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Abstract: In this study, we apply a robust optimization approach to a p-center facility location problem
under uncertainty. Based on a symmetric interval and a multiple allocation strategy, we use three
types of uncertainty sets to formulate the robust problem: box uncertainty, ellipsoidal uncertainty,
and cardinality-constrained uncertainty. The equivalent robust counterpart models can be solved to
optimality using Gurobi. Comprehensive numerical experiments have been conducted by comparing
the performance of the different robust models, which illustrate the pattern of robust solutions,
and allocating a demand node to multiple facilities can reduce the price of robustness, and reveal
that alternative models of uncertainty can provide robust solutions with different conservativeness.

Keywords: facility location; p-center; robust optimization; symmetric interval; decision-making
under uncertainty

1. Introduction

The facility location problem addresses facility locations intended to serve a set of given demands.
In reality, facility location is often a long-term decision and is vital in building a logistics network,
so firms must consider the uncertainties in its life-span in the initial design. Uncertainties can be even
more drastic in emergency circumstances, in which firms need to serve demand quickly and fairly.
In such cases, decision-makers have to solve location problems under uncertain input data.

Facility locations under uncertainty received decades of research attention, with different
approaches to embedding uncertain information in location models. These modeling techniques
are classified mainly as robust approaches and stochastic approaches, depending on whether decision
makers can acquire probabilistic information. For emergency situations such as natural disasters, it is
difficult to acquire distributional information in advance, which motivates our study of the robust
optimization (RO) approach in this work. Most existing studies on facility locations under uncertainty
focus on optimizing the total cost or profit. However, the p-center location model, which minimizes
the maximum cost between a client and its closest facility in a network, focuses on clients “who are
poorest served” and is more suitable for emergency services. A multiple allocation strategy is practical
and may improve the price of robustness of a location plan.

This study presents robust p-center facility location models based on three types of cost
uncertainty: box uncertainty, ellipsoid uncertainty and, cardinality-constrained uncertainty. Along
with a multiple allocation strategy, we can develop robust solutions with different structures from our
models. We present the tractable formulations and compare the performance of three RO approaches
through a series of numerical experiments.

The paper proceeds as follows: in Section 2, we review the relevant literature on the facility location
problem under uncertainty and RO approaches. In Section 3, we adopt three RO approaches to formulate
robust p-center models and present their tractabilities, and illustrate the causes and robustness of the
multiple allocation strategy. In Section 4, we conduct a series of numerical experiments to illustrate
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the pattern of the robust solutions and compare the performance of different RO models. In Section 5,
we provide conclusions and discuss future research directions.

2. Literature Review

The facility location problem is a classic area with many years of research. The fundamental
concepts of location research include p-median problems, fixed-charge problems, covering problems,
and p-center problems. The first two problems are widely studied and focus on minimizing the
total cost, though overall performance may not be a priority during emergency situations, in which
case the last two problems are applicable. Among these models, the goal of the p-center model is to
minimize the worst performance (cost) of a network, and is suitable when service equity for every
client is very important. Jia et al. [1] studies the p-center problem for locating medical services in a
large-scale emergency. Calik [2] is the first to study a multiple allocation strategy for the p-center
problem with capacitated facilities by presenting a branch-and-cut algorithm to solve the model.
However, for the standard uncapacitated p-center problem, multiple allocation is meaningless since
it can only produce a single allocation result [3]. Sarkar and Majumder [4] propose three facility
location problems with different dimensions. They extend a two-dimensional problem by considering
commodity type and transportation mode. We only consider a two-dimensional p-center problem, but
in an uncertain environment with no probabilistic information, in which case robust optimization is the
most appropriate method. Daskin [5] and Laporte et al. [6] provide more comprehensive discussions
of facility location research.

Facility location problems under uncertainty received considerable attention in recent years.
Snyder [7] provide detailed reviews. This line of study uses three categories of methods: RO, stochastic
programming (SP), and chance constraints. The last two approaches require probabilistic information
in advance [8,9]. We choose the RO approach to model uncertainty due to the low availability of
distributional information in circumstances such as emergencies.

