
symmetryS S

Article

Block Cipher in the Ideal Cipher Model: A Dedicated
Permutation Modeled as a Black-Box Public
Random Permutation

Yasir Nawaz and Lei Wang

Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
my_nawaz@sjtu.edu.cn (Y.N.); wanglei@cs.sjtu.edu.cn (L.W.)

Received: 3 November 2019; Accepted: 2 December 2019; Published: 5 December 2019
����������
�������

Abstract: Designing a secure construction has always been a fascinating area for the researchers in
the field of symmetric key cryptography. This research aimed to make contributions to the design of
secure block cipher in the ideal cipher model whose underlying primitive is a family of n− bit to n− bit
random permutations indexed by secret key. Our target construction of a secure block ciphers denoted
as E[s] is built on a simple XOR operation and two block cipher invocations, under the assumptions
that the block cipher in use is a pseudorandom permutation. One out of these two block cipher
invocations produce a subkey that is derived from the secret key. It has been accepted that at least two
block cipher invocations with XOR operations are required to achieve beyond birthday bound security.
In this paper, we investigated the E[s] instances with the advanced proof technique and efficient
block cipher constructions that bypass the birthday-bound up to 2n provable security was achieved.
Our study provided new insights to the block cipher that is beyond birthday bound security.

Keywords: pseudorandom permutation; block cipher; ideal cipher model; beyond birthday bound;
provable security

1. Introduction

A block cipher encryption design is called beyond birthday bound (BBB) secure if the proven upper
bound on the adversarial advantage is meaningful even if an adversary can process more than 2n/2 data
blocks, where n is the size of the block of a block cipher. The first time, Iwata proposed a BBB encryption
mode cipher-based encryption (CENC) [1]. This was nonce based construction providing a solution
through the invocation of more than one block cipher and simple XOR operation and achieved 22n/3

security against all nonce respecting adversaries. Later on, Iwata proved CENC construction based on
mirror theory technique [2], and achieved optimal security [3]. Bhattacharya and Nandi also gave the BBB
security of CENC by analyzing the security bound of variable output length using the chi-squared method.

1.1. Pseudorandom Permutation and Pseudorandom Function with BBB

The conventional approach for designing the cryptography primitives based on symmetric cipher
is to behave as a perfectly random function. The vast majority, in this case, is an encryption scheme [4],
MAC encryption schemes [5,6], and authenticated encryption schemes [7], following this paradigm via
pseudorandom functions (PRF). Patarin suggested the construction of permutation sum and proved
that a variant of single permutation indistinguishable from a random function up to BBB [8]. In 2003,
Patarin gave the result 22n/3 security [9], like so, in 2005, achieved up to this security bound [10,11].
However, the PRF provides a solution for increasing the use of cryptography in a real-world application.
The pseudorandom permutation (PRP) is the leading building block of the cryptographic design in
spite of PRF [12–15]. If a block cipher is directly implemented as a PRF, which will have provable

Symmetry 2019, 11, 1485; doi:10.3390/sym11121485 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://dx.doi.org/10.3390/sym11121485
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/11/12/1485?type=check_update&version=2

Symmetry 2019, 11, 1485 2 of 15

security limit birthday bound with a large block, this is often acceptable. But it is not acceptable
in practice with a lightweight block cipher, which has relatively small block sizes. The PRF can be
replaced by a PRP up to birthday bound queries [16–19]. Moreover, if the block size of a block cipher
is large enough, then the security loss is sometimes acceptable. Whatever, there are many scenarios,
such as lightweight applications, whose numbers have grown tremendously before some years that
require higher security bound [20–26]. In recent years, various constructions have been proposed that
achieve BBB security against more than 2n/2 queries. We could categorize these constructions into
XOR permutations based and truncation based. The XOR permutations is popular for BBB construction by
taking the XOR of more than one independent PRP [20].

XOREk1
,Ek2

(x) = Ek1
(x) ⊕ Ek2(x)

This construction was analyzed by Lucks [21]. The single key variant of this construction provides
the security up to 22n/3 queries [27]. After that, Patarin revised this construction and improved
the security bound up to 2n/67 [28]. Later on, the results were generated by more than two independent
PRP with XOR operation [29]. Dai et al. [30] using the chi-squared method verified the n− bit security
of XOR construction, but the original proof was provided by Bhattacharya and Nandi [31]. The XOR
construction is acceptable for encryption, but it is not usable for authentication, because domain size
is required to extend. This can be solved through hashing the message, but the XOR construction
needs some precise combination with a double block hash function [32–34]. The truncation based
solution was presented by Hall et al. [17]. Later on, it was proved that truncating n− bit permutation
has security bound up to 22n/3 queries [35]. Stam also derived these results in a non-cryptographic
context [27]. Recently, another construction was proposed, which is known as Encrypted Davies Meyer
(EDM) introduced by Cogliati and Seurin [36].

EDMEk1
, Ek2

(x) = Ek2(Ek1
(x) ⊕ x)

There are two independent permutations and it behaves like random function up to q3/22n [36].
Afterward, Dai et al. [30] achieved q4/23n using the chi-squared method. Now, a novel construction
EDMD improved the security up to 2n/67n by using mirror theory technique, which has almost
an optimal security [37].

EDMDEk1
, Ek2

(x) = Ek2(Ek1
(x)) ⊕ Ek1

(x)

Two independent keys are required for EDMD. The single key setting is significant for higher
security bound and efficient construction, which was also performed in our construction. Anyways,
this construction secures up to q/22n/3. Cogliati and Seurin also extended the EDMD construction
called encrypted Wegman carter with davies meyer (EWCDM), which is nonce based BBB secure.

EWCDMEk1
, Ek2

,Hkh
(N, M) = Ek2(Ek1

(N) ⊕N ⊕HK(M))

where, HK is a universal hash function, N denote the nonce, and M denote the message, which has
an arbitrary length. The EWCDM achieved BBB up to 22n/3 MAC queries when it has nonce respecting
setting. The use of internal state values of EWCDM construction makes their security analysis formally
inapplicable [37]. Mennink presented the rationale relying on the EWCDM function, and simplified
versions of the conversion method applied to the advanced encryption scheme (AES) [38]. The main
proposal of AES-PRF, the AES with a feed forward of the middle state, achieved almost no optimal
security. This construction was applied to GCM and GCM-SIV, and how it entails the significant
security improvements was discussed. A little while back, Mennink presented a heuristic study to
build BBB secure from public random permutation, showing that a single permutation call could not
be secured BBB [39].

The above discussion shows that what to be tackled in PRF for BBB and where the goal is to build
PRF, so that it is indistinguishable from a truly random function. However, our study aimed to build

Symmetry 2019, 11, 1485 3 of 15

block cipher in the ideal cipher model, under the assumption that the block cipher is a PRP out of
PRF, achieving full security. Moreover, the sum of even mansour (SoEM) construction achieves BBB up
to 22n/3, that is built from two randomly drawn keys and two independent permutations; if either keys
or permutations are identical, then there is a birthday bound attack.

1.2. Our Construction

In this paper, we focused on a block cipher design based on a single key, which achieved BBB up
to 2n security. The main motivation is by the scenarios where the block cipher only has block size of
32− bit, 48− bit, and 64− bit [40]. The target construction of block cipher depicted in Figure 1, defined
as E[s] : K × P→ P , consists of two block cipher invocations and additional simple XOR operation.
Furthermore, a heuristic approach is carried out to examine the instances of E[s] and, at last, E1− E32
efficient construction is successfully found. In detail, the first invoke of block cipher produces a subkey
y from the secret key k such that y = E(k, 0), y = E(0, k), and y = E(k, k). The second invoke of a block
cipher encrypt and decrypt the plaintext p and ciphertext c, respectively, with a key k or k⊕ y. However,
we stress that the first block cipher invocation is precomputing and storing the subkey y. Thus, our
design only requires one invocation of a block cipher for encryption and decryption when the subkey
y is precomputed and stored. We have designed this construction in the ideal cipher model that has
the main advantage of provable security up to 2n. The previously available block cipher has maximum
provable security up to 22n/3. From the efficiency point of view, previous constructions required
more than one key, s > 2 block cipher invocations [20,36], and universal hash function invocations; in
the absence of these, their efficiency needed to be increased. The minimum number of block cipher
invocation with a single key is good for efficiency. Our design requires just a single secret key and one
block cipher invocation for encryption and decryption when the subkey is precomputed and stored.

2. Preliminaries

2.1. Notations

The {0, 1}n denotes the set of bit strings of length n. We denote the bitwise addition a ⊕ b,

where a, b ∈ {0, 1}n. The Y← Z is the assignment of Z to the variable Y. The x $
← X denotes

the uniform random selection of x from X. The |X| denotes the number of elements in X. Let a ∈ {0, 1}
and b ∈ {0 , 1}, a.b denotes the multiplication of a and b, if a = 1, then it is equal to b, and if a = 0,

then a.b equals to 0. The block cipher denotes as E : K × P→ P, where P is a plaintext/message space,
K is the key space. Throughout the paper, we have fixed K = P = {0, 1}n. Let E(k, ·) and E−1(k, ·)
denote the encryption and decryption, respectively, with a secret key k ∈ K. Let E±(k, ·) involves E(k, ·)

and E−1(k, ·). Sometimes, we denote E(k, ·) as Ek(·), E−1(k, ·) as E−1
k (·), and E±(k, ·) as Ek(·) and E−1

k (·),

respectively. The (u, w) are the input and output tuple of E such that w = E(u). The input-output tuple

of Ek is denoted as (p, c) such that Ek(p) = c. Let Perm(n) denote the set of all permutations on {0, 1}n.

