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Abstract: The objective of this paper is to derive Hermite-Hadamard type inequalities for several
higher order strongly h-preinvex functions via Riemann-Liouville fractional integrals. These results
are the generalizations of the several known classes of preinvex functions. An identity associated
with k-times differentiable function has been established involving Riemann-Liouville fractional
integral operator. A number of new results can be deduced as consequences for the suitable choices
of the parameters h and σ. Our outcomes with these new generalizations have the abilities to be
implemented for the evaluation of many mathematical problems related to real world applications.

Keywords: Estimates of upper bound; Riemann-Liouville integral operator; strongly h-preinvex
functions; kth-order differentiablity

1. Introduction

The modeling of a few global problems requires using a fractional calculus which incorporates
both derivatives and integrals. This is natural to investigate whether it is possible to present a
framework that allows us to include both fractional calculus simultaneously so that you probably
can acquire some perception and a better knowledge of the subtle variations among derivatives and
integrals domains. To answer this, a principle was formulated by [1,2]. The precept goal of fractional
operators are that they construct bridges among continuous and discrete cases. Afterward, this concept
was developed through many researchers [3,4]. Fractional calculus has potential applications in
pure and applied mathematics. In pure mathematics, fractional calculus has been implemented in
mathematical inequalities to unify derivative and integral versions of inequalities. A few decades ago,
a diffusion of labor has been done to unify and amplify integral inequalities on fractional calculus [5].
These integral inequalities are utilized in numerous areas for the boundedness, uniqueness of the
solutions integro differential equations, force closure properties of robotic grasping, optimization
problems, nonlinear programming, dynamic equations, signal and image processing algorithms, etc.
(see, [4,6–9] and the references therein). Integral inequalities on convex functions, both derivative and
integration, have also been a topic of discussion for quite some time. These inequalities had been
advanced via numerous researchers [10–21]. Sarikaya et al. [22] employed the ideas of fractional
calculus for establishing a number of integral inequalities that basically rely on Hermite–Hadamard
inequality. This approach has opened a new path for research. Additionally, the authors of the
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manuscript [23,24] illustrated some important inequalities installed by Set et al. Since then numerous
scientists have broadly used the ideas of fractional calculus and received several new and novel
refinements of inequalities via convex functions and their generalizations. Various papers with new
indication, different speculations, and augmentations have appeared in the literature. Inequalities
that comprise integrals of functions are of notable importance in mathematics with applications in the
concept of differential equations, approximations, convex optimizations, polynomial-time algorithms,
automatic control systems, estimation and signal processing, communications and networks, electronic
circuit design, and structural optimization, where the approximation concept has proven to be
efficient in probability theory, for instance, see [4,6,8,9,25,26] and the references therein. With
recent advancements in computing and optimization algorithms, convex programming is nearly
as straightforward as linear programming [7].

Recall the concept of convex set and convex functions which are firmly concerned to this paper.
A subset K of R is said to be convex if

(1− $)u1 + $u2 ∈ K, ∀u1, u2 ∈ K, $ ∈ [0, 1].

A function Φ : K → R is said to be convex if

Φ((1− $)u1 + $u2) ≤ (1− $)Φ(u1) + $Φ(u2)

for all u1, u2 ∈ K, $ ∈ [0, 1].
It is well known that Hermite established the following Hermite–Hadamard integral inequality:

Φ
(

u1 + u2

2

)
≤ 1

u2 − u1

u2∫
u1

Φ(x)dx ≤ Φ(u1) + Φ(u2)

2
, (1)

where Φ : [u1, u2] ⊂ R → R is a convex function. This inequality provides a lower and an
upper estimate for the integral average of any convex function defined on a compact interval. For
generalizations of the classical Hermite–Hadamard inequality, see [27–47] and the references therein.

Craven [48] addressed the “term” for calling this class of functions due to their feature defined as
“invariance by convexity”. Hanson [49] furnished the idea of differentiable invex functions in reference
to their precise global optimum behavior and investigated the significant generalization of convex
functions is that of invex functions. Weir and Mond [50] proposed the idea of preinvex functions and
implemented it to the establishment of the sufficient optimality conditions and duality in nonlinear
programming. In [18], Noor established the celebrated Hermite–Hadamard inequality for preinvex
functions. Mohan and Neogy [51] introduced well-known condition C.

Mititelu [52] defined the notion of invex sets as follows: Let Ω ⊂ R be a set and δ(., .) : Rn×Rn →
Rn be a continuous bifunction. Throughout this paper, the set Ω is an invex set, unless otherwise it
is specified.

Definition 1 ([52]). A set Ω is said to be invex if

u1 + $δ(u2, u1) ∈ Ω, ∀u1, u2 ∈ Ω, $ ∈ [0, 1].

The invex set Ω is also known as the δ-connected set. Note that, if δ(u1, u2) = u2 − u1, this means
that every convex set is an invex set, but the converse is not true.

The concept of preinvex functions was introduced by Weir and Mond [50] as follows:

Definition 2 ([50]). A function Φ : Ω→ R is said to be preinvex if

Φ (u1 + $δ(u2, u1)) ≤ (1− $)Φ(u1) + $Φ(u2)
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for all u1, u2 ∈ Ω, $ ∈ [0, 1].

For current research on preinvex functions, concerned readers are referred to [11,48,53–58].
The notion of strongly convex functions was introduced by Karamardian [59] and Polyak [21].

Convexity is the only weakening property of strong convexity.

Definition 3. A function Φ : K ⊂ Rn → R is said to be a strongly convex function for modulus µ > 0 if

Φ ((1− $)u1 + $u2) ≤ (1− $)Φ(u1) + $Φ(y)− µ$(1− $)‖u2 − u1‖2

for all u1, u2 ∈ K, $ ∈ [0, 1].