RO is an attractive optimization method with an increasing amount of recent research.
The fundamental element of RO is various uncertainty sets, such as interval and finite sets of
scenarios by Kouvelis and Yu [10], box uncertainty by Soyster [11], ellipsoidal uncertainty by
Ben-Tal and Nemirovski [12,13], cardinality-constrained uncertainty by Bertsimas and Sim [14],
and so on, each with distinct tractability and conservativeness. Normally, an uncertain problem
is transformed to its equivalent or approximate tractable robust counterpart. Apart from the classic
RO approaches, Büsing and D’Andreagiovanni [15] extend cardinality-constrained uncertainty by
introducing multiple deviations bands, developing a cutting-plane method to solve the robust model.
Gabrel et al. [16] introduce a pw robustness criterion, which optimizes partial scenarios and guarantees
the worst performance for any scenario. Goh and Sim [17] develop a distributionally RO approach
for uncertain problems with partial distribution information. More recently, RO has been applied
to multi-stage problems. Zeng and Zhao [18] present an exact column-and-constraint algorithm
for the two-stage RO models. Hanasusanto et al. [19] study approximate solution methods for
the robust two-stage binary program. For systematic RO theories and applications, we refer to
Ben-Tal et al. [20], Bertsimas et al. [21], Gabrel et al. [22], Gorissen et al. [23].

RO applications to the facility location problem have emerged in the last decade. Baron et al. [24]
apply RO to the facility location problem by modeling demand uncertainty as box and ellipsoid
in the fixed-charge problem. Nikoofal and Sadjadi [25] propose a robust p-median model with
edge length uncertainty using an “uncertainty budget” to limit the total scaled variation of the
uncertainty parameters. Lu and Sheu [26] present a robust vertex p-center model for locating urgent
relief centers. Lu [27] models demand and time uncertainty in intervals, minimizing the worse-case
deviation of the objective for a weighted vertex p-center problem. Gülpinar et al. [28] combine chance
constraint, stochastic programming and RO methods to formulate robust facility location models,
using Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) to represent the decision maker’s
risk preference. D’Andreagiovanni et al. [29] propose a connected facility location model for hybrid
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wired-wireless network design problem, using cardinality-constrained uncertainty to model wireless
propagation, a primal heuristic method based on variable fixing and large neighborhood search is
designed to solve the robust model. Some studies apply two-stage RO to facility location problems.
Atamturk and Zhang [30] is the first to propose a two-stage RO model for network flow and design
problems. Hervet et al. [31] introduce a two-stage robust network design problem under scenario-based
demand uncertainty, solving it with a column-and-constraints generation algorithm. Gabrel et al. [32]
propose a two-stage robust location-transportation model with a cardinality-constrained demand
uncertainty set. An et al. [33] present a two-stage RO model for a reliable p-median problem using
a cardinality-constrained set to model facility disruption uncertainty. Álvarez-Miranda et al. [34]
propose a two-stage recoverable fixed-charge facility location problem with a finite uncertainty set of
scenarios, in which both the location and allocation decisions are made in two stages. Peng et al. [35]
present a multiplicative cardinality-constrained uncertainty, considering a two-stage facility location
problem with disruptions. Furthermore, Lu et al. [36] is the first to apply the distributionally RO
method to model disruption uncertainty in the context of facility location. We compare this paper with
the related references in Table 1, the column “CC” stands for cardinality-constrained uncertainty and
“2SRO” represents the two-stage robust optimization model. To the best of our knowledge, we present
the first robust p-center facility location model applying set-based RO approach, modelling uncertain
cost as box, ellipsoidal and cardinality-constrained uncertainty.

Table 1. Contribution to the literature.

Articles Location Model
Uncertainty Model

Box/Interval Ellipsoid CC 2SRO Stochastic Scenario

This paper p-center X X X
[24] fixed-charge X X
[25] p-median X
[26] p-center X
[27] p-center X
[28] fixed-charge X X
[29] connected X
[30] network design X X X
[31] network design X X
[32] location-transportation X X
[33] p-median X X
[34] fixed-charge X X
[35] p-median X

3. A Robust Multiple Allocation p-Center Facility Location Problem

The deterministic p-center problem is proved to be NP-hard by Kariv and Hakimi [37], aiming to
locate p facilities to serve given demand while minimizing the maximum cost to serve a demand node.
We assume that in our models:

(i) The capacity of all open facilities can satisfy all the demands. The uncapacitated facility location
problem (UFLP) is one of the fundamental location problems described in Laporte et al. [6];

(ii) The demand is infinitely divisible and can be fulfilled by one or multiple facilities as addressed in
Calik [2].