The function π is said to be an ideal cipher model if randomly selected that is π R
← Perm(n). Similarly,

we define these notations π(·, ·), π−1(·, ·), and π±(·, ·), respectively.

2.2. Security Definition

A computationally unbounded distinguisher D is an algorithm that has adaptive access to
an oracle and outputs a bit 0 or 1. Let the two oracles O1 and O2 have the same interface, we can get
the distinguishing advantage of D as follows.

Adv(D) = Pr[DO1 ⇒ 1] − Pr
[
Pr[DO2 ⇒ 1]

A block cipher with a key space K and message space P is a mapping E : K × P→ P such that for

all key k ∈ K. The E(K, P) is a permutation over P. We denote Ek(P) for E(K, P). The distinguisher D is

Symmetry 2019, 11, 1485 4 of 15

having query access to (O1, E±): O1 is either E±k (·, ·) with k $
← K or π $

← Perm. The E± is an underlying

block cipher. The advantage of distinguisher D in distinguishing E and π is defined as.

Advprp
E (D) =

∣∣∣∣Pr
[
DE±k (·,·),E

±(·,·)
⇒ 1

]
− Pr

[
Dπ±(·,·),E±(·,·)

⇒ 1
]∣∣∣∣

Throughout this paper, we considered information as theoretical with computationally unbounded
distinguishers D sorely limited by the number of queries to the oracle. Overall, maximum is taken by
distinguisher D that makes at most q queries to its oracles.

Advprp
E (q) = maxD

{
Advprp

E (D)
}

2.3. H-Coefficient Technique

Central to our proof is a H-Coefficient technique presented by Patarin [8,41]. As mentioned above, we
considered the information as theoretical, with computationally unbounded distinguisher D. Thus, we
always assumed that distinguisher D is deterministic without the loss of generality. Let distinguisher
D interacts with O1 and O2. The interaction of D with its oracles are recorded in a view v. The XO2

is the probability distribution of v when distinguisher D interacts with O2. The V is the set of all

attainable views v when D interacting with O2, which is V =
{

v
∣∣∣∣Pr

[
XO2 = v

]
>0

}
. The H-Coefficient

technique states as follows:
Let 0 ≤ ε ≤ 1. Consider a partition V = Vgood ∪Vbad set of attainable view such that:

1. Pr
[

XO2 ∈ Vbad
]

2. f or all v ∈ Vgood,
Pr[XO1=v]
Pr[XO2=v]

≥ 1− ε

Then, the distinguishing advantage satisfies

Adv(D) ≤ Pr
[

XO2 ∈ Vbad
]
+ ε

The core idea of the H-coefficient technique is: a large number of views are almost equally likely
in both oracles (real worlds and the ideal world), and the odd ones occur with a small probability.

Note that the partitioning of V into bad and good views is directly reflected in the terms Pr
[

XO2 ∈ Vbad
]

and ε in the bound: if Vgood is too large, εwill become large, whereas if Vbad is too large, Pr
[

XO2 ∈ Vbad
]

will become large.

3. Construction Limitations

In this section, we will discuss the construction limitations of secure block cipher in the ideal cipher
model, which is built on dedicated block cipher invocations and simple XOR operation. The XOR
operation has efficiency benefits. The target construction is denoted as E[s] and is built on s block
cipher invocations. Let E denote the underlying block cipher with n− bit block size and n− bit. key size.
Let p, c, and k denote the plaintext, ciphertext, and key, respectively, where all have n− bit size. Let ai, j

and bi, j be one bit variable of being 0 or 1, where 1 ≤ i ≤ s + 1 and 1 ≤ j ≤ i + 2. The encryption

of E[s] is shown in Algorithm 1. The target construction E[s] is depicted in Figure 1. In detail, this is
a graphical view from which we would acquire the resultant block cipher construction. Moreover, all
the s block cipher invocations are involved in the computation of the ciphertext c. The ciphertext c
must be invertible and efficiently decrypted from plaintext p and key k. There are some limitations for
E[s] to achieve our goal:

• The plaintext p should be involved in exactly one XOR operation. The p involves in XOR operation,
which gives xi and corresponding yi. So, both outputs (xi and yi) are called plaintext dependent

Symmetry 2019, 11, 1485 5 of 15

variable. On the other side, if a variable yi is used to compute another variable x j, which depends
on yi, then x j and corresponding y j would also be plaintext dependent variable. So, we cannot
use plaintext dependent variable to produce any key or subkey, otherwise, constructions will not
be efficient.

There should be at most one plaintext dependent variable produced from the XOR operation.
Otherwise, the decryption process cannot efficiently decrypt because there is more than one variable.
Symmetry 2019, 11, x FOR PEER REVIEW 5 of 14

Figure 1. 𝔼[s]: Target Construction.

If we summarize and satisfy the above limitations, then 𝔼[𝑠] can be an efficient block cipher

construction. Moreover, an additional condition is also necessary for efficiency and security. Our first

goal is to achieve full (2𝑛) provable security. The target construction is important to achieve the goal.

Nowadays, 𝐴𝐸𝑆 and 𝑆𝐼𝑀𝑂𝑁 block cipher is utilized in various applications of different block sizes,

such as 128 − 𝑏𝑖𝑡 and 64 − 𝑏𝑖𝑡. In some environments, the block size of lightweight block ciphers

can be even shorter. Thus, block cipher construction with a simply birthday bound security may not

be suitable for various applications. Therefore, another construction which provide higher security is

definitely necessary. Particularly, for application design, a block cipher with full security is surely an

interesting research topic. Our second goal is the efficiency, we invoke two block cipher because

minimum number of block cipher invocation led to concern about high efficiency. It is well known

that block cipher invocations are much more time consuming than XOR operation. So, the efficiency

reduces due to a number of block cipher invocation. But, besides this, we aimed to achieve perfect

efficiency under the condition of no security sacrifices, i. e., eliminating the unnecessary input

variables. In fact, this is also a reason in our target construction having simple XOR operation and

only necessary input variables. Algorithm 1 is shown as follow:

Algorithm 1 𝔼[𝒔](·,·)

𝐢𝐧𝐩𝐮𝐭: 𝒌, 𝒑, 𝑬(·,·), 𝒗𝒂𝒊𝒂𝒃𝒍𝒆𝒔 𝒂𝒊,𝒋 𝒂𝒏𝒅 𝒃𝒊,𝒋

Output: 𝒄𝒊𝒑𝒉𝒆𝒓𝒕𝒆𝒙𝒕 𝒙𝟏 = 𝒂𝟏,𝟏. 𝒌, 𝒃𝟏,𝟏. 𝒌 ⊕ 𝒃𝟏,𝟐. 𝒑

1. 𝒙𝟏 = 𝒂𝟏,𝟏. 𝒌, 𝒃𝟏,𝟏. 𝒌 ⊕ 𝒃𝟏,𝟐. 𝒑

2. 𝐟𝐨𝐫 𝒊 = 𝟏 𝒕𝒐 𝒔 − 𝟏, 𝐝𝐨

3. 𝒚𝒊 = 𝑬(𝒂𝟏,𝟏. 𝒌, 𝒙𝒊)

4. 𝒙𝒊+𝟏 = 𝒂𝒊⊕𝟏,𝟏. 𝒌 ⊕ ∑ 𝒂𝒊⊕𝟏,𝒋.
𝐢+𝟏

𝒋=𝟐
𝒚𝒋−𝟏, 𝒃𝒊⊕𝟏,𝟏. 𝒌 ⊕ 𝒃𝒊⊕𝟏,𝟐. 𝒑 ⊕

∑ 𝒃𝒊⊕𝟏,𝒋.
𝐢+𝟐

𝒋=𝟑
𝒚𝒋−𝟐

5. 𝐞𝐧𝐝 𝐟𝐨𝐫

6. 𝒚𝒔 = 𝑬(𝒌𝒔, 𝒙𝒔)

7. 𝒄 = 𝒃𝒔⊕𝟏,𝟏. 𝒌 ⊕ 𝒃𝒔⊕𝟏,𝟐. 𝒌 ⊕ ∑ 𝒃𝒔⊕𝟏,𝒋.
𝒔+𝟐

𝒋=𝟑
𝒚𝒋−𝟐

8. 𝐫𝐞𝐭𝐮𝐫𝐧 𝐜𝐢𝐩𝐡𝐞𝐫𝐭𝐞𝐱𝐭 𝒄

In order to achieve the above goals among the instances of target construction, we adopted a

heuristic approach. For the instances of 𝔼[𝑠] , we invoked only two block cipher to achieve 2𝑛

provable security because 𝑠 = 1 for instances of 𝔼[𝑠] had most 2𝑛/2 security. Thus, at least two

block cipher invocations are required to bypass the birthday bound barrier.

We continued to examine the instances of 𝔼[2] and would not analyze the 𝔼[𝑠 > 2] instances

unless investigated all the instances of 𝔼[2] and none of them achieve 2𝑛 security. In fact, if some

instances of 𝔼[2] achieves 2𝑛 security, then there is no need to examine the other instances of 𝔼[2].

