Hermite–Hadamard and Fejér Inequalities for Co-Ordinated \((F, G)-\)Convex Functions on a Rectangle

Małgorzata Chudziak † and Marek Żołdak *†

College of Natural Sciences, Institute of Mathematics, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland; mchudziak@ur.edu.pl
* Correspondence: marek_z2@op.pl
† These authors contributed equally to this work.

Received: 14 November 2019; Accepted: 15 December 2019; Published: 19 December 2019

Abstract: We introduce the notion of a co-ordinated \((F, G)-\)convex function defined on an interval in \(\mathbb{R}^2\) and we prove the Hermite–Hadamard and Fejér type inequalities for such functions.

Keywords: Hermite–Hadamard inequality; Fejér inequality; approximate convexity

MSC: 26A51; 26B25

1. Introduction

The celebrated inequality states that, if \(f : [a, b] \to \mathbb{R}\) is a convex function, then
\[
f\left(\frac{a+b}{2} \right) \leq \frac{1}{b-a} \int_a^b f(x)dx \leq \frac{f(a) + f(b)}{2}.
\]
Furthermore, if \(p : [a, b] \to [0, \infty)\) is an integrable function symmetric with respect to \(\frac{a+b}{2}\), that is
\[
p(a + b - x) = p(x) \quad \text{for } x \in [a, b],
\]
then the following weighted generalization of the Hermite–Hadamard inequality is known as the Fejér inequality
\[
f\left(\frac{a+b}{2} \right) \leq \frac{1}{b-a} \int_a^b f(x)p(x)dx \leq \frac{f(a) + f(b)}{2}.
\]

Dragomir [1] established a counterpart of the Hermite–Hadamard inequality for co-ordinated convex functions, that is functions \(f : [a, b] \times [c, d] \to \mathbb{R}\) which are convex with respect to each variable separately. It has been proven in [1] that for such functions, the following inequalities hold
\[
f\left(\frac{a+b}{2}, \frac{c+d}{2} \right) \leq \frac{1}{b-a} \int_a^b f(x, \frac{c+d}{2})dx + \frac{1}{d-c} \int_c^d f\left(\frac{a+b}{2}, y \right)dy
\]
\[
\leq \frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f(x, y)dydx
\]
\[
\leq \frac{1}{4} \left[\frac{1}{b-a} \int_a^b f(x, c)dx + \frac{1}{b-a} \int_a^b f(x, d)dx + \frac{1}{d-c} \int_c^d f(a, y)dy + \frac{1}{d-c} \int_c^d f(b, y)dy \right]
\]
Refinement versions of these inequalities have been presented in [1–3].

A counterpart of the Fejér inequality for co-ordinated convex functions has been formulated by Alomari and Darus [4]. They proved that if \(p : [a, b] \times [c, d] \rightarrow [0, \infty) \) is an integrable function symmetric with respect to the lines \(x = \frac{a+b}{2} \) and \(y = \frac{c+d}{2} \), i.e.,

\[
p(a + b - x, y) = p(x, y) \quad \text{for} \quad x \in [a, b], \ y \in [c, d]
\]

and

\[
p(x, c + d - y) = p(x, y) \quad \text{for} \quad x \in [a, b], \ y \in [c, d],
\]

then for every co-ordinated convex function the following inequalities hold

\[
f\left(\frac{a + b}{2}, \ c + d \right) \leq \frac{1}{\int_d^b \int_c^d f(x, y)p(x, y)dydx} \leq \frac{f(a, c) + f(a, d) + f(b, c) + f(b, d)}{4}.
\]

In recent years, several modifications of the notion of convexity were studied by many authors (see e.g., [5–9]). The following general definition was introduced in [10].