Based on the formulation of the deterministic p-center problem in Section 3.1, we assume the cost is
uncertain and contained in an uncertainty set, applying three RO approaches to formulate robust models
for the multiple allocation p-center problem under cost uncertainty in Sections 3.2–3.4. We implement
a box uncertainty set and an ellipsoidal uncertainty set using an approach similar to that of Baron et al. [24].
We introduce the cardinality-constrained uncertainty set following Bertsimas and Sim [14].
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3.1. Deterministic Problem Formulation

Assume all data are known in advance in the problem. Sets I and J are on a connected graph G,
where I is the set of demand nodes and J is the set of potential facility nodes. For every i ∈ I, j ∈ J,
suppose that we know the unit cost between node i and node j, cij, and the demand for node i, di.
yj and xij are decision variables: yj = 1 if facility in node j is open and yj = 0, otherwise. Unlike the
classic p-center model, we relax x ∈ 0, 1 to x ∈ [0, 1], so x is the proportion of i’s demand a facility in
node j serves. We further explain this multiple allocation strategy in Section 3.5. Following Daskin [5],
we formulate the multiple allocation uncapacitated p-center problem as follows:

PCENTER

min L, (1)

subject to ∑
j∈J

cijdixij 6 L ∀i ∈ I, (2)

∑
j∈J

yj 6 p, (3)

xij 6 yj ∀i ∈ I, j ∈ J, (4)

∑
j∈J

xij = 1 ∀i ∈ I, (5)

xij > 0, yj ∈ {0, 1} ∀i ∈ I, j ∈ J. (6)

The objective function (1) and constraints (2) minimize the maximum cost to serve a demand
node. Constraint (3) limits the total number of open facilities. Constraints (4) and (5) guarantee that
demand can be assigned only to open facilities and all demand must be served.

When the problem in PCENTER remains deterministic, we can solve it as a mixed integer linear
program (MILP). However, in an uncertain environment without probabilistic information, the original
solution may no longer be optimal. Let c̃ij be the uncertain cost between nodes i and j. We can apply the
RO approaches in the following sections to reformulate the problem based on different uncertainty sets.

3.2. The Robust Problem: Box Uncertainty

We consider the case that all unit costs cij, j ∈ J, for serving a demand node i are uncertain
and bounded in a symmetric interval. L is the maximum cost under box uncertainty for serving
all demand nodes. Let c̄ij be the nominal value of c̃ij. Under box uncertainty, we choose c̃ij from
a symmetric box: [c̄ij(1− ε), c̄ij(1 + ε)] with mean c̄ij, ε determines the uncertain scale, and 0 6 ε 6 1.
Let UB

i = [c̄ij(1− ε), c̄ij(1 + ε)], UB = {UB
i }i∈I be the box uncertainty set.

We can augment constraints (2) such that

max
c̃ij∈UB

{∑
j∈J

c̃ijdixij} 6 L ∀i ∈ I. (7)

Because x > 0, the robust counterparts of constraints (7) are

∑
j∈J

c̄ij(1 + ε)dixij 6 L ∀i ∈ I. (8)

Therefore, the robust counterpart of PCENTER, which we can solve using an MILP solver,
is as follows:
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RCBOX

min L,

subject to constraints (3)–(6) and (8).