⊕

𝐸 ⊕

𝐸 ⊕

𝑏1,2. 𝑝

𝑧1

𝑏1,1. 𝑘

k

𝑧1

𝑏2,1. 𝑘 𝑎2,1. 𝑘 ⊕ 𝑎2,2. 𝑦1 𝑏3,1. 𝑘

𝑏3,3. 𝑦1

𝑐

𝑎1,1. 𝑘

𝑎1,1. 𝑘

𝑏2,2. 𝑝 𝑏3,2. 𝑝

𝑥1 𝑏2,3. 𝑦1

𝑎1,1. 𝑘

𝑏3,4. 𝑦2

𝑎1,1. 𝑘

𝑥2

Figure 1. E[s] : Target Construction.

If we summarize and satisfy the above limitations, then E[s] can be an efficient block cipher
construction. Moreover, an additional condition is also necessary for efficiency and security. Our first
goal is to achieve full (2n) provable sec urity. The target construction is important to achieve the goal.
Nowadays, AES and SIMON block cipher is utilized in various applications of different block sizes,
such as 128− bit and 64− bit. In some environments, the block size of lightweight block ciphers can
be even shorter. Thus, block cipher construction with a simply birthday bound security may not be
suitable for various applications. Therefore, another construction which provide higher security is
definitely necessary. Particularly, for application design, a block cipher with full security is surely
an interesting research topic. Our second goal is the efficiency, we invoke two block cipher because
minimum number of block cipher invocation led to concern about high efficiency. It is well known
that block cipher invocations are much more time consuming than XOR operation. So, the efficiency
reduces due to a number of block cipher invocation. But, besides this, we aimed to achieve perfect
efficiency under the condition of no security sacrifices, i.e., eliminating the unnecessary input variables.
In fact, this is also a reason in our target construction having simple XOR operation and only necessary
input variables. Algorithm 1 is shown as follow:

Algorithm 1 E[s](·, ·)

input: k, p, E(·, ·), vaiables ai,j and bi,j
Output: ciphertext x1 = a1,1.k, b1,1.k⊕ b1,2.p

1. x1 = a1,1.k, b1,1.k⊕ b1,2.p
2. for i = 1 to s− 1, do

3. yi = E
(
a1,1.k, xi

)
4. xi+1 = ai⊕1,1.k⊕

i+1∑
j=2

ai⊕1,j.yj−1, bi⊕1,1.k⊕ bi⊕1,2.p⊕
i+2∑
j=3

bi⊕1,j.yj−2

5. end for
6. ys = E(ks, xs)

7. c = bs⊕1,1.k⊕ bs⊕1,2.k⊕
s+2∑
j=3

bs⊕1,j.yj−2

8. return ciphertext c

Symmetry 2019, 11, 1485 6 of 15

In order to achieve the above goals among the instances of target construction, we adopted a heuristic
approach. For the instances of E[s], we invoked only two block cipher to achieve 2n provable security
because s = 1 for instances of E[s] had most 2n/2 security. Thus, at least two block cipher invocations
are required to bypass the birthday bound barrier.

We continued to examine the instances of E[2] and would not analyze the E[s > 2] instances
unless investigated all the instances of E[2] and none of them achieve 2n security. In fact, if some
instances of E[2] achieves 2n security, then there is no need to examine the other instances of E[2].
To follow the above strategy, we analyzed the target construction E[s] and found 32 instances with 2n

provable security.

3.1. E[2] Instances

According to the previous discussion, the plaintext p should be involved in exactly one XOR
operation. There should be, at most, one plaintext dependent variable produced from the XOR
operation. Otherwise, the decryption process cannot efficiently decrypt because there exists more than
one variable. The plaintext dependent variable cannot be used to produce any key-value; otherwise,
constructions will not be efficient. Following this strategy, we divided E[2] instances into three types
on the basis of when plaintext p is XOR to compute xi and c, respectively.

• Type 1 instances: when p is XOR to compute x1

• Type 2 instances: when p is XOR to compute x2

• Type 3 instances: when p is XOR to compute c

3.1.1. Type 1 Instances

According to the above limitation, the plaintext dependent variables cannot be used to produce
key value, so, a2,2 = 0. The plaintext p should be involved in exactly one XOR operation, so, b2,2 = 0
and b3,2 = 0. We set b2,3 = 1, which is the first block cipher invocation, and set b3,4 = 1, which is second
block cipher invocation. If b2,3 = 0, it means two block ciphers’ invocations are parallel, and these
instances are involved in type 2. It also shows that x2 and y2 are plaintext variables. Then, we set b3,3 = 0
because y2 is already used as a plaintext dependent variable. All of these simplified constructions
of type 1 are shown in Figure 2. We examined the instances of type 1, and ciphertext is computed
as follows.

c = E(a2,1.k, x2) ⊕ b3,1.k

Symmetry 2019, 11, x FOR PEER REVIEW 6 of 14

To follow the above strategy, we analyzed the target construction 𝔼[s] and found 32 instances with

2𝑛 provable security.

3.1. 𝔼[2] Instances

According to the previous discussion, the plaintext 𝑝 should be involved in exactly one XOR

operation. There should be, at most, one plaintext dependent variable produced from the XOR

operation. Otherwise, the decryption process cannot efficiently decrypt because there exists more

than one variable. The plaintext dependent variable cannot be used to produce any key-value;

otherwise, constructions will not be efficient. Following this strategy, we divided 𝔼[2] instances into

three types on the basis of when plaintext 𝑝 is XOR to compute 𝑥𝑖 and 𝑐, respectively.

 Type 1 instances: when 𝑝 is XOR to compute 𝑥1

 Type 2 instances: when 𝑝 is XOR to compute 𝑥2

 Type 3 instances: when 𝑝 is XOR to compute 𝑐

3.1.1. Type 1 Instances

According to the above limitation, the plaintext dependent variables cannot be used to produce

key value, so, 𝑎2,2 = 0. The plaintext 𝑝 should be involved in exactly one XOR operation, so, 𝑏2,2 =

0 and 𝑏3,2 = 0. We set 𝑏2,3 = 1, which is the first block cipher invocation, and set 𝑏3,4 = 1, which is

second block cipher invocation. If 𝑏2,3 = 0, it means two block ciphers’ invocations are parallel, and

these instances are involved in type 2. It also shows that 𝑥2 and 𝑦2 are plaintext variables. Then, we

set 𝑏3,3 = 0 because 𝑦2 is already used as a plaintext dependent variable. All of these simplified

constructions of type 1 are shown in Figure 2. We examined the instances of type 1, and ciphertext is

computed as follows.

𝑐 = 𝐸(𝑎2,1. 𝑘, 𝑥2) ⊕ 𝑏3,1. 𝑘

Figure 2. 𝔼[2]: Type 1 Construction.

Instances with one block cipher Invocation of type 1

We would show that any instance that makes only one block cipher invocation of type 1

construction could not achieve 𝐵𝐵𝐵 security. Let 𝐸: {0,1}𝑛 × {0,1}𝑛 → {0,1}𝑛 be a block cipher,

shown in Figure 3. We showed that there exists a distinguisher 𝐷 that can distinguish any such block

cipher from random permutation using at most 2𝑛/2 queries.

Figure 3. Type 1: One Block cipher invocation.

 When 𝑎1,1 = 0 and 𝑏1,1 = 1.

In this case, we can see the input or output of 𝐸 is not related to 𝑝 or 𝑐. When 𝑏1,2 = 0, then

distinguisher 𝐷 selects arbitrary 𝑝 and 𝑝′ to get 𝑐 and 𝑐′. If the event 𝑐 = 𝑐′ occurs, then output

⊕

𝐸 ⊕

𝐸 ⊕

𝑏1,2. 𝑝

𝑧1

𝑏1,1. 𝑘

k

𝑧1

𝑏2,1. 𝑘 𝑎2,1. 𝑘 ⊕ 𝑎2,2. 𝑦1 𝑏3,1. 𝑘

𝑐

𝑎1,1. 𝑘

𝑎1,1. 𝑘
𝑥1 𝑏2,3. 𝑦1

𝑎1,1. 𝑘

𝑏3,4. 𝑦2

𝑎1,1. 𝑘

𝑥2

⊕

𝐸 ⊕

𝑏1,2. 𝑝

𝑧1

𝑏1,1. 𝑘

k

𝑧1

𝑏2,1. 𝑘

𝑐

𝑎1,1. 𝑘

𝑎1,1. 𝑘
𝑥1 𝑏2,3. 𝑦1

𝑎1,1. 𝑘

𝑏2,2. 𝑥1

Figure 2. E[2] : Type 1 Construction.

Instances with one block cipher Invocation of type 1.
We would show that any instance that makes only one block cipher invocation of type 1 construction

could not achieve BBB security. Let E : {0, 1}n × {0, 1}n → {0, 1}n be a block cipher, shown in Figure 3.
We showed that there exists a distinguisher D that can distinguish any such block cipher from
random permutation using at most 2n/2 queries.

• When a1,1 = 0 and b1,1 = 1.

In this case, we can see the input or output of E is not related to p or c. When b1,2 = 0, then
distinguisher D selects arbitrary p and p′ to get c and c′. If the event c = c′ occurs, then output is 1;
otherwise, it is 0. The success probability of D is 1 when interacts with 1− 2−n. The results are similar
for b2,3 = 0.

Symmetry 2019, 11, 1485 7 of 15

Symmetry 2019, 11, x FOR PEER REVIEW 6 of 14

To follow the above strategy, we analyzed the target construction 𝔼[s] and found 32 instances with

2𝑛 provable security.