Karamardian [59] noticed that every strongly monotone has a gradient map if and only if all
differentiable function is strongly convex. Higher order strongly convex functions introduced by
Lin et al. [60] to abridge the research of linear programming with equilibrium constraints. Bynum [61]
and Chen et al. [62] have investigated the basic features and utilizations of the parallelogram laws for
the Banach spaces. Xu [63] obtained new attributes of p-uniform convexity and q-uniform smoothness
of a Banach space using ‖.‖p and ‖.‖q, respectively. These outcomes can be acquired from the ideas
of higher order strongly convex (concave) functions, which can be seen as a novel application. For
certain examinations on strongly convex functions, see [1,10,12,16,17,19,21].

Definition 4. A function Φ : K ⊂ Rn → R is said to be a strongly convex function for modulus µ > 0 with
order σ > 0 if

Φ ((1− $)u1 + $u2) ≤ (1− $)Φ(u1) + $Φ(u2)− µ$(1− $)‖u2 − u1‖σ

for all u1, u2 ∈ K, $ ∈ [0, 1].

It follows that when σ = 2 in the above definition, we attain the definition of strongly convex in the
classical sense. The gradient map of the function in the higher order strong monotonicity is equivalent
to the strong convexity of a function in the higher order sense is investigated by Lin et al. [60].

The class of convex functions involving arbitrary nonnegative auxiliary functions is addressed by
Varosanec [64]. The concept on the time of advent has come to be to unify a few generalizations of
classical convexity, including Breckner type convex functions [65], P-functions [15], Godunova–Levin
type convex and Q-functions [66]. We apprehend that this class defines some other classes of
classical convex functions. For information, see [13,20]. h-convex functions have gained significant
consideration from numerous analysts and, therefore, a bulk of articles had been particularly committed
to the investigation of this class. Noor et al. [20] prolonged this idea utilizing the invexity property of
sets and described the perception of h-preinvex functions. They have perceived that it comprises of a
few new and known classes of convexity.

The principal intention of this research is to introduced the idea of higher order strongly h-preinvex
functions. Furthermore, we observe that the class of higher order strongly h-preinvex functions
unifies several other classes of strong preinvexity. We acquire an identity related to the kth order
differentiability. Then, utilizing this identity, we derive our main consequences for some upper bounds
for kth order differentiable function via higher order strongly h-preinvex functions.

2. Preliminaries

We now consider a class of higher order strongly preinvex function with respect to an
arbitrary function h. Moreover, we present some preliminaries related to the fractional calculus
and special functions.



Symmetry 2019, 11, 1448 4 of 18

Definition 5. Let h : (0, 1) ⊆ J → R be a nonnegative function. We say that Φ : Mδ ⊂ Rn → R is a higher
order strongly h-preinvex function of order σ > 0 with modulus µ > 0 if

Φ (u1 + $δ(u2, u1)) ≤ h(1− $)Φ(u1) + h($)Φ(u2)− µ$(1− $)‖δ(u2, u1)‖σ

for all u1, u2 ∈ Mδ, $ ∈ [0, 1].

We now discuss several special cases of definition 5.
(I). If h($) = $ in Definition 5, then we attain the class of higher order strongly preinvex functions.

Definition 6. A higher order strongly preinvex function Φ : Mδ ⊂ Rn → R of order σ > 0 with modulus
µ > 0 is defined as

Φ (u1 + $δ(u2, u1)) ≤ (1− $)Φ(u1) + ($)Φ(u2)− µ$(1− $)‖δ(u2, u1)‖σ

for all u1, u2 ∈ Mδ, $ ∈ [0, 1].

(II). If h($) = $s in Definition 5, then we attain the class of higher order strongly s-preinvex functions,
which is called Breakner type of higher order strongly s-preinvex functions.

Definition 7. For a real number s ∈ [0, 1]. We say that Φ : Mδ ⊂ Rn → R is a higher order strongly
s-preinvex function of order σ > 0 with modulus µ > 0 if

Φ (u1 + $δ(u2, u1)) ≤ (1− $)sΦ(u1) + ($)sΦ(u2)− µ$(1− $)‖δ(u2, u1)‖σ

for all u1, u2 ∈ Mδ, $ ∈ [0, 1].

(III). If h($) = $−s in Definition 5, then we attain the class of higher order strongly s-preinvex functions,
which is called Godunova–Levin type of higher order strongly s-preinvex functions.

Definition 8. For a real number s ∈ [0, 1]. We say that Φ : Mδ ⊂ Rn → R is a higher order strongly
s-preinvex function of order σ > 0 with modulus µ > 0 if

Φ (u1 + $δ(u2, u1)) ≤ (1− $)−sΦ(u1) + ($)−sΦ(u2)− µ$(1− $)‖δ(u2, u1)‖σ

for all u1, u2 ∈ Mδ, $ ∈ [0, 1].

(IV). If h($) = $−1 in Definition 5, then we attain the class of higher order strongly Q-preinvex functions.

Definition 9. A function Φ : Mδ ⊂ Rn → R is said to be higher order strongly Q-preinvex function of order
σ > 0 with modulus µ > 0 if

Φ (u1 + $δ(u2, u1)) ≤ (1− $)−1Φ(u1) + ($)−1Φ(u2)− µ$(1− $)‖δ(u2, u1)‖σ

for all u1, u2 ∈ Mδ, $ ∈ [0, 1].

(V). If h($) = 1 in Definition 5, then we attain the class of higher order strongly P-preinvex functions.

Definition 10. A function Φ : Mδ ⊂ Rn → R is said to be higher order strongly P-preinvex function of order
σ > 0 with modulus µ > 0 if defined as

Φ (u1 + $δ(u2, u1)) ≤ (1− $)−1Φ(u1) + ($)−1Φ(u2)− µ$(1− $)‖δ(u2, u1)‖σ
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for all u1, u2 ∈ Mδ, $ ∈ [0, 1].