3.3. The Robust Problem: Ellipsoid Uncertainty

For the case of ellipsoid uncertainty, we assume that all unit costs cij, j ∈ J, for serving a demand
node i are bounded in an ellipsoid. L is the maximum cost under ellipsoid uncertainty for serving all
demand nodes. We consider a total-normalized-squared deviation to define an ellipsoid uncertainty set:

UE =

c̃ij|∑
j∈J

[
c̃ij − c̄ij

εc̄ij

]2

6 Ω2
i

 , (9)

where Ωi is a parameter that controls the robustness in UE for constraint i.
Let ĉij = εc̄ij, Σ be a |I| order diagonal matrix with non-zero entries ĉij; then,

UE =
{

c̃ij|(c̃ij − c̄ij)
TΣ−1(c̃ij − c̄ij) 6 Ω2

i

}
. (10)

The augmented counterpart of constraints (2) are

max
c̃ij∈UE

{∑
j∈J

c̃ijdixij} 6 L ∀i ∈ I. (11)

According to the Karush–Kuhn–Tucker condition, the robust counterparts of constraints (11) are

∑
j∈J

c̄ijdixij + Ωi

√
∑
j∈J

ĉ2
ijd

2
i x2

ij 6 L ∀i ∈ I. (12)

Let Wi =
√

∑j∈J ĉ2
ijd

2
i x2

ij, so we can linearize constraints (12) such that

∑
j∈J

c̄ijdixij + ΩiWi 6 L ∀i ∈ I. (13)

Since the objective (1) minimizes L, we can relax Wi to

Wi >
√

∑
j∈J

ĉ2
ijd

2
i x2

ij ∀i ∈ I. (14)

The robust counterpart of PCENTER with ellipsoidal uncertainty is

RCELL

min L,

subject to constraints (3)–(6), (13) and (14).

RCELL is a conic quadratic program that we can solve using a mixed-integer quadratic constrained
program (MIQCP) solver, such as Gurobi.

3.4. The Robust Problem: Cardinality-Constrained Uncertainty

Under the cardinality-constrained uncertainty, we give a budget Γi, which limits the number of
unit costs cij (j ∈ J, ∀i ∈ I) that can vary from their nominal values. L is the maximum cost under
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cardinality-constrained uncertainty for serving all demand nodes. The robust formulation of the
constraints (2) becomes

∑
j∈J

c̄ijdixij + max
{Si∪{ri}|Si⊆J, |Si |=bΓic, ri∈J\Si}

{
∑
j∈Si

ĉijdixij + (Γi − bΓic)ĉiri dix∗iri

}
6 L ∀i ∈ I. (15)

Let vector x∗ be a feasible solution for constraints (15). The protection function of the ith
constraint (15) is

F(x∗, Γi) = max
{Si∪{ri}|Si⊆J, |Si |=bΓic, ri∈J\Si}

{
∑
j∈Si

ĉijdix∗ij + (Γi − bΓic)ĉiri dix∗iri

}
, (16)

which is equivalent to

max ∑
j∈J

ĉijdix∗ijzij, (17)

subject to ∑
j∈J

zij 6 Γi, (18)

0 6 zij 6 1 ∀j ∈ J. (19)

Let p, q be the dual value corresponding to constraints (18) and (19); then, the dual of the
Problem (17)–(19) is

min piΓi + ∑
j∈J

qij, (20)

subject to pi + qij > ĉijdix∗ij ∀j ∈ J, (21)

pi > 0, (22)

qij > 0 ∀j ∈ J. (23)

According to strong duality, we can formulate the robust counterpart of PCENTER under
cardinality-constrained uncertainty as an MILP such that

RCCC

min L,

subject to Constraints (3)–(6)

∑
j∈J

c̄ijdixij + piΓi + ∑
j∈J

qij 6 L ∀i ∈ I, (24)

pi + qij > ĉijdixij ∀i ∈ I, j ∈ J, (25)

pi > 0 ∀i ∈ I, (26)

qij > 0 ∀i ∈ I, j ∈ J, (27)

which we can solve using an MILP solver.

3.5. Robustness of the Multiple Allocation Strategy

According to Nemhauser and Wolsey [3], we can relax all allocation variables x ∈ {0, 1}|I|·|J| to
x ∈ [0, 1]|I|·|J| in PCENTER, which means that only single allocation solutions can be derived from
deterministic uncapacitated p-center problem. Because each client is always served by its “closest”
facility to minimize the cost, unless more than one facility has the same cost for a demand node.
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However, this conclusion is invalid when the “closest” facility is unclear. Our robust problems are able
to provide mulitiple allocation solutions under uncertain circumstances.