3.1. 𝔼[2] Instances

According to the previous discussion, the plaintext 𝑝 should be involved in exactly one XOR

operation. There should be, at most, one plaintext dependent variable produced from the XOR

operation. Otherwise, the decryption process cannot efficiently decrypt because there exists more

than one variable. The plaintext dependent variable cannot be used to produce any key-value;

otherwise, constructions will not be efficient. Following this strategy, we divided 𝔼[2] instances into

three types on the basis of when plaintext 𝑝 is XOR to compute 𝑥𝑖 and 𝑐, respectively.

 Type 1 instances: when 𝑝 is XOR to compute 𝑥1

 Type 2 instances: when 𝑝 is XOR to compute 𝑥2

 Type 3 instances: when 𝑝 is XOR to compute 𝑐

3.1.1. Type 1 Instances

According to the above limitation, the plaintext dependent variables cannot be used to produce

key value, so, 𝑎2,2 = 0. The plaintext 𝑝 should be involved in exactly one XOR operation, so, 𝑏2,2 =

0 and 𝑏3,2 = 0. We set 𝑏2,3 = 1, which is the first block cipher invocation, and set 𝑏3,4 = 1, which is

second block cipher invocation. If 𝑏2,3 = 0, it means two block ciphers’ invocations are parallel, and

these instances are involved in type 2. It also shows that 𝑥2 and 𝑦2 are plaintext variables. Then, we

set 𝑏3,3 = 0 because 𝑦2 is already used as a plaintext dependent variable. All of these simplified

constructions of type 1 are shown in Figure 2. We examined the instances of type 1, and ciphertext is

computed as follows.

𝑐 = 𝐸(𝑎2,1. 𝑘, 𝑥2) ⊕ 𝑏3,1. 𝑘

Figure 2. 𝔼[2]: Type 1 Construction.

Instances with one block cipher Invocation of type 1

We would show that any instance that makes only one block cipher invocation of type 1

construction could not achieve 𝐵𝐵𝐵 security. Let 𝐸: {0,1}𝑛 × {0,1}𝑛 → {0,1}𝑛 be a block cipher,

shown in Figure 3. We showed that there exists a distinguisher 𝐷 that can distinguish any such block

cipher from random permutation using at most 2𝑛/2 queries.

Figure 3. Type 1: One Block cipher invocation.

 When 𝑎1,1 = 0 and 𝑏1,1 = 1.

In this case, we can see the input or output of 𝐸 is not related to 𝑝 or 𝑐. When 𝑏1,2 = 0, then

distinguisher 𝐷 selects arbitrary 𝑝 and 𝑝′ to get 𝑐 and 𝑐′. If the event 𝑐 = 𝑐′ occurs, then output

⊕

𝐸 ⊕

𝐸 ⊕

𝑏1,2. 𝑝

𝑧1

𝑏1,1. 𝑘

k

𝑧1

𝑏2,1. 𝑘 𝑎2,1. 𝑘 ⊕ 𝑎2,2. 𝑦1 𝑏3,1. 𝑘

𝑐

𝑎1,1. 𝑘

𝑎1,1. 𝑘
𝑥1 𝑏2,3. 𝑦1

𝑎1,1. 𝑘

𝑏3,4. 𝑦2

𝑎1,1. 𝑘

𝑥2

⊕

𝐸 ⊕

𝑏1,2. 𝑝

𝑧1

𝑏1,1. 𝑘

k

𝑧1

𝑏2,1. 𝑘

𝑐

𝑎1,1. 𝑘

𝑎1,1. 𝑘
𝑥1 𝑏2,3. 𝑦1

𝑎1,1. 𝑘

𝑏2,2. 𝑥1

Figure 3. Type 1: One Block cipher invocation.

• When a1,1 = 0 and b1,1 = 0.

In this case, we can see the input or output of E is independent of the key. When b1,2 = 1,

the distinguisher D selects arbitrary x1 and x′1 to get y1 and y′1; then, it puts p = b−1
1,2x1 and p′ = b−1

1,2x′1
to get c and c′. If the event occurs, then output is 1, otherwise 0.

Event =
{

c⊕ c′ = b2,3.y1 ⊕ b2,3. y′1 i f b2,2.x1 = 0
c⊕ c′ = b2,3.y1 ⊕ b2,3. y′1 ⊕ x1 ⊕ x1

′ i f b2,2.x1 , 0

The success probability of D is 1 when interacts with 1− 2−n. Similar is the case for b2,1 = 0.

• When b2,2 = 0.

In this case, there exists a distinguisher D, distinguishing the real world oracle
(
E±k , E±

)
from

the ideal world oracle (π±, E±) with some probability. The distinguisher D makes 2n/2 queries

and operates as follows. For j = 1, . . . , 2n/2, the distinguisher D selects arbitrary p(j) to get c(j).

If c(j) , c(j′) for all queries and its indices j , j′, then output 1, otherwise output 0.
At the end of type 1 instances, we can conclude that the plaintext added in the first XOR operation

and the output value after the first invocation of block cipher are included in second block cipher
invocation as a key that is a plaintext dependent variable, so the advantage of the adversary is at most
around birthday bound.

3.1.2. Type 2 Instances

Following the construction limitations, set b3,5 = 1. The plaintext p should be involved in exactly
one XOR operation, so, b1,2 = 0 and b3,2 = 0. We set b2,3 = 1, that is, the first block cipher invocation,
and thus, we set b3,4 = 1, that is, second block cipher invocation. It also shows that x1 and y1 are not
plaintext dependent variables. All of these simplified constructions of type 1 are depicted in Figure 4.
Here, we examined the type 2 instances. For these instances, we computed ciphertext as follows.

c = E(a2,1.k⊕ b3,3.y1, x2) ⊕ b3,1.k⊕ b3,3.y1

Symmetry 2019, 11, x FOR PEER REVIEW 7 of 14

is 1; otherwise, it is 0. The success probability of 𝐷 is 1 when interacts with 1 − 2−𝑛. The results are

similar for 𝑏2,3 = 0.

 When 𝑎1,1 = 0 and 𝑏1,1 = 0.

In this case, we can see the input or output of 𝐸 is independent of the key. When 𝑏1,2 = 1, the

distinguisher 𝐷 selects arbitrary 𝑥1 and 𝑥1
′ to get 𝑦1 and 𝑦1

′ ; then, it puts 𝑝 = 𝑏1,2
−1𝑥1 and 𝑝′ =

𝑏1,2
−1𝑥1

′ to get 𝑐 and 𝑐′. If the event occurs, then output is 1, otherwise 0.

𝐸𝑣𝑒𝑛𝑡 = {
𝑐 ⊕ 𝑐′ = 𝑏2,3. 𝑦1 ⊕ 𝑏2,3. 𝑦1

′ 𝑖𝑓 𝑏2,2. 𝑥1 = 0

𝑐 ⊕ 𝑐′ = 𝑏2,3. 𝑦1 ⊕ 𝑏2,3. 𝑦1
′ ⊕ 𝑥1 ⊕ 𝑥1

′ 𝑖𝑓 𝑏2,2. 𝑥1 ≠ 0

The success probability of 𝐷 is 1 when interacts with 1 − 2−𝑛. Similar is the case for 𝑏2,1 = 0.

 When 𝑏2,2 = 0.

In this case, there exists a distinguisher 𝐷, distinguishing the real world oracle (𝐸𝑘
±, 𝐸±) from

the ideal world oracle (𝜋±, 𝐸±) with some probability. The distinguisher 𝐷 makes 2𝑛/2 queries

and operates as follows. For 𝑗 = 1, … , 2𝑛/2, the distinguisher 𝐷 selects arbitrary 𝑝(𝑗) to get 𝑐(𝑗). If

𝑐(𝑗) ≠ 𝑐(𝑗′) for all queries and its indices 𝑗 ≠ 𝑗′, then output 1, otherwise output 0.

At the end of type 1 instances, we can conclude that the plaintext added in the first 𝑋𝑂𝑅

operation and the output value after the first invocation of block cipher are included in second block

cipher invocation as a key that is a plaintext dependent variable, so the advantage of the adversary is

at most around birthday bound.

3.1.2. Type 2 Instances

Following the construction limitations, set 𝑏3,5 = 1 . The plaintext 𝑝 should be involved in

exactly one 𝑋𝑂𝑅 operation, so, 𝑏1,2 = 0 and 𝑏3,2 = 0. We set 𝑏2,3 = 1, that is, the first block cipher

invocation, and thus, we set 𝑏3,4 = 1, that is, second block cipher invocation. It also shows that 𝑥1

and 𝑦1 are not plaintext dependent variables. All of these simplified constructions of type 1 are

depicted in Figure 4. Here, we examined the type 2 instances. For these instances, we computed

ciphertext as follows.