Remark 1. Observe that if we take h($) = $, $s, $−s, $−1, and h($) = 1 in Definition 5, then we acquire
Definitions 6–10 respectively. See that, if we substitute δ(u2, u1) = u2 − u1 in Definition 5, then we attain the
class of higher order strongly h-convex functions. To the exceptional of our expertise, this class is a new addition
in convexity theory. Similarly, for exceptional appropriate selections of h(.), one can obtain higher order strong
convexity. It is worth mentioning that the class of higher order strongly h-preinvex functions is quite general
and unifying one.

Definition 11 ([3]). Let Φ ∈ L1 ([a, b]) . The left and right-sided Riemann–Liouville integrals Jρ
a+Φ and Jρ

b−
Φ,

of order ρ > 0, are defined by

Jρ
a+Φ(x) =

1
Γ(ρ)

x∫
a

(x− $)ρ−1Φ($)d$ x > a

and

Jρ
b−

Φ(x) =
1

Γ(ρ)

b∫
x

($− x)ρ−1Φ($)d$ x < b,

respectively. Here, Γ(ρ) =
∞∫
0

e−$$ρ−1d$ is the gamma function.

The incomplete Beta function is defined as follows:

Bx(a, b) =
x∫

0

$a−1(1− $)b−1d$, a, b > 0, 0 < x < 1.

3. Auxiliary Result

The subsequent identity plays a key role in inaugurating the main results of this paper.
The identification is stated as follows.

Lemma 1. For ρ > 0, n, k ∈ N, there is a kth order differentiable function Φ : Mδ → R such that
c1, c1 + δ(c2, c1) ∈ Mδ with δ(c2, c1) > 0 and Φ(κ) ∈ L1 ([c1, c1 + δ(c2, c1)]). Then

Ψ(k, n, ρ; c1, c2)(Φ) = nρ+κΓ(ρ + κ)
κ

∑
i=1

[
(−1)i−1 − 1

]
Γ(ρ + κ − i + 1)

(
2

δ(c2, c1)

)i
Φ(κ−i)

(
c1 +

1
2

δ(c2, c1)

)
+ Γ(ρ + κ)

(
2

δ(c2, c1)

)κ+ρ [
Jρ

(c1+
1
2 δ(c2,c1))+

Φ(c1 + δ(c2, c1)) + (−1)κ Jρ

(c1+
1
2 δ(c2,c1))−

Φ(c1)

]
,

where

Ψ(k, n, ρ; c1, c2)(Φ)

=

n∫
0

(n− $)ρ+κ−1
[

Φ(κ)

(
c1 +

(
n− $

2n

)
δ(c2, c1)

)
+ Φ(κ)

(
c1 +

(
n + $

2n

)
δ(c2, c1)

)]
d$.
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Proof. Let

n∫
0

(n− $)ρ+κ−1
[

Φ(κ)

(
c1 +

(
n− $

2n

)
δ(c2, c1)

)
+ Φ(κ)

(
c1 +

(
n + $

2n

)
δ(c2, c1)

)]
d$

=

n∫
0

(n− $)ρ+κ−1Φ(κ)

(
c1 +

(
n− $

2n

)
δ(c2, c1)

)
d$

+

n∫
0

(n− $)ρ+k−1Φ(κ)

(
c1 +

(
n + $

2n

)
δ(c2, c1)

)
d$

= I1 + I2.

Now

I1 =

n∫
0

(n− $)ρ+κ−1Φ(κ)

(
c1 +

(
n− $

2n

)
δ(c2, c1)

)
d$

= − 2n
δ(c2, c1)

(n− $)ρ+κ−1Φ(κ−1)
(

c1 +

(
n− $

2n

)
δ(c2, c1)

)∣∣∣∣n
0

− 2n(ρ + κ − 1)
δ(c2, c1)

n∫
0

(n− $)ρ+k−2Φ(κ−1)
(

c1 +

(
n− $

2n

)
δ(c2, c1)

)
d$

=
2nρ+κ

δ(c2, c1)
Φ(κ−1)

(
c1 +

1
2

δ(c2, c1)

)

− 2n(ρ + κ − 1)
δ(c2, c1)

n∫
0

(n− $)ρ+k−2Φ(κ−1)
(

c1 +

(
n− $

2n

)
δ(c2, c1)

)
d$.

Again, integration by parts, we have

I1 =
2nρ+κ

δ(c2, c1)
Φ(κ−1)

(
c1 +

1
2

δ(c2, c1)

)
− 22nρ+κ(ρ + κ − 1)

(δ(c2, c1))
2 Φ(k−2)

(
c1 +

1
2

δ(c2, c1)

)

+
22n2(ρ + κ − 1)(ρ + κ − 2)

(δ(c2, c1))
2

n∫
0

(n− $)ρ+κ−3Φ(k−3)
(

c1 +

(
n− $

2n

)
δ(c2, c1)

)
d$.

Continuing the integration by parts upto k-integration, one obtains

I1 = nρ+κ
κ

∑
i=1

(−1)i−1

ρ + κ

(
2

δ(c2, c1)

)i i−1

∏
p=0

(ρ + κ − p)Φ(κ−i)
(

c1 +
1
2

δ(c2, c1)

)

+
(−1)κ

ρ + κ

(
2n

δ(c2, c1)

)κ κ

∏
p=0

(ρ + κ − p)
n∫

0

(n− $)ρ−1Φ
(

c1 +

(
n− $

2n

)
δ(c2, c1)

)
d$

= nρ+κ
κ

∑
i=1

(−1)i−1

ρ + κ

(
2

δ(c2, c1)

)i i−1

∏
p=0

(ρ + κ − p)Φ(κ−i)
(

c1 +
1
2

δ(c2, c1)

)

+
(−1)κΓ(ρ + κ)

Γ(ρ)

(
2n

δ(c2, c1)

)κ n∫
0

(n− $)ρ−1Φ
(

c1 +

(
n− $

2n

)
δ(c2, c1)

)
d$
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= nρ+κ
κ

∑
i=1

(−1)i−1Γ(ρ + κ)

Γ(ρ + κ − i + 1)

(
2

δ(c2, c1)

)i
Φ(κ−i)

(
c1 +

1
2

δ(c2, c1)

)
+ (−1)κΓ(ρ + κ)

(
2n

δ(c2, c1)

)κ+ρ

Jρ

(c1+
1
2 δ(c2,c1))

−Φ(c1).