In Figures 1 and 2, we illustrate the impact of the three uncertainty sets on the choice of facilities
for a single demand node i. Due to the constraints in (8), (12) and (15), every cost cijdi varies in the
range of [c̄ijdi, c̄ijdi + ĉijdi]. Suppose that demand node i can be allocated to four open facilities, 1 to 4
along the y-axis, with the cost of each facility to serve demand node i varying in the four intervals above
the x axis. Both facilities 1 and 2 may provide the lowest cost for i. Figure 1 shows that box uncertainty
considers only the worst unit cost c̄ij + ĉij between every demand node and facility, and thus solving
the robust problem is equivalent to solving a deterministic one. The best choice is obviously facility 1.

10 15 20 25

1

2

3

4

c̄i1di c̄i1di + ĉi1di

c̄i2di c̄i2di + ĉi2di

Cost

Fa
ci

lit
y

Figure 1. The choice of facilities to serve demand node i: Box uncertainty.

10 15 20 25

1

2

3

4

c̄i1di c̄i1di + α1 ĉi1di

c̄i2di c̄i2di + α2 ĉi2di

Cost

Fa
ci

lit
y

Figure 2. The choice of facilities to serve demand node i: Ellipsoidal and Cardinality-constrained uncertainty.

For the other two robust problems, both the ellipsoidal uncertainty set and cardinality-constrained
uncertainty set can prevent all uncertain unit costs c̃ij from reaching their worst value simultaneously.
In this case, the optimal choice of facility for demand node i may be unclear when more than one
facility can provide the minimum unit cost. Figure 2 provides an example of choosing multiple facilities
to serve demand node i. Instead of applying a single allocation strategy, which may lead to a poor
solution, the robust problems under ellipsoidal and cardinality-constrained uncertainty can provide
multiple allocation solutions, resulting in choosing facilities 1 and 2 together, which are both possible
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optimal choices with a single allocation strategy, but it requires that the robust parameters Ωi and Γi
be within a certain range (e.g., Ωi = Γi = 1).

For any demand node i, we have the following proposition:

Proposition 1. In the robust p-center problems with ellipsoidal uncertainty and cardinality-constrained uncertainty:
(i) In the optimal solution, a demand node i can possibly be served by multiple facilities.
(ii) When a demand node i is allocated to multiple facilities, the optimal solution under ellipsoidal

uncertainty is related to Ωi, the optimal solution under cardinality-constrained uncertainty is fixed and
not related to Γi.

Proof of Proposition 1. Choosing optimal facilities for serving demand node i (c̃ij are under
cardinality-constrained uncertainty) is equivalent to solving:

min f (x, α) = ∑
j∈J∗

(c̄ij + ĉijαj)dixij, (28)

subject to ∑
j∈J∗

xij = 1, (29)

∑
j∈J∗

αj = Γi, (30)

αj 6 1 ∀j ∈ J∗, (31)

αj > 0 ∀j ∈ J∗, (32)

xij 6 1 ∀j ∈ J∗, (33)

xij > 0 ∀j ∈ J∗, (34)

where αj =
c̃ij−c̄ij

c̄ij
is the deviation variable, and J∗ is the set of open facilities. Let h(x, α) = ∑j∈J∗ xij− 1,

g(x, α) = ∑j∈J∗ αj − Γi, pj(x, α) = −αj + 1, qj(x, α) = αj, uj(x, α) = −xij + 1, vj(x, α) = xij, j ∈ J∗.
The Model (28)–(34) is a convex program, which can be solved applying the Karush–Kuhn–Tucker
condition in Equations (36)–(47), the Lagrange function is in Equation (35):

L = ∇xij f (x, α)− βh(x, α)− γg(x, α)−∑j∈J∗ δj pj(x, α)−∑j∈J∗ ηjqj(x, α)−
∑j∈J∗ θjuj(x, α)−∑j∈J∗ λjvj(x, α),

(35)



∇xij L = (c̄ij + ĉijαj)di − β + θj − λj = 0 ∀j ∈ J∗, (36)

∇αj L = ĉijdixij − γ + δj − ηj = 0 ∀j ∈ J∗, (37)

β 6= 0, (38)

γ 6= 0, (39)

δj > 0 ∀j ∈ J∗, (40)