𝑐 = 𝐸(𝑎2,1. 𝑘 ⊕ 𝑏3,3. 𝑦1, 𝑥2) ⊕ 𝑏3,1. 𝑘 ⊕ 𝑏3,3. 𝑦1

The first block cipher invocation is 𝑦1 = 𝐸(𝑎1,1. 𝑘, 𝑏1,1. 𝑘). Throughout all the instances of type 2,

we call 𝑦1 as a subkey that is obtained from the secret key 𝑘 for those instances with (𝑎1,1, 𝑏1,1) ≠

(0,0). However, the computation from 𝑝 to 𝑥2 is 𝑥2 = 𝑝 ⊕ 𝑏2,1. 𝑘 ⊕ 𝑏2,3. 𝑦1, and 𝛥𝑥2 = 𝛥𝑝 always

holds and 𝛥𝑦2 = 𝛥𝑐, respectively. Moreover, for any plaintext and ciphertext pair (𝑝, 𝑐) and (𝑝′, 𝑐′),

the adversary knows the internal variable differences 𝛥𝑥2 and 𝛥𝑦2 . Therefore, according to the

above constraint, we can find some conditions on the type 2 instances to achieve 𝐵𝐵𝐵.

Figure 4. 𝔼[2]: Type 2 Construction.

 When (𝑎1,1, 𝑏1,1) ≠ (0,0).

If (𝑎1,1, 𝑏1,1) = (0,0), then it means 𝑦1 = 𝐸(0,0). Adversary makes a query (0,0) to 𝐸(·,·) to get

𝑦1, and the first block cipher invocation kicks off. Then, the instances are based on only a single block

cipher invocation in the adversary view. As we discussed in the previous sections, when 𝑠 < 2, the

construction achieves security up to birthday bound.

𝐸 ⊕

𝐸 ⊕

𝑏1,1. 𝑘

𝑧1

𝑏2,1. 𝑘 𝑎2,1. 𝑘 ⊕ 𝑎2,2. 𝑦1 𝑏3,1. 𝑘

𝑏3,3. 𝑦1

𝑐

𝑎1,1. 𝑘

𝑎1,1. 𝑘

𝑏2,2. 𝑝

𝑏2,3. 𝑦1

𝑎1,1. 𝑘

𝑏3,4. 𝑦2

𝑎1,1. 𝑘

𝑥2

Figure 4. E[2] : Type 2 Construction.

The first block cipher invocation is y1 = E(a1,1.k, b1,1.k). Throughout all the instances of type 2,

we call y1 as a subkey that is obtained from the secret key k for those instances with (a1,1, b1,1) , (0, 0).

Symmetry 2019, 11, 1485 8 of 15

However, the computation from p to x2 is x2 = p ⊕ b2,1.k ⊕ b2,3.y1, and ∆x2 = ∆p always holds
and ∆y2 = ∆c, respectively. Moreover, for any plaintext and ciphertext pair (p, c) and (p′, c′),
the adversary knows the internal variable differences ∆x2 and ∆y2. Therefore, according to the above
constraint, we can find some conditions on the type 2 instances to achieve BBB.

• When (a1,1, b1,1) , (0, 0).

If (a1,1, b1,1) = (0, 0), then it means y1 = E(0, 0). Adversary makes a query (0, 0) to E(·, ·) to get
y1, and the first block cipher invocation kicks off. Then, the instances are based on only a single
block cipher invocation in the adversary view. As we discussed in the previous sections, when s < 2,
the construction achieves security up to birthday bound.

• When (a2,1, a2,2) , (0, 0).

If (a2,1, a2,2) = (0, 0), then adversary regards b2,1.k ⊕ b2,3.y1 and b3,1.k ⊕ b3,3.y1. So, the instance
gives essentially one step of [42].

• When (b2,1, b2,3) , (0, 0).

If (b2,1, b2,3) = (0, 0), then p = x2, i.e., the adversary knows and can control the x2 value.

A distinguisher D is launched and fixes two distinct p and p′. The distinguisher D queries to E[2]k(·, ·)
and gets ciphertext c and c′ and stores (c⊕ c′), respectively. The D makes a query for E(·, ·) and receives
ω and ώ, respectively, and matches ω⊕ ώ to stored c⊕ c′. The distinguisher D recovers a2,1.k⊕ a2,2.y1.
For any plaintext-ciphertext pair (p, c) and (p′, c′), the distinguisher D can compute z (such that
a2,1.k ⊕ a2,2.y1 = z) and z′ and query (z, p) and (z′, p′) to E(·, ·), recovering y2 and y′2, respectively.
So, the output of distinguisher D is 1 if c ⊕ c′ = y2 ⊕ y′2, otherwise, compute 0. When interacting
with E[2], then the output of distinguisher D is 1 until it recovers a2,1.k ⊕ a2,2.y1. Thus, the success
probability is 1− (1− 2−n)2n

.

• When (b3,1, b3,3) , (0, 0).

This has a similar analysis which is presented above, where the adversary knows and has control
over the value of y2 and he fixes the ciphertext c and c′ and queries to E[2]−1

k (·, ·).

• When (b2,1, b2,3) , (a2,1, a2,2).

If (b2,1, b2,3) = (a2,1, a2,2), it has (b2,1.k⊕ b2,3.y1) = (a2,1.k ⊕ a2,2.y1), which is denoted by g
and x2 ⊕ z2 = g⊕ p⊕ g = p. Thus, the adversary knows and can control x2 ⊕ z. A distinguisher D is

launched and gives queries to E[2]k(·, ·) and receives c and c′ and stores (c⊕ c′), respectively. Moreover,

D sends distinct queries to E(·, ·) and receives ω and ώ, respectively, and stores (ω ⊕ ώ). Then, he

matches (ω⊕ ώ) and (c⊕ c′). The D can compute x2 and z for any plaintext-ciphertext and receive y2

from E(·, ·). Moreover, the distinguisher D just needs to make some extra queries. Thus, the success
probability is trivially 1− (1− 2−n)2n

.

• When (b3,1, b3,3) , (a2,1, a2,2).

This is also having a similar analysis as shown above.
Putting all the above properties of type 2 instances together, we got 32 instances, denoted by

E1, E2, . . . , E32 and depicted in Figure 5. We investigated these constructions and found 2n provable
security. We used the H-Coefficient technique for proof, which is discussed in Section 4.

Symmetry 2019, 11, 1485 9 of 15

Symmetry 2019, 11, x FOR PEER REVIEW 8 of 14

 When (𝑎2,1, 𝑎2,2) ≠ (0,0).

If (𝑎2,1, 𝑎2,2) = (0,0), then adversary regards 𝑏2,1. 𝑘 ⊕ 𝑏2,3. 𝑦1 and 𝑏3,1. 𝑘 ⊕ 𝑏3,3. 𝑦1 . So, the

instance gives essentially one step of [42].

 When (𝑏2,1, 𝑏2,3) ≠ (0,0).

If (𝑏2,1, 𝑏2,3) = (0,0), then 𝑝 = 𝑥2 , i.e., the adversary knows and can control the 𝑥2 value. A

distinguisher 𝐷 is launched and fixes two distinct 𝑝 and 𝑝′. The distinguisher 𝐷 queries to 𝔼[2]𝑘(·

,·) and gets ciphertext 𝑐 and 𝑐′ and stores (𝑐 ⊕ 𝑐′), respectively. The 𝐷 makes a query for 𝐸(·,·)

and receives 𝜔 and �́�, respectively, and matches 𝜔 ⊕ 𝜔 ́ to stored 𝑐 ⊕ 𝑐′ . The distinguisher 𝐷

recovers 𝑎2,1. 𝑘 ⊕ 𝑎2,2. 𝑦1. For any plaintext-ciphertext pair (𝑝, 𝑐) and (𝑝′, 𝑐′), the distinguisher 𝐷

can compute 𝑧 (such that 𝑎2,1. 𝑘 ⊕ 𝑎2,2. 𝑦1 = 𝑧) and 𝑧′ and query (𝑧, 𝑝) and (𝑧′, 𝑝′) to 𝐸(·,·),

recovering 𝑦2 and 𝑦2
′ , respectively. So, the output of distinguisher 𝐷 is 1 if 𝑐 ⊕ 𝑐′ = 𝑦2 ⊕ 𝑦2

′ ,

otherwise, compute 0. When interacting with 𝔼[2], then the output of distinguisher 𝐷 is 1 until it

recovers 𝑎2,1. 𝑘 ⊕ 𝑎2,2. 𝑦1. Thus, the success probability is 1 − (1 − 2−𝑛)2𝑛
.

 When (𝑏3,1, 𝑏3,3) ≠ (0,0).

This has a similar analysis which is presented above, where the adversary knows and has control

over the value of 𝑦2 and he fixes the ciphertext 𝑐 and 𝑐′ and queries to 𝔼[2]𝑘
−1(·,·).

 When (𝑏2,1, 𝑏2,3) ≠ (𝑎2,1, 𝑎2,2).

If (𝑏2,1, 𝑏2,3) = (𝑎2,1, 𝑎2,2), it has (𝑏2,1. 𝑘 ⊕ 𝑏2,3. 𝑦1) = (𝑎2,1. 𝑘 ⊕ 𝑎2,2. 𝑦1), which is denoted by 𝑔

and 𝑥2 ⊕ 𝑧2 = 𝑔 ⊕ 𝑝 ⊕ 𝑔 = 𝑝. Thus, the adversary knows and can control 𝑥2 ⊕ 𝑧. A distinguisher

𝐷 is launched and gives queries to 𝔼[2]𝑘(·,·) and receives 𝑐 and 𝑐′ and stores (𝑐 ⊕ 𝑐′),

respectively. Moreover, 𝐷 sends distinct queries to 𝐸(·,·) and receives 𝜔 and 𝜔,́ respectively, and

stores (𝜔 ⊕ 𝜔)́ . Then, he matches (𝜔 ⊕ 𝜔)́ and (𝑐 ⊕ 𝑐′). The 𝐷 can compute 𝑥2 and 𝑧 for any

plaintext-ciphertext and receive 𝑦2 from 𝐸(·,·). Moreover, the distinguisher 𝐷 just needs to make

some extra queries. Thus, the success probability is trivially 1 − (1 − 2−𝑛)2𝑛
.