Analogously, we have

I2 =

n∫
0

(n− $)ρ+κ−1Φ(κ)

(
c1 +

(
n + $

2n

)
δ(c2, c1)

)
d$

=
2n

δ(c2, c1)
(n− $)ρ+κ−1Φ(κ−1)

(
c1 +

(
n + $

2n

)
δ(c2, c1)

)∣∣∣∣n
0

+
2n(ρ + κ − 1)

δ(c2, c1)

n∫
0

(n− $)ρ+k−2Φ(κ−1)
(

c1 +

(
n + $

2n

)
δ(c2, c1)

)
d$

= − 2nρ+κ

δ(c2, c1)
Φ(κ−1)

(
c1 +

1
2

δ(c2, c1)

)
− 22nρ+κ(ρ + κ − 1)

(δ(c2, c1))
2 Φ(k−2)

(
c1 +

1
2

δ(c2, c1)

)

+
22n2(ρ + κ − 1)(ρ + κ − 2)

(δ(c2, c1))
2

n∫
0

(n− $)ρ+κ−3Φ(k−3)
(

c1 +

(
n + $

2n

)
δ(c2, c1)

)
d$

...

= −nρ+κ
κ

∑
i=1

(
2

δ(c2, c1)

)i i−1

∏
p=0

(ρ + κ − p)Φ(κ−i)
(

c1 +
1
2

δ(c2, c1)

)

+

(
2n

δ(c2, c1)

)κ κ

∏
p=0

(ρ + κ − p)
n∫

0

(n− $)ρ−1Φ
(

c1 +

(
n + $

2n

)
δ(c2, c1)

)
d$

= −nρ+κ
κ

∑
i=1

Γ(ρ + κ)

Γ(ρ + κ − i + 1)

(
2

δ(c2, c1)

)i
Φ(κ−i)

(
c1 +

1
2

δ(c2, c1)

)

+
Γ(ρ + κ)

Γ(ρ)

(
2

δ(c2, c1)

)κ n∫
0

(n− $)ρ−1Φ
(

c1 +

(
n + $

2n

)
δ(c2, c1)

)
d$

= −nρ+κ
κ

∑
i=1

Γ(ρ + κ)

Γ(ρ + κ − i + 1)

(
2

δ(c2, c1)

)i
Φ(κ−i)

(
c1 +

1
2

δ(c2, c1)

)

+ Γ(ρ + κ)

(
2

δ(c2, c1)

)ρ+k
Jρ

(c1+
1
2 δ(c2,c1))+

Φ(c1 + δ(c2, c1)).

Summing up I1 and I2, we have

I1 + I2 = nρ+κΓ(ρ + κ)
κ

∑
i=1

[
(−1)i−1 − 1

]
Γ(ρ + κ − i + 1)

(
2

δ(c2, c1)

)i
Φ(κ−i)

(
c1 +

1
2

δ(c2, c1)

)
+ Γ(ρ + κ)

(
2

δ(c2, c1)

)κ+ρ [
Jρ

(c1+
1
2 δ(c2,c1))+

Φ(c1 + δ(c2, c1)) + (−1)κ Jρ

(c1+
1
2 δ(c2,c1))−

Φ(c1)

]
.
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4. Some New Bounds for Strongly h-Preinvex Functions for kth Order Differentiable Functions

In order to prove our main results for some new upper bounds for the function Ψ(k, n, ρ; c1, c2)(Φ),
we need several formulas and lemmas, which we present in this section.

Theorem 1. For ρ > 0, n, k ∈ N, and there is a differentiable function Φ : Mδ → R such that c1, c1 +

δ(c2, c1) ∈ Mδ with δ(c2, c1) > 0. If Φ(κ) ∈ L1 ([c1, c1 + δ(c2, c1)]) and |Φ(κ)| is a higher order strongly
h-preinvex on Mδ, then

|Ψ(k, n, ρ; c1, c2)(Φ)| ≤ Υ(ρ, κ, n, $)
[
|Φ(κ)(c1)|+ |Φ(κ)(c2)|

]
− µ(δ(c2, c1))

σnρ+κ

2

[
ρ + κ + 3

(ρ + κ + 1)(ρ + κ + 2)

]
, (2)

where

Υ(ρ, κ, n, $) :=
n∫

0

(n− $)ρ+κ−1
[
h

(
n + $

2n

)
+ h

(
n− $

2n

)]
d$.