Definition 1. Let \(F : [0, 1] \times [a, b] \times [a, b] \rightarrow \mathbb{R} \) be a continuous function. A function \(f : [a, b] \rightarrow \mathbb{R} \) is said to be convex with respect to \(F \), or briefly \(F \)-convex, provided

\[
f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y) + F(t, x, y) \quad \text{for} \quad x, y \in [a, b], \ t \in [0, 1].
\]

In particular, if \(F \) is of the form

\[
F(t, x, y) = Ct(1 - t)|x - y| \quad \text{for} \quad x, y \in [a, b], \ t \in [0, 1],
\]

where \(C \in (0, \infty) \), then any function \(f : [a, b] \rightarrow \mathbb{R} \) satisfying (3) is called approximately convex. Furthermore, if \(f : [a, b] \rightarrow \mathbb{R} \) satisfies (3) with \(F \) given by

\[
F(t, x, y) = -Ct(1 - t)(x - y)^2 \quad \text{for} \quad x, y \in [a, b], \ t \in [0, 1],
\]

where \(C \in (0, \infty) \), then it is called strongly convex with modulus \(C \). For some applications of \(F \)-convex functions in the optimization theory and in the theory of partial differential equations we refer to [11] and [12], respectively.

It should be noted here that, although a definition of the \(F \)-convex function does not require any additional properties of \(F \), it is reasonable to assume that \(F \) is symmetric, that is

\[
F(1 - t, y, x) = F(t, x, y) \quad \text{for} \quad x, y \in [a, b], \ t \in [0, 1].
\]

In fact, if \(f \) is \(F \)-convex then there exists a symmetric function \(F_s \) such that \(f \) is \(F_s \)-convex and

\[
F_s(t, x, y) \leq F(t, x, y) \quad \text{for} \quad x, y \in [a, b], \ t \in [0, 1].
\]

To find this, one could take

\[
F_s(t, x, y) := \min\{F(t, x, y), F(1 - t, y, x)\} \quad \text{for} \quad x, y \in [a, b], \ t \in [0, 1].
\]
Note that F given by (4) or (5) is symmetric. Moreover, a symmetry of F is a necessary condition for the existence of an F-affine function, i.e., a function satisfying equation

$$f(tx + (1-t)y) = tf(x) + (1-t)f(y) + F(t,x,y) \quad \text{for} \quad x,y \in [a,b], \ t \in [0,1].$$

In what follows we deal with the functions of two variables, which are F-convex with respect to each variable.

Definition 2. Let $F : [c,d] \times [0,1] \times [a,b] \times [a,b] \to \mathbb{R}$, $G : [a,b] \times [0,1] \times [c,d] \times [c,d] \to \mathbb{R}$ be continuous functions. We call a function $f : [a,b] \times [c,d] \to \mathbb{R}$ co-ordinated (F,G)-convex, provided

$$f(tx_1 + (1-t)x_2, y) \leq tf(x_1, y) + (1-t)f(x_2, y) + F(y, t, x_1, x_2),$$

$$f(x, ty_1 + (1-t)y_2) \leq tf(x, y_1) + (1-t)f(x, y_2) + G(x, t, y_1, y_2)$$

for $t \in [0,1], x_1, x_2 \in [a,b], y_1, y_2 \in [c,d], x \in [a,b], y \in [c,d]$.

Following the remark formulated above, we restrict our attention to the case where $F(y, \cdot, \cdot, \cdot)$ for $y \in [c,d]$ and $G(x, \cdot, \cdot, \cdot)$ for $x \in [a,b]$ are symmetric functions, i.e.,

$$F(y, 1-t, x_1, x_2) = F(y, t, x_1, x_2) \quad \text{for} \quad x_1, x_2 \in [a,b], \ y \in [c,d], \ t \in [0,1]$$

and

$$G(x, 1-t, y_1, y_2) = G(x, t, y_1, y_2) \quad \text{for} \quad x \in [a,b], \ y_1, y_2 \in [c,d], \ t \in [0,1],$$

respectively. This assumption will not be repeated. Our main aim is to present the Hermite–Hadamard and the Fejér type inequalities for co-ordinated (F,G)-convex functions.

2. Results

2.1. Hermite–Hadamard Type Inequalities

In this section, we prove the Hermite–Hadamard type inequalities for (F,G)-convex functions. Our proof is based on some methods used in [1,3]. We begin with the result establishing the Hermite–Hadamard type inequalities for F-convex functions. It will be useful in further considerations.

Theorem 1. Let $F : [0,1] \times [a,b] \times [a,b] \to \