 When (𝑏3,1, 𝑏3,3) ≠ (𝑎2,1, 𝑎2,2).

This is also having a similar analysis as shown above.

Putting all the above properties of type 2 instances together, we got 32 instances, denoted by

𝐸1, 𝐸2, … , 𝐸32 and depicted in Figure 5. We investigated these constructions and found 2𝑛 provable

security. We used the H-Coefficient technique for proof, which is discussed in Section 4.

 𝑦

0

𝑧1

𝑝 𝑘

𝑐

𝑘

𝑎1,1. 𝑘

𝑘

𝑦

𝐸

𝑬𝟏

𝐸 0

𝑧1

𝑝 𝑘 ⊕ 𝑦

𝑐

𝑘

𝑎1,1. 𝑘

𝑦

𝑦

𝐸

𝑬𝟐

𝐸

0

𝑧1

𝑝 𝑘 ⊕ 𝑦

𝑐

𝑘

𝑎1,1. 𝑘

𝑘

𝑦

𝐸

𝑬𝟑

𝐸 0

𝑧1

𝑘 𝑦

𝑐

𝑘

𝑎1,1. 𝑘

𝑘

𝑦

𝑬𝟒

𝐸 𝐸
𝑝

0

𝑧1

𝑘 𝑦

𝑐

𝑘

𝑎1,1. 𝑘

𝑘 ⊕ 𝑦

𝑦

𝑬𝟓

𝐸 𝐸
𝑝

0

𝑧1

𝑘 𝑘 ⊕ 𝑦

𝑐

𝑘

𝑎1,1. 𝑘

𝑦

𝑦

𝑬𝟔

𝐸 𝐸
𝑝

Figure 5. Cont.

Symmetry 2019, 11, 1485 10 of 15

Symmetry 2019, 11, x FOR PEER REVIEW 10 of 14

Figure 5. The 𝐸1, 𝐸2, … , 𝑎𝑛𝑑 𝐸32 efficient construction: the internal variable 𝑦 is referred to as a

subkey for these constructions.

3.1.3. Type 3 Instances

When 𝑝 is 𝑋𝑂𝑅 to compute 𝑐, then 𝑏3,2. 𝑝 = 1, 𝑏1,2. 𝑝 = 0, and 𝑏2,2. 𝑝 = 0. The constructions of

type 3 are depicted in Figure 6. In this construction, it could be seen that 𝑝 and 𝑐 are linearly related,

and distinguisher 𝐷 can distinguish by only two queries to 𝔼[2]𝑘(·,·) with distinct plaintext 𝑝 and

𝑝 ⊕ 𝛥, verifying 𝛥𝑐 = 𝛥. Hence, the discussion of type 3 instances is omitted here.

Figure 6. 𝔼[2]: Type 3 Construction.

4. Security Proof

 𝑦

𝑘

𝑧1

𝑝 ⊕ 𝑘 𝑦

𝑐

0

𝑎1,1. 𝑘

𝑘

𝑦

𝐸

𝑬𝟐𝟑

𝐸 𝑘

𝑧1

𝑝 ⊕ 𝑘 𝑦

𝑐

0

𝑎1,1. 𝑘

𝑘

𝑦

𝐸

𝑬𝟐𝟒

𝐸

𝑘

𝑧1

𝑘 𝑘 ⊕ 𝑦

𝑐

0

𝑎1,1. 𝑘

𝑘

𝑦

𝑬𝟐𝟓

𝐸 𝐸
𝑝

𝑘

𝑧1

𝑘 𝑘 ⊕ 𝑦

𝑐

0

𝑎1,1. 𝑘

𝑦

𝑦

𝑬𝟐𝟔

𝐸 𝐸
𝑝

𝑘

𝑧1

𝑘 𝑦

𝑐

0

𝑎1,1. 𝑘

𝑘 ⊕ 𝑦

𝑦

𝑬𝟐𝟕

𝐸 𝐸
𝑝

𝑘

𝑧1

𝑘 𝑦

𝑐

0

𝑎1,1. 𝑘

𝑘

𝑦

𝑬𝟐𝟖

𝐸 𝐸
𝑝

𝑘

𝑧1

𝑝 𝑘 ⊕ 𝑦

𝑐

0

𝑎1,1. 𝑘

𝑦

𝑦

𝐸

𝑬𝟐𝟗

𝐸 𝑘

𝑧1

𝑝 𝑘 ⊕ 𝑦

𝑐

0

𝑎1,1. 𝑘

𝑘

𝑦

𝐸

𝑬𝟑𝟎

𝐸

𝑘

𝑧1

𝑝 𝑘

𝑐

0

𝑎1,1. 𝑘

𝑦

𝑦

𝐸

𝑬𝟑𝟏

𝐸

 𝑦

𝑘

𝑧1

𝑝 𝑦

𝑐

0

𝑎1,1. 𝑘

𝑘

𝑦

𝐸

𝑬𝟑𝟐

𝐸

𝐸 ⊕

𝐸 ⊕

𝑏1,1. 𝑘

𝑧1

𝑏2,1. 𝑘 𝑎2,1. 𝑘 ⊕ 𝑎2,2. 𝑦1 𝑏3,1. 𝑘

𝑏3,2. 𝑝

𝑐

𝑎1,1. 𝑘

𝑎1,1. 𝑘
𝑏2,3. 𝑦1

𝑎1,1. 𝑘

𝑏3,4. 𝑦2𝑎1,1. 𝑘

𝑥2

Figure 5. The E1, E2, . . . , and E32 efficient construction: the internal variable y is referred to as a subkey
for these constructions.

Symmetry 2019, 11, 1485 11 of 15

3.1.3. Type 3 Instances

When p is XOR to compute c, then b3,2.p = 1, b1,2.p = 0, and b2,2.p = 0. The constructions of
type 3 are depicted in Figure 6. In this construction, it could be seen that p and c are linearly related,
and distinguisher D can distinguish by only two queries to E[2]k(·, ·) with distinct plaintext p and p⊕∆,
verifying ∆c = ∆. Hence, the discussion of type 3 instances is omitted here.

Symmetry 2019, 11, x FOR PEER REVIEW 10 of 14

Figure 5. The 𝐸1, 𝐸2, … , 𝑎𝑛𝑑 𝐸32 efficient construction: the internal variable 𝑦 is referred to as a

subkey for these constructions.

3.1.3. Type 3 Instances

When 𝑝 is 𝑋𝑂𝑅 to compute 𝑐, then 𝑏3,2. 𝑝 = 1, 𝑏1,2. 𝑝 = 0, and 𝑏2,2. 𝑝 = 0. The constructions of

type 3 are depicted in Figure 6. In this construction, it could be seen that 𝑝 and 𝑐 are linearly related,

and distinguisher 𝐷 can distinguish by only two queries to 𝔼[2]𝑘(·,·) with distinct plaintext 𝑝 and

𝑝 ⊕ 𝛥, verifying 𝛥𝑐 = 𝛥. Hence, the discussion of type 3 instances is omitted here.

Figure 6. 𝔼[2]: Type 3 Construction.

4. Security Proof

 𝑦

𝑘

𝑧1

𝑝 ⊕ 𝑘 𝑦

𝑐

0

𝑎1,1. 𝑘

𝑘

𝑦

𝐸

𝑬𝟐𝟑

𝐸 𝑘

𝑧1

𝑝 ⊕ 𝑘 𝑦

𝑐

0

𝑎1,1. 𝑘

𝑘

𝑦

𝐸

𝑬𝟐𝟒

𝐸

𝑘

𝑧1

𝑘 𝑘 ⊕ 𝑦

𝑐

0

𝑎1,1. 𝑘

𝑘

𝑦

𝑬𝟐𝟓

𝐸 𝐸
𝑝

𝑘

𝑧1

𝑘 𝑘 ⊕ 𝑦

𝑐

0

𝑎1,1. 𝑘

𝑦

𝑦

𝑬𝟐𝟔

𝐸 𝐸
𝑝

𝑘

𝑧1

𝑘 𝑦

𝑐

0

𝑎1,1. 𝑘

𝑘 ⊕ 𝑦

𝑦

𝑬𝟐𝟕

𝐸 𝐸
𝑝

𝑘

𝑧1

𝑘 𝑦

𝑐

0

𝑎1,1. 𝑘

𝑘

𝑦

𝑬𝟐𝟖

𝐸 𝐸
𝑝

𝑘

𝑧1

𝑝 𝑘 ⊕ 𝑦

𝑐

0

𝑎1,1. 𝑘

𝑦

𝑦

𝐸

𝑬𝟐𝟗

𝐸 𝑘

𝑧1

𝑝 𝑘 ⊕ 𝑦

𝑐

0

𝑎1,1. 𝑘

𝑘

𝑦

𝐸

𝑬𝟑𝟎

𝐸

𝑘

𝑧1

𝑝 𝑘

𝑐

0

𝑎1,1. 𝑘

𝑦

𝑦

𝐸

𝑬𝟑𝟏

𝐸

 𝑦

𝑘

𝑧1

𝑝 𝑦

𝑐

0

𝑎1,1. 𝑘

𝑘

𝑦

𝐸

𝑬𝟑𝟐

𝐸

𝐸 ⊕

𝐸 ⊕

𝑏1,1. 𝑘

𝑧1

𝑏2,1. 𝑘 𝑎2,1. 𝑘 ⊕ 𝑎2,2. 𝑦1 𝑏3,1. 𝑘

𝑏3,2. 𝑝

𝑐

𝑎1,1. 𝑘

𝑎1,1. 𝑘
𝑏2,3. 𝑦1

𝑎1,1. 𝑘

𝑏3,4. 𝑦2𝑎1,1. 𝑘

𝑥2

Figure 6. E[2] : Type 3 Construction.