δj pj(x, α) = δj(−αj + 1) = 0 ∀j ∈ J∗, (41)

ηj > 0 ∀j ∈ J∗, (42)

ηjqj(x, α) = ηjαj = 0 ∀j ∈ J∗, (43)

θj > 0 ∀j ∈ J∗, (44)

θjuj(x, α) = θj(−xij + 1) = 0 ∀j ∈ J∗, (45)

λj > 0 ∀j ∈ J∗, (46)

λjvj(x, α) = λjxij = 0 ∀j ∈ J∗, (47)

Equations (29)–(34).
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Let J̄ ⊆ J∗, so that, for all j1 ∈ J̄, xij1 > 0. Immediately, we know for all j1 ∈ J̄, λj1 = 0 because
of Equations (34) and (47); otherwise, for all j2 ∈ J∗/ J̄, xij2 = 0, λj2 > 0. For all, ηj1 = 0 due to
Equations (32) and (43). Then, consider the following cases:

• case 1: θj1 > 0. Due to Equations (29) and (45), xij1 = 1, meaning only one facility j1 is selected to
serve i, only when (c̄ij1 + ĉij1 αj1)di + θj1 = (c̄ij2 + ĉij2 αj2)di − λj2 = −β.

• case 2: θj1 = 0. Due to Equations (33), (34), (36) and (45), for all j ∈ J̄, (c̄ij + ĉijαj)di = β, meaning
multiple facilities are choosen to serve demand node i, only when all c̃ij1 = c̄ij1 + ĉij1 αj1 , j1 ∈ J̄,
are equal.

• case 3: θj1 = 0, δj1 = 0. Due to Equation (37), for all j1 ∈ J̄, ĉij1 dixij1 = γ. Therefore, xij1 is only
related to ĉij1 , j1 ∈ J̄, which is fixed.

• case 4: θj1 = 0, δj1 > 0. Due to Equations (36) and (41), αj1 = 0, so that all c̃ij1 = c̄ij1 + ĉij1 ,
j1 ∈ J̄, are equal. This requires all c̄ij1 + ĉij1 are identical, we assume this is a special case that
cannot occur.

Furthermore, we can evaluate the robust problem under ellipsoidal uncertainty by replacing
constraint (30) with ∑j∈J∗ α2

j = Ω2
i , let g(x, α) = ∑j∈J∗ α2

j −Ω2
i . Similar conclusions can be derived as

under cardinality-constrained uncertainty, except that the multiple solutions require that, for all j1 ∈ J̄,
ĉij1 dixij1 = 2αj1 γ. Due to Equation (30), xij1 varies with αj1 as well as Γi.

The multiple allocation solution to the problem with ellipsoidal and cardinality-constrained
uncertainty will lower the maximum cost to serve a demand node because it does not consider the
worst value of every uncertain costs, as box uncertainty does. Therefore, for the multiple allocation
p-center problem under uncertain cost, ellipsoidal and cardinality-constrained uncertainty is less
conservative than box uncertainty is, but may lead to a higher maximum cost to serve a demand node
when all uncertain costs vary to their worst value. We further study how the three RO models affect
the objective values and solutions in the next section.

4. Numerical Study

In this section, we provide an illustrative example in Section 4.1 to show the pattern of solutions for
the three RO models under different robustness levels. We study how the overlapping uncertain costs
affect the solutions in Section 4.2. We also conduct a set of experiments to compare the performance of
the three RO approaches in Section 4.3.

All of the experiments are based on artificial data. For the experiments in Sections 4.1 and 4.2,
we give a simple three-node network and set p = 2. All data are designed by ourself for illustration
purpose, we assume di = 1, i ∈ I for computational ease. In Section 4.3, we generate a random 10-node
network for each instance and set p = 3. We described the detailed method for generating input data
and assume Ωi = Ω, Γi = Γ, i ∈ I. We solve all robust counterpart models using Gurobi 7.5.