Proof. Applying Lemma 1, the modulus property, and by given hypothesis, we have

|Ψ(k, n, ρ; c1, c2)(Φ)|

≤
n∫

0

(n− $)ρ+κ−1
∣∣∣∣Φ(κ)

(
c1 +

(
n− $

2n

)
δ(c2, c1)

)∣∣∣∣ d$

+

n∫
0

(n− $)ρ+κ−1
∣∣∣∣Φ(κ)

(
c1 +

(
n + $

2n

)
δ(c2, c1)

)∣∣∣∣ d$

≤
n∫

0

(n− $)ρ+κ−1
[
h

(
n + $

2n

)
|Φ(κ)(c1)|+ h

(
n− $

2n

)
|Φ(κ)(c2)|

− µ

(2n)2 (n + $)(n− $)(δ(c2, c1))
σ

]
d$

+

n∫
0

(n− $)ρ+κ−1
[
h

(
n− $

2n

)
|Φ(κ)(c1)|+ h

(
n + $

2n

)
|Φ(κ)(c2)|

− µ

(2n)2 (n + $)(n− $)(δ(c2, c1))
σ

]
d$

= Υ(ρ, κ, n, $)
[
|Φ(κ)(c1)|+ |Φ(κ)(c2)|

]
− 2µ(δ(c2, c1))

σ

(2n)2

n∫
0

(n− $)ρ+k(n + $)d$, (3)

where
n∫

0

(n− $)ρ+κ(n + $)d$ =
nρ+κ+2 [(ρ + k + 3)]
(ρ + κ + 1)(ρ + κ + 2)

. (4)

Combining (3) and (4), we immediately get the desired inequality (5).

Some special cases which can be derived immediately from Theorem 1.
(I). Letting h($) = $, then we acquire higher order strongly preinvex functions.
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Corollary 1. For ρ > 0 and n, k ∈ N, and there is a differentiable function Φ : Mδ → R such that
c1, c1 + δ(c2, c1) ∈ Mδ, δ(c2, c1) > 0. If Φ(κ) ∈ L1 ([c1, c1 + δ(c2, c1)]) and |Φ(κ)| is a higher order strongly
preinvex on Mδ, then

|Ψ(k, n, ρ; c1, c2)(Φ)| ≤ nρ+k

ρ + k

[
|Φ(κ)(c1)|+ |Φ(κ)(c2)|

]
− µ(δ(c2, c1))

σnρ+κ

2

[
ρ + κ + 3

(ρ + κ + 1)(ρ + κ + 2)

]
, (5)

where

Υ1(ρ, κ, n, $) :=
n∫

0

(n− $)ρ+κ−1d$ =
nρ+κ

ρ + κ
.

(II). Letting h($) = 1, then we acquire higher order strongly P-preinvex functions.

Corollary 2. For ρ > 0 and n, k ∈ N, and there is a differentiable function Φ : Mδ → R such that
c1, c1 + δ(c2, c1) ∈ Mδ, with δ(c2, c1) > 0. If Φ(κ) ∈ L1 ([c1, c1 + δ(c2, c1)]) and |Φ(κ)| is a higher order
strongly P-preinvex on Mδ, then

|Ψ(k, n, ρ; c1, c2)(Φ)| ≤ 2nρ+κ

ρ + κ

[
|Φ(κ)(c1)|+ |Φ(κ)(c2)|

]
− µ(δ(c2, c1))

σnρ+κ

2

[
ρ + κ + 3

(ρ + κ + 1)(ρ + κ + 2)

]
. (6)

(III). Letting h($) = $s, then we acquire Breckner type of higher order strongly s-preinvex functions.

Corollary 3. For ρ > 0 and n, k ∈ N, and there is a differentiable function Φ : Mδ → R such that
c1, c1 + δ(c2, c1) ∈ Mδ with δ(c2, c1) > 0. If Φ(κ) ∈ L1 ([c1, c1 + δ(c2, c1)]) and |Φ(κ)| Breckner type of a
higher order strongly s-preinvex on Mδ, then

|Ψ(k, n, ρ; c1, c2)(Φ)| ≤ Υ2(ρ, κ, n, $)
[
|Φ(κ)(c1)|+ |Φ(κ)(c2)|

]
− µ (δ(c2, c1))

σ nρ+κ

2

[
ρ + κ + 3

(ρ + κ + 1)(ρ + κ + 2)

]
, (7)

where

Υ2(ρ, κ, n, $) :=
1

(2n)s

n∫
0

(n− $)ρ+κ−1 [(n + $)s + (n− $)s] d$

=
nρ+κ+s

(2n)s (ρ + κ + s)
+ (2n)ρ+κ B 1

2
(ρ + κ, s + 1) .

(IV). Letting h($) = $−s, then we acquire Godunova–Levin type of higher order strongly s-preinvex
functions.
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Corollary 4. For ρ > 0 and n, k ∈ N, and there is a differentiable function Φ : Mδ → R such that
c1, c1 + δ(c2, c1) ∈ Mδ, with δ(c2, c1) > 0. If Φ(κ) ∈ L1[c1, c1 + δ(c2, c1)] and |Φ(κ)| Godunova–Levin type
of a higher order strongly s-preinvex function, then

|Ψ(k, n, ρ; c1, c2)(Φ)| ≤ Υ3(ρ, κ, n, $)
[
|Φ(κ)(c1)|+ |Φ(κ)(c2)|

]
− µ (δ(c2, c1))

σ nρ+κ

2

[
ρ + κ + 3

(ρ + κ + 1)(ρ + κ + 2)

]
, (8)

where

Υ2(ρ, κ, n, $) :=
1

(2n)−s

n∫
0

(n− $)ρ+κ−1 [(n + $)−s + (n− $)−s] d$

=
nρ+κ−s

(2n)−s (ρ + κ − s)
+ (2n)ρ+κ B 1

2
(ρ + κ,−s + 1) .

Theorem 2. For ρ > 0 and n, k ∈ N, and there is a differentiable function Φ : Mδ → R such that
c1, c1 + δ(c2, c1) ∈ Mδ, and δ(c2, c1) > 0. If Φ(κ) ∈ L1 ([c1, c1 + δ(c2, c1)]) and |Φ(κ)|α is a higher order
strongly h-preinvex function, then

|Ψ(k, n, ρ; c1, c2)(Φ)| ≤
(

nα(ρ+κ−1)+1

α(ρ + κ − 1) + 1

) 1
α

×




n∫
0

(
h

(
n + $

2n

)
|Φ(κ)(c1)|β + h

(
n− $

2n

)
|Φ(κ)(c2)|β −

µn
6
(δ(c2, c1))

σ

)
d$


1
β

+


n∫

0

(
h

(
n− $

2n

)
|Φ(κ)(c1)|β + h

(
n + $

2n

)
|Φ(κ)(c2)|β −

µn
6
(δ(c2, c1))

σ

)
d$


1
β

 , (9)

where 1
α + 1

β = 1 and β > 1.