4. Security Proof

Let E1, E2, . . . , E32 is any instance, and E is an underlying block cipher. Let there be any

distinguisher D that has access to oracles O1 and O2, either E±k (·, ·), E±(·, ·) with k $
← K or π±(·, ·), E±(·, ·).

The distinguisher D is computationally unbounded and deterministic, making q queries when
interacting with O1 and O2. We defined distinguisher queries to O1 and O2 as q1 and q2, respectively:
q = q1 + q2 and do not contain duplicate queries. When distinguisher D interacts with O1 and O2,

the queries response are v1 =
{
(p1 , c1), . . . ,

(
pq1 , cq1

)}
and v2 =

{
(u1, w1), . . . ,

(
uq2 , wq2

)}
, respectively.

The v is the view denoting the transcripts, and in the end, the distinguisher D obtains a view v = (v1, v2).
The distinguisher D, based on the v, computes its decision bit. Accordingly, the decision bit probability
distribution of distinguisher D relies on the probability distribution of v. The X and Y are the probability
distribution on v when interacts with (E±k (·, ·), E±(·, ·)) and (π±(·, ·), E±(·, ·)), respectively. We used V

as an attainable view when D interacts with O1, which is V =
{
v
∣∣∣Pr[Y = v] >0

}
and V = Vgood ∪Vbad.

The main goal of the proof is to disclose the subkey y and secret key k after interacting with O1 and O2.

In (π±(·, ·), E±(·, ·)) as (O1,O2), we chose k $
← K and got corresponding subkey y by querying E±.

The distinguisher D can easily derive query response (u, w) of E±(·, ·) invocations for each query

response (pi, ci) in view v1. The query responses of a block cipher E for each view v = (v1, v2) ∈ V
is divided into three tables. The first one consists of a single query response of block cipher E:

T1 =
{(
(u1

1, w1
1 = y

)}
. The second table consists of the other queries’ responses of block cipher E derived

from v1: T2 =
{(
(u2

1, w2
1

)
, . . . , u2

q2
, w2

q2

}
. The last table consists of all queries’ responses from v2 : T3:

T3 =
{(
(u3

1, w3
1

)
, . . . , u3

q2
, w3

q2

}
.

4.1. Bad Events

v ∈ Vbad if there are following queries: T1 =
{(
(u1

1, w1
1 = y

)}
, T2 =

{(
(u2

1, w2
1

)
, . . . , u2

q2
, w2

q2

}
,

and T3 =
{(
(u3

1, w3
1

)
, . . . , u3

q2
, w3

q2

}
such that the following condition holds: there exists (ui

j, wi
j) in table

Ti and (ui′
j′ , wi′

j′) in table Ti′ such that (ui
j, wi

j) = (ui′
j′ , wi′

j′) where i , i′, then v causes bad event.

4.2. Pr[Y ∈ Vbad]

According to our construction, we gave here the exact definition of Vbad, which also ensures
the Vgood. The Vgood does not cause bad event. Here, we defined the Vbad of E1 only due to the limited
space. At least, one event defines the Vbad if it exists.

Symmetry 2019, 11, 1485 12 of 15

(a) (pi, ci) ∈ v1 such that pi = y;
(b) (pi, ci) ∈ v1 such that ci = k;

(c) (pi, ci) ∈ v1 and
(
u j, w j

)
∈ v2 such that (u j = pi ⊕ y)

(d) (pi, ci) ∈ v1 and
(
u j, w j

)
∈ v2 such that (w j = ci ⊕ y⊕ k)

The subkey y and secret k are uniformly selected at random from a set of size of at least 2n
− q− 1.

We get
Pr[(a)] ≤ q/2n

− q− 1;

Pr[(b)] ≤ q/2n
− q− 1;

Pr[(c)] ≤ q/2n
− q− 1;

Pr[(d)] ≤ q/2n
− q− 1;

Thus, we get
Pr[Y ∈ Vbad] ≤ Pr[(a)] + Pr[(b)] + Pr[(c)] + Pr[(d)]

Let q < 2n−1 and using above values, we get

Pr[Y ∈ Vbad] ≤
4q

2n−1

4.3. Ratio for Vgood

First of all, Pr[X = v]. The X is a random variable that is defined on the probability space of all
possible underlying block cipher E and all possible secret key k. The probability space of X is denoted

as allX. Correspondingly, the |allX| is equal to 2n (2n!) 2n
. In allX, an element π getting along with v is

taken, if π gives exactly the same responses for all queries. The compX(v) is defined as all the elements
in allX compatible with v.

Pr[X = v] =

∣∣∣compX(v)
∣∣∣

allX
Similarly, Y is defined on the probability space of E1, underlying block cipher E, and key k.

On defining compX(v) and allY, respectively, we have

Pr[Y = v] =

∣∣∣compY(v)
∣∣∣

allY

allY is 2n (2n!) 2n
(2n!) 2n

, that is the number of keys times, the number of block ciphers. We next

computed
∣∣∣compX(v)

∣∣∣ and
∣∣∣compY(v)

∣∣∣. We knew that the view v contains the key k value, that is,

at the end of the interaction, it is disclosed to distinguisher D. A set of input outputs of underlying
block cipher E are derived and separately stored in tables T1, T2, and T3. The number of input-output
of E with the key value i is denoted as αi and βi in T2 and T3, respectively, where 0 ≤ i ≤ 2n

− 1. The γ i
denotes the number of queries to O1 with key value. There is no collision between any two tables,
so v is good. Secondly, the distinguisher D never makes duplicate queries. Therefore, all the inputs

and outputs of E in T1, T2, and T3 are distinct, showing that γ i = αi. The query response (u1
1, w1

1) of E
in T1 has u1

1 = k or u1
1 = 0 (E1 to E20 have u1

1 = k and others u1
1 = 0). On assuming u1

1 = k, we got

∣∣∣compX(v)
∣∣∣ = (2n

− αk − βk − 1)!
k−1∏
i=0

(2n
− αi − βi)!

2n
−1∏

i=k + 1

(2n
− αi − βi)!

Symmetry 2019, 11, 1485 13 of 15

∣∣∣compY(v)
∣∣∣ = 2n

−1∏
i=0

(
2n
− γ i

)
!

(2n
− βk − 1)!

k−1∏
i=0

(2n
− βi)!

2n
−1∏

i=k + 1

(2n
− βi)!

=

2n
−1∏

i=0

(2n
− αi)!

(2n
− βk − 1)!

k−1∏
i=0

(2n
− βi)!

2n
−1∏

i=k + 1

(2n
− βi)!

= (2n

− αk)!(2
n
− βk − 1)!

k−1∏
i=0

(2n
− αi)!(2n

− βi)!
2n
−1∏

i=k + 1

(2n
− αi)!(2n

− βi)!

From (2n
− α)!(2n

− β)! ≤ (2n
− α− β)!(2n)!, we have∣∣∣compY(v)

∣∣∣ ≤ (2n
− αk − βk − 1)! (2n!)2n

We can compute

∣∣∣compX(v)
∣∣∣∣∣∣compY(v)
∣∣∣ ≥

(2n
− αk − βk − 1)!

k−1∏
i=0

(2n
− αi − βi)!

2n
−1∏

i=k + 1
(2n
− αi − βi)!

(2n − αk − βk − 1)! (2n!)2n k−1∏
i=0

(2n − αi − βi)!
2n−1∏

i=k + 1
(2n − αi − βi)!

=
1

(2n!)2n

Finally, we can compute
Pr[X = v]
Pr[X = v]

=

∣∣∣compX(v)
∣∣∣∣∣∣compY(v)
∣∣∣ × allY

allX

≥
1

(2n!)2n ×
2n(2n!)2n

(2n!)2n

2n(2n!)2n = 1

Thus, it gives a ratio for Vgood = 0
Combining both 4.2 and 4.3,

Advprp
E1 (q) ≤

4q
2n−1

Author Contributions: L.W. conceptualized the idea, Y.N. performed analysis, and both the authors wrote
manuscript in coordination with each other.

Funding: National Nature Science Foundation of China, Youth Project.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Iwata, T. New Blockcipher Modes of Operation with Beyond the Birthday Bound Security. In International
Workshop on Fast Software Encryption; Springer: Berlin/Heidelberg, Germany, 2006; pp. 310–327.

2. Patarin, J. Mirror theory and cryptography. Appl. Algebra Eng. Commun. Comput. 2017, 28, 321–338.
[CrossRef]

3. Iwata, T.; Mennink, B.; Vizár, D. Cenc is optimally secure. IACR Cryptol. ePrint Arch. 2016, 2016, 1087.
4. Bellare, M.; Desai, A.; Jokipii, E.; Rogaway, P. A concrete security treatment of symmetric encryption.