4.1. Effect of Robustness Parameters

We compare different solutions from the three RO models in Section 3. A simple instance is as
follows: c̄12 = 20, c̄13 = 25, c̄21 = c̄23 = c̄31 = c̄32 = 100; ĉ12 = 10, ĉ12 = ĉ21 = ĉ23 = ĉ31 = ĉ32 = 20,
where c̃12 and c̃13 are overlapping. We test the change in solutions as a function of the robustness
parameter Ω in Section 3.3 and Γ in Section 3.4. Figures 3 and 4 show the objective values and solutions
with respect to Ω or Γ, respectively. In the following figures, “box”, “ell”, and “cc” represent the
models with box, ellipsoidal, and cardinality-constrained uncertainty, respectively.

From Figure 3, we see that, when the value of Ω or Γ is within a certain range, the robust problems
with ellipsoidal and cardinality-constrained uncertainty produce solutions in which x12 and x13 are
non-binary, meaning that the facilities in nodes 2 and 3 can simultaneously serve the demand from
node 1. However, in the cardinality-constrained case, x12 and x13 is fixed when we produce multiple
allocation solutions, while, for the ellipsoidal case, x12 and x13 vary with Ω. Figures 3 and 4 show
that, when using a multiple allocation strategy, the objective values of the models with ellipsoidal and
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cardinality-constrained uncertainty are not as conservative as for box uncertainty. Note that, for the
ith constraint, when Ωi = 1, UE is the largest ellipsoid contained in UB, so, if Ω > 1, the solution to
the corresponding model may be the same as in the box case, which means that the objective value of
ellipsoidal case has no practical meaning when it is larger than that in the box case.
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Figure 3. Objective values of the example with respect to Ω and Γ.
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Figure 4. Solutions to the example with respect to Ω and Γ: (x11 = 0, x21 = 0, x22 = 1, x23 = 0, x31 = 0,
x32 = 0, and x33 = 1 constantly).

4.2. Effect of Overlapping Uncertain Cost

As we mentioned in Section 3.5, we can derive multiple allocation solutions from the problem with
ellipsoidal and cardinality-constrained uncertainty. Because overlapping cost intervals serve a demand
node means that we cannot find a single optimal facility, we test how the overlapping scale affects the
solutions in this subsection. For this illustration, c̄12 = 20, c̄13 = 20 + ∆, c̄21 = c̄23 = c̄31 = c̄32 = 100;
ĉ12 = 10, ĉ13 = 40 + ∆, and ĉ21 = ĉ23 = ĉ31 = ĉ32 = 20. ∆ is a value that controls how much c12

overlaps with c13. Let Ω = Γ = 1. In Figures 5 and 6, we plot the objective values and solutions of the
RO models, respectively, as the value of ∆ changes.

Figure 5 verifies that the overlapping cost intervals that determine the objective value leads to
the multiple allocation solution. When ∆ > 10, c̃12 and c̃13 do not overlap, and the three RO models
produce identical solutions. When ∆ < 10, the objective value of the cardinality-constrained case
increases linearly with ∆ and stays lower than that in the ellipsoidal case, as in Section 4.1, until they
converge when ∆ = 10. In Figure 6, we note that ∆ affects the solution to the ellipsoidal case; for x12

and x13, the ellipsoidal case values change nonlinearly as ∆ increases, while the solutions to the
cardinality-constrained case maintain the same value as long as x12 and x13 overlap.
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Figure 5. Objective values of the example with respect to ∆.
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Figure 6. Solutions to the example with respect to ∆: (x11 = 0, x21 = 0, x22 = 1, x23 = 0, x31 = 0,
x32 = 0, and x33 = 1 constantly).

4.3. Comparison of RO Approaches

We regard ε as the scale of cost uncertainty, and choose a data range cij as cost diversity.
We generate every c̄ij from 1 to 100 randomly (uniformly), cij 6= cji and cii = 0, and di randomly
from [1, 10, 000]. Letting ĉij = εc̄ij, ε = 0.5, 1, 3, 7, 15, we generate c̄ij randomly and uniformly from
[41, 60], [31, 70], [21, 80], [11, 90] and [1, 100]. We generate 100 instances for each combination of ε and
a data range of c̄ij. Set Γ = Ω = 1. Table 2 and Figure 7 report the results. In Table 2, columns
“L̄b”, “L̄e”, and “L̄c” report the mean objective values of robust problems with box, ellipsoidal
and cardinality-constrained uncertainty, respectively. Each cell in the table report the results for
100 experiments. The column “SA” shows the number of experiments that provide only single
allocation solutions. Figure 7 is the graphical representation of Table 2, and we plot the comparison
between the three RO methods group by ε.