Proof. Applying Lemma 1, the well-known Hölder’s inequality, and by given hypothesis, we have

|Ψ(k, n, ρ; c1, c2)(Φ)|

≤
( n∫

0

(n− $)α(ρ+κ−1)d$

) 1
α
( n∫

0

|
∣∣∣∣Φ(κ)

(
c1 +

(n− $

2n

)
δ(c2, c1)

)∣∣∣∣βd$

) 1
β

+

( n∫
0

(n− $)α(ρ+κ−1)d$

) 1
α
( n∫

0

∣∣∣∣Φ(κ)
(

c1 +
(n + $

2n

)
δ(c2, c1)

)∣∣∣∣βd$

) 1
β

≤
(

nα(ρ+κ−1)+1

α(ρ + κ − 1) + 1

) 1
α
[{ n∫

0

(
h
(n + $

2n

)
|Φ(κ)(c1)|β
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+h
(n− $

2n

)
|Φ(κ)(c2)|β −

µn
6
(δ(c2, c1))

σ

)
d$

} 1
β

+

{ n∫
0

(
h
(n− $

2n

)
|Φ(κ)(c1)|β + h

(n + $

2n

)
|Φ(κ)(c2)|β

−µn
6
(δ(c2, c1))

σ

)
d$

} 1
β
]

,

which is the required result.

Some special cases of Theorem 2 are stated as follows.
(I.) Letting h($) = $, then we acquire the higher order strongly preinvex functions.

Corollary 5. For ρ > 0, n, k ∈ N, and there is a differentiable function Φ : Mδ → R such that c1, c1 +

δ(c2, c1) ∈ Mδ, with δ(c2, c1) > 0. If Φ(κ) ∈ L1 ([c1, c1 + δ(c2, c1)]) and |Φ(κ)|α is a higher order strongly
preinvex function, then

|Ψ(k, n, ρ; c1, c2)(Φ)| ≤
(

nα(ρ+κ−1)+1

α(ρ + κ − 1) + 1

) 1
α

×
[{

3n
4
|Φ(κ)(a)|β + n

4
|Φ(κ)(b)|β − µn

6
‖ δ(c2, c1)‖σ

} 1
β

+

{
n
4
|Φ(κ)(a)|β + 3n

4
|Φ(κ)(b)|β − µn

6
(δ(c2, c1))

σ

}] 1
β

, (10)

where 1
α + 1

β = 1 and β > 1.

(II.) Letting h($) = $s, then we acquire the Breckner type of higher order strongly s-preinvex functions.

Corollary 6. For ρ > 0, n, k ∈ N, and there is a differentiable function Φ : Mδ → R such that c1, c1 +

δ(c2, c1) ∈ Mδ, with δ(c2, c1) > 0. If Φ(κ) ∈ L1 ([c1, c1 + δ(c2, c1)]) and |Φ(κ)|α is Breckner type of a higher
order strongly s-preinvex function, then

|Ψ(k, n, ρ; c1, c2)(Φ)| ≤
(

nα(ρ+κ−1)+1

α(ρ + κ − 1) + 1

) 1
α

×

{n[2s+1 − 1]
2s(s + 1)

|Φ(κ)(c1)|β +
n

2s(s + 1)
|Φ(κ)(c2)|β −

µn
6

(δ(c2, c1))
σ
} 1

β

+

{
n

2s(s + 1)
|Φ(κ)(c1)|β +

n[2s+1 − 1]
2s(s + 1)

|Φ(κ)(c2)|β −
µn
6

(δ(c2, c1))
σ
} 1

β

 , (11)

where 1
α + 1

β = 1 and β > 1.

(III). Letting h($) = $−s, then we acquire the Godunova–Levin type of higher order strongly s-preinvex
functions.



Symmetry 2019, 11, 1448 12 of 18

Corollary 7. For ρ > 0, n, k ∈ N, and there is a function differentiable funtion Φ : Mδ → R such that
c1, c1 + δ(c2, c1) ∈ Mδ with δ(c2, c1) > 0. If Φ(κ) ∈ L1 ([c1, c1 + δ(c2, c1)]) and |Φ(κ)|α is Godunova–Levin
type of a higher order strongly s-preinvex function, then

|Ψ(k, n, ρ; a, b)(Φ)| ≤
(

nα(ρ+κ−1)+1

α(ρ + κ − 1) + 1

) 1
α

×
[{

(2n− 2s)

1− s
|Φ(κ)(a)|β + 2sn

1− s
|Φ(κ)(b)|β − µn

6
(δ(c2, c1))

σ
} 1

β

+

{
2sn

1− s
|Φ(κ)(a)|β + (2n− 2s)

1− s
|Φ(κ)(b)|β − µn

6
(δ(c2, c1))

σ
}] 1

β

, (12)

where 1
α + 1

β = 1 and β > 1.

(IV). Letting h($) = 1, then we acquire the higher order strongly P-preinvex functions.