In Proceedings of the 38th Annual Symposium on Foundations of Computer Science, Miami Beach, FL, USA,
20–22 October 1997; pp. 394–403.

5. Bellare, M.; Guérin, R.; Rogaway, P. Xor macs: New methods for message authentication using finite
pseudorandom functions. In Annual International Cryptology Conference; Springer: Berlin/Heidelberg,
Germany, 1995; pp. 15–28.

6. Bernstein, D.J. How to stretch random functions: The security of protected counter sums. J. Cryptol. 1999,
12, 185–192. [CrossRef]

http://dx.doi.org/10.1007/s00200-017-0326-y
http://dx.doi.org/10.1007/s001459900051

Symmetry 2019, 11, 1485 14 of 15

7. McGrew, D.A.; Viega, J. The security and performance of the galois/counter mode (gcm) of operation.
In International Conference on Cryptology in India; Springer: Berlin/Heidelberg, Germany, 2004; pp. 343–355.

8. Patarin, J. A Proof of Security in O(2
n

) for the Xor of Two Random Permutations. In International Conference
on Information Theoretic Security; Springer: Berlin/Heidelberg, Germany, 2008; pp. 232–248.

9. Patarin, J. Luby-rackoff: 7 rounds are enough for 2n(1−ε) security. In Annual International Cryptology Conference;
Springer: Berlin/Heidelberg, Germany, 2003; pp. 513–529.

10. Patarin, J. On linear systems of equations with distinct variables and small block size. In International
Conference on Information Security and Cryptology; Springer: Berlin/Heidelberg, Germany, 2005; pp. 299–321.

11. Patarin, J. Introduction to mirror theory: Analysis of systems of linear equalities and linear non equalities for
cryptography. IACR Cryptol. ePrint Arch. 2010, 2010, 287.

12. Daemen, J.; Rijmen, V. Rijndael/aes. Encycl. Cryptogr. Secur. 2005, 520–524. [CrossRef]
13. Bogdanov, A.; Knudsen, L.R.; Leander, G.; Paar, C.; Poschmann, A.; Robshaw, M.J.; Seurin, Y.; Vikkelsoe, C.

Present: An ultra-lightweight block cipher. In International Workshop on Cryptographic Hardware and Embedded
Systems; Springer: Berlin/Heidelberg, Germany, 2007; pp. 450–466.

14. De Canniere, C.; Dunkelman, O.; Knežević, M. Katan and ktantan—A family of small and efficient
hardware-oriented block ciphers. In International Workshop on Cryptographic Hardware and Embedded Systems;
Springer: Berlin/Heidelberg, Germany, 2009; pp. 272–288.

15. Guo, J.; Peyrin, T.; Poschmann, A.; Robshaw, M. The led block cipher. In International Workshop on Cryptographic
Hardware and Embedded Systems; Springer: Berlin/Heidelberg, Germany, 2011; pp. 326–341.

16. Impagliazzo, R.; Rudich, S. Limits on the provable consequences of one-way permutations (invited talk).
In Proceedings on Advances in Cryptology; Springer: Berlin/Heidelberg, Germany, 1990; pp. 8–26.

17. Hall, C.; Wagner, D.; Kelsey, J.; Schneier, B. Building prfs from prps. In Annual International Cryptology
Conference; Springer: Berlin/Heidelberg, Germany, 1998; pp. 370–389.

18. Bellare, M.; Rogaway, P. The security of triple encryption and a framework for code-based game-playing
proofs. In Annual International Conference on the Theory and Applications of Cryptographic Techniques; Springer:
Berlin/Heidelberg, Germany, 2006; pp. 409–426.

19. Chang, D.; Nandi, M. A short proof of the prp/prf switching lemma. IACR Cryptol. ePrint Arch. 2008, 2008, 78.
20. Bellare, M.; Krovetz, T.; Rogaway, P. Luby-rackoff backwards: Increasing security by making block ciphers

non-invertible. In International Conference on the Theory and Applications of Cryptographic Techniques; Springer:
Berlin/Heidelberg, Germany, 1998; pp. 266–280.

21. Lucks, S. The sum of prps is a secure prf. In International Conference on the Theory and Applications of
Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 2000; pp. 470–484.

22. Lim, C.H.; Korkishko, T. Mcrypton–a lightweight block cipher for security of low-cost rfid tags and sensors.
In International Workshop on Information Security Applications; Springer: Berlin/Heidelberg, Germany, 2005;
pp. 243–258.

23. Wu, W.; Zhang, L. Lblock: A Lightweight Block Cipher; Springer: Berlin/Heidelberg, Germany, 2011; pp. 327–344.
24. Borghoff, J.; Canteaut, A.; Güneysu, T.; Kavun, E.B.; Knezevic, M.; Knudsen, L.R.; Leander, G.; Nikov, V.;

Paar, C.; Rechberger, C.; et al. Prince—A Low-Latency Block Cipher for Pervasive Computing App. Lications;
Springer: Berlin/Heidelberg, Germany, 2012; pp. 208–225.

25. Beaulieu, R.; Treatman-Clark, S.; Shors, D.; Weeks, B.; Smith, J.; Wingers, L. The simon and speck lightweight
block ciphers. In Proceedings of the 52nd ACM/EDAC/IEEE Design Automation Conference (DAC),
San Francisco, CA, USA, 8–12 June 2015; pp. 1–6.

26. Beierle, C.; Jean, J.; Kölbl, S.; Leander, G.; Moradi, A.; Peyrin, T.; Sasaki, Y.; Sasdrich, P.; Sim, S.M. The skinny
family of block ciphers and its low-latency variant mantis. In Annual International Cryptology Conference;
Springer: Berlin/Heidelberg, Germany, 2016; pp. 123–153.

27. Bellare, M.; Impagliazzo, R. A tool for obtaining tighter security analyses of pseudorandom function based
constructions, with app. lications to prp to prf conversion. IACR Cryptol. ePrint Arch. 1999, 1999, 24.

28. Patarin, J. Security in O(2n) for the xor of two random permutations\-proof with the standard h technique.
IACR Cryptol. ePrint Arch. 2013, 2013, 368.

29. Cogliati, B.; Lampe, R.; Patarin, J. The indistinguishability of the xor of $$ k $$ permutations. In International
Workshop on Fast Software Encryption; Springer: Berlin/Heidelberg, Germany, 2014; pp. 285–302.

30. Dai, W.; Hoang, V.T.; Tessaro, S. Information-theoretic indistinguishability via the chi-squared method.
In Annual International Cryptology Conference; Springer: Berlin/Heidelberg, Germany, 2017; pp. 497–523.

http://dx.doi.org/10.1007/0-387-23483-7_358

Symmetry 2019, 11, 1485 15 of 15

31. Bhattacharya, S.; Nandi, M. Revisiting variable output length xor pseudorandom function. IACR Trans.
Symmetric Cryptol. 2018, 2018, 314–335.

32. Yasuda, K. A new variant of pmac: Beyond the birthday bound. In Annual Cryptology Conference; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 596–609.

33. Datta, N.; Dutta, A.; Nandi, M.; Paul, G.; Zhang, L. Single key variant of PMAC_plus. IACR Trans.
Symmetric Cryptol. 2017, 2017, 268–305.

34. Naito, Y. Blockcipher-based macs: Beyond the birthday bound without message length. In International
Conference on the Theory and App.lication of Cryptology and Information Security; Springer: Berlin/Heidelberg,
Germany, 2017; pp. 446–470.

35. Gilboa, S.; Gueron, S. The advantage of truncated permutations. In International Symposium on Cyber Security
Cryptography and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2019; pp. 111–120.

36. Cogliati, B.; Seurin, Y. Ewcdm: An efficient, beyond-birthday secure, nonce-misuse resistant mac. In Annual
International Cryptology Conference; Springer: Berlin/Heidelberg, Germany, 2016; pp. 121–149.

37. Mennink, B.; Neves, S. Encrypted davies-meyer and its dual: Towards optimal security using mirror theory.
In Annual International Cryptology Conference; Springer: Berlin/Heidelberg, Germany, 2017; pp. 556–583.

38. Mennink, B.; Neves, S. Optimal prfs from blockcipher designs. IACR Trans. Symmetric Cryptol. 2017, 228–252.
39. Chen, Y.L.; Lambooij, E.; Mennink, B. How to build pseudorandom functions from public random

permutations. In Annual International Cryptology Conference; Springer: Berlin/Heidelberg, Germany, 2019;
pp. 266–293.

40. Beaulieu, R.; Shors, D.; Smith, J.; Treatman-Clark, S.; Weeks, B.; Wingers, L. Simon and speck: Block ciphers
for the internet of things. IACR Cryptol. ePrint Arch. 2015, 2015, 585.

41. Chen, S.; Steinberger, J. Tight security bounds for key-alternating ciphers. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 2014;
pp. 327–350.

42. Even, S.; Mansour, Y. A construction of a cipher from a single pseudorandom permutation. J. Cryptol. 1997,
10, 151–161. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s001459900025
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Pseudorandom Permutation and Pseudorandom Function with BBB
	Our Construction

	Preliminaries
	Notations
	Security Definition
	H-Coefficient Technique

	Construction Limitations
	E[2] Instances
	Type 1 Instances
	Type 2 Instances
	Type 3 Instances

	Security Proof
	Bad Events
	Pr[Y Vbad]
	Ratio for Vgood

	References

