coal in domestic energy;

(3) The central and local governments should vigorously support and promote new
energy vehicles (electric vehicles) and encourage and develop the new energy vehicle
industry. The use of new energy vehicles in the Ebinur Lake Basin and even Xinjiang
is not common, so it has broad application and promotion prospects. Public trans-
portation and private cars in the urban area can gradually transition to new energy
vehicles, which has both economic and environmental benefits.
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