Corollary 8. For ρ > 0, n, k ∈ N, and there is a differentiable function Φ : Mδ → R such that c1, c1 +

δ(c2, c1) ∈ Mδ, with δ(c2, c1) > 0. If Φ(κ) ∈ L1 ([c1, c1 + δ(c2, c1)]) and |Φ(κ)|α is a higher order strongly
P-preinvex function, then

|Ψ(k, n, ρ; a, b)(Φ)| ≤ 2

(
nα(ρ+κ−1)+1

α(ρ + κ − 1) + 1

) 1
α

×
{
|Φ(κ)(c1)|β + |Φ(κ)(c2)|β −

µn
6

(δ(c2, c1))
σ
} 1

β , (13)

where 1
α + 1

β = 1 and β > 1.

Theorem 3. For ρ > 0, n, k ∈ N, and there is a differentiable function Φ : Mδ → R such that c1, c1 +

δ(c2, c1) ∈ Mδ, and δ(c2, c1) > 0. If Φ(κ) ∈ L1 ([c1, c1 + δ(c2, c1)]) and |Φ(κ)|α is a higher order strongly
h-preinvex function, then

|Ψ(k, n, ρ; c1, c2)(Φ)|

≤
[
H1(ρ, n, k)|Φ(κ)(c1)|β +H2(ρ, n, k)|Φ(κ)(c2)|β

+
µnβ(ρ+κ−1)+1[β(ρ + κ − 1) + 4](δ(c2, c1))

σ

4(β(ρ + κ − 1) + 2)(β(ρ + κ − 1) + 3)

] 1
β

+
[
H2(ρ, n, k)|Φ(κ)(c1)|β +H1(ρ, n, k)|Φ(κ)(c2)|β

+
µnβ(ρ+κ−1)+1[β(ρ + κ − 1) + 4](δ(c2, c1))

σ

4(β(ρ + κ − 1) + 2)(β(ρ + κ − 1) + 3)

] 1
β

, (14)

where

H1(ρ, n, k) :=
n∫

0

(n− $)β(ρ+κ−1)h

(
n + $

2n

)
d$

and

H2(ρ, n, k) :=
n∫

0

(n− $)β(ρ+κ−1)h

(
n− $

2n

)
d$.
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Proof. Applying Lemma 1, the well-known Hölder’s inequality, and by given hypothesis, we have

|Ψ(k, n, ρ; c1, c2)(Φ)|

≤

 n∫
0

1
n

d$

 1
α
 n∫

0

(n− $)β(ρ+κ−1)
∣∣∣∣Φ(κ)

(
c1 +

(
n− $

2n

)
δ(c2, c1)

)∣∣∣∣β d$

 1
β

+

 n∫
0

1
n

d$

 1
α
 n∫

0

(n− $)β(ρ+κ−1)
∣∣∣∣Φ(κ)

(
c1 +

(
n + $

2n

)
δ(c2, c1)

)∣∣∣∣β d$

 1
β

≤

 n∫
0

(n− $)β(ρ+κ−1)
(
h

(
n + $

2n

)
|Φ(κ)(c1)|β + h

(
n− $

2n

)
|Φ(κ)(c2)|β

− µ

(2n)2 (n + $)(n− $)(δ(c2, c1))
σ

]
d$

] 1
β

+

 n∫
0

(n− $)β(ρ+κ−1)
(
h

(
n− $

2n

)
|Φ(κ)(c1)|β + h

(
n + $

2n

)
|Φ(κ)(c2)|β

− µ

(2n)2 (n + $)(n− $)(δ(c2, c1))
σd$

)] 1
β

=
[
H1(ρ, n, k)|Φ(κ)(c1)|β +H2(ρ, n, k)|Φ(κ)(c2)|β

−µnβ(ρ+κ−1)+1[β(ρ + κ − 1) + 4](δ(c2, c1))
σ

4(β(ρ + κ − 1) + 2)(β(ρ + κ − 1) + 3)

] 1
β

+
[
H2(ρ, n, k)|Φ(κ)(c1)|β +H1(ρ, n, k)|Φ(κ)(c2)|β

−µnβ(ρ+κ−1)+1[β(ρ + κ − 1) + 4](δ(c2, c1))
σ

4(β(ρ + κ − 1) + 2)(β(ρ + κ − 1) + 3)

] 1
β

, (15)

which is the required result.

Some special cases of Theorem 3 are stated as follows.
(I). Letting h($) = $, then we acquire the higher order strongly preinvex functions.

Corollary 9. For ρ > 0, n, k ∈ N and there is a differentiable function Φ : Mδ → R such that c1, c1 +

δ(c2, c1) ∈ Mδ with δ(c2, c1) > 0. If Φ(κ) ∈ L1 ([c1, c1 + δ(c2, c1)]) and |Φ(κ)|α is a higher order strongly
h-preinvex function, then

|Ψ(k, n, ρ; c1, c2)(Φ)|

≤
[
H3(ρ, n, k)|Φ(κ)(c1)|β +H4(ρ, n, k)|Φ(κ)(c2)|β

−µnβ(ρ+κ−1)+1[β(ρ + κ − 1) + 4](δ(c2, c1))
σ

4(β(ρ + κ − 1) + 2)(β(ρ + κ − 1) + 3)

] 1
β

+
[
H4(ρ, n, k)|Φ(κ)(c1)|β +H3(ρ, n, k)|Φ(κ)(c2)|β

−µnβ(ρ+κ−1)+1[β(ρ + κ − 1) + 4](δ(c2, c1))
σ

4(β(ρ + κ − 1) + 2)(β(ρ + κ − 1) + 3)

] 1
β

, (16)
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where

H3(ρ, n, k) :=
n∫

0

(n− $)β(ρ+κ−1)
(

n + $

2n

)
d$

=
nβ(ρ+κ−1)+1[β(ρ + κ − 1) + 3]

2(β(ρ + κ − 1) + 1)(β(ρ + κ − 1) + 2)
,

and

H4(ρ, n, k) :=
n∫

0

(n− $)β(ρ+κ−1)
(

n− $

2n

)
d$

=
nβ(ρ+κ−1)+1

2(β(ρ + κ − 1) + 2)
.