From the table, we see that the number of single allocation cases decreases with the scale of cost
uncertainty ε and increases as the cost range of c̄ij expands. Thus, as an example, with lower cost
uncertainty and higher cost diversity, box uncertainty is more suitable because the other two models
will probably give the same solution, especially when solving the model of ellipsoidal uncertainty
requires dealing with a quadratic problem. However, with higher cost uncertainty and less cost
diversity, the robust solutions of ellipsoidal and cardinality-constrained uncertainty can provide
multiple allocation solutions that are not totally conservative. We observed from Table 2 and Figure
7 that, as ε grows, the difference between L̄b, L̄e, L̄c increases. With the same ε, the gap between the
three RO methods decreases with the width of data range. This is because larger ε and a narrower
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data range may lead to more deeply overlapping uncertain costs. We also observe this from Figure 5
because the gap between the three objective values narrows as ∆ increases.
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Table 2. Comparison of the three models under different scales of cost uncertainty and diversity.

ε Data Range L̄b L̄e L̄c SA

1.5 [41, 60] 3577.23 3469.80 3356.86 27
[31, 70] 2999.12 2938.17 2867.64 46
[21, 80] 2510.58 2477.91 2428.16 58
[11, 90] 1919.07 1902.59 1884.71 78
[1, 100] 1477.63 1472.94 1462.34 80

2 [41, 60] 4430.49 4084.62 3758.87 13
[31, 70] 3552.13 3394.61 3206.22 22
[21, 80] 2884.79 2802.47 2703.26 38
[11, 90] 2154.57 2128.01 2077.06 66
[1, 100] 1639.75 1619.31 1584.65 68

4 [41, 60] 7067.90 5826.54 4792.86 4
[31, 70] 5790.10 5075.30 4299.58 11
[21, 80] 4683.79 4242.60 3694.35 17
[11, 90] 3407.91 3201.37 2876.97 28
[1, 100] 2776.84 2611.62 2370.89 34

8 [41, 60] 13,347.64 9768.67 7051.35 4
[31, 70] 11,091.67 8770.87 6474.97 2
[21, 80] 9728.67 8227.88 6229.68 6
[11, 90] 7270.50 6275.85 5029.25 7
[1, 100] 5121.69 4573.74 3728.96 15

16 [41, 60] 26,609.43 18,203.65 11,904.55 1
[31, 70] 22,405.20 16,604.11 11,055.42 1
[21, 80] 17,063.13 13,441.57 9345.56 4
[11, 90] 13,022.03 11,133.35 8217.29 3
[1, 100] 9161.57 8023.31 6112.43 6

5. Conclusions

In this study, we apply three classic RO modeling techniques to formulate a multiple allocation
p-center facility location problem. Previous works in this area all focus on minimizing the total
cost or maximizing profit. The comparison between three RO methods indicates that, between
the deterministic problem with no robustness and the box uncertainty case, which is completely
conservative, the cardinality-constrained uncertainty model is less conservative than the ellipsoidal
uncertainty model overall. We also find that different RO methods are suited for different scales of cost
uncertainty and diversity.

We are the first to apply set-based RO approaches modeling the uncertain cost in the p-center
problem. Since p-center is widely applied in emergency services, and uncertainties with no distributional
information are common in emergencies like natural disaster, our models are practical for locating an
urgent distribution relief center or medical unit. Moreover, allocating the demand to multiple facilities
is meaningful and this strategy can provide robust solutions that are not totally conservative.

We will further study the practical applications of our robust models, and the capacitated p-center
model is a natural start. Combining with multiple dimensional location models (Sarkar and Majumder [4])
can also make our work more realistic. We consider only static decision-making in this study. Future
work can apply robust adaptable optimization (Bertsimas et al. [21]) and other multi-stage RO methods
(Hanasusanto et al. [19]) to formulate dynamic problems, which usually split the decision process into
a here-and-now, wait-and-see procedure.
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