(II). Letting h($) = $s, then we acquire the Breckner type of higher order strongly preinvex functions.

Corollary 10. For ρ > 0, n, k ∈ N and there is a differentiable function Φ : Mδ → R such that c1, c1 +

δ(c2, c1) ∈ Mδ and δ(c2, c1) > 0. If Φ(κ) ∈ L1 ([c1, c1 + δ(c2, c1)]) and |Φ(κ)|α is Breckner type of a higher
order strongly s-preinvex function, then

|Ψ(k, n, ρ; c1, c2)(Φ)|

≤
[
H5(ρ, n, k)|Φ(κ)(c1)|β +H6(ρ, n, k)|Φ(κ)(c2)|β

−µnβ(ρ+κ−1)+1[β(ρ + κ − 1) + 4](δ(c2, c1))
σ

4(β(ρ + κ − 1) + 2)(β(ρ + κ − 1) + 3)

] 1
β

+
[
H6(ρ, n, k)|Φ(κ)(c1)|β +H5(ρ, n, k)|Φ(κ)(c2)|β

− µnβ(ρ+κ−1)+1[β(ρ + κ − 1) + 4](δ(c2, c1))
σ

4(β(ρ + κ − 1) + 2)(β(ρ + κ − 1) + 3)

] 1
β

, (17)

where

H5(ρ, n, k) :=
n∫

0

(n− $)β(ρ+κ−1)
(

n + $

2n

)s
d$

= (2n)β(ρ+κ−1)+1B 1
2
(β(ρ + κ − 1) + 1, s + 1)

and

H6(ρ, n, k) :=
n∫

0

(n− $)β(ρ+κ−1)
(

n− $

2n

)s
d$ =

nβ(ρ+κ−1)+1

2s(β(ρ + κ − 1) + s + 1)
.

(III). Letting h($) = $−s, then we acquire the Godunova–Levin type of higher order strongly preinvex
functions.
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Corollary 11. For ρ > 0, n, k ∈ N and there is a differentiable Φ : Mδ → R such that c1, c1 + δ(c2, c1) ∈ Mδ

and δ(c2, c1) > 0. If Φ(κ) ∈ L1 ([c1, c1 + δ(c2, c1)]) and |Φ(κ)|α is Godunova–Levin type of a higher order
strongly s-preinvex function, then

|Ψ(k, n, ρ; c1, c2)(Φ)|

≤
[
H7(ρ, n, k)|Φ(κ)(c1)|β +H8(ρ, n, k)|Φ(κ)(c2)|β

−µnβ(ρ+κ−1)+1[β(ρ + κ − 1) + 4](δ(c2, c1))
σ

4(β(ρ + κ − 1) + 2)(β(ρ + κ − 1) + 3)

] 1
β

+
[
H8(ρ, n, k)|Φ(κ)(c1)|β +H7(ρ, n, k)|Φ(κ)(c2)|β

−µnβ(ρ+κ−1)+1[β(ρ + κ − 1) + 4(δ(c2, c1))
σ]

4(β(ρ + κ − 1) + 2)(β(ρ + κ − 1) + 3)

] 1
β

, (18)

where

H7(ρ, n, k) :=
n∫

0

(n− $)β(ρ+κ−1)
(

n + $

2n

)−s
d$

= (2n)β(ρ+κ−1)+1B 1
2
(β(ρ + κ − 1) + 1,−s + 1)

and

H8(ρ, n, k) :=
n∫

0

(n− $)β(ρ+κ−1)
(

n− $

2n

)−s
d$ =

2snβ(ρ+κ−1)+1

(β(ρ + κ − 1)− s + 1)
.

(IV). Letting h($) = 1, then we acquire the higher order strongly P-preinvex functions.

Corollary 12. For ρ > 0, n, k ∈ N and there is a differentiable function Φ : Mδ → R such that c1, c1 +

δ(c2, c1) ∈ Mδ with δ(c2, c1) > 0. If Φ(κ) ∈ L1 ([c1, c1 + δ(c2, c1)]) and |Φ(κ)|α is a higher order strongly
P-preinvex function, then

|Ψ(k, n, ρ; c1, c2)(Φ)| ≤ 2

(
nβ(ρ+κ−1)+1

β(ρ + κ − 1) + 1

) 1
β

×
[
|Φ(κ)(c1)|β + |Φ(κ)(c2)|β −

µ (β(ρ + κ − 1) + 1) (β(ρ + κ − 1) + 4)
4 (β(ρ + κ − 1) + 2) (β(ρ + κ − 1) + 3)

(δ(c2, c1))
σ

] 1
β

. (19)

5. Conclusions

We presented the concept of higher order strongly h-preinvex functions with different kind
of preinvexities. We built up the higher order strongly preinvex functions for Breckner type,
Godunova–Levin type and P- preinvex functions. We establish an identity associated with
differentiable functions of kth order using Riemann–Liouville fractional integral operator. We derived
several new upper bounds for the Hermite–Hadamard type by using the strongly h preinvexity of
the kth order derivative concerning to Riemann–Liouville fractional integral. Further, we have taken
some particular cases of these results, choosing specific values of the mapping h. We can discover
a number of inequalities by selecting the values applicable to the restrictions of σ and h. Here, we
emphasis that all the derived outcomes in the present paper endured preserving for strongly preinvex
functions, certainly, which can be seen by the unique values of σ = 2 and h($) = $. Moreover, our
consequence have potential applications in signal and image processing algorithms based on sparsity
convex programming for inverse problems [6] and antimatroids (to model the ordering of events in
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discrete event simulation systems and mathematical psychology) [8]. We hope that the novel strategies
of this paper will inspire the researchers working in the field of analysis, numerical analysis and
mathematical inequalities. This is an interesting direction for future research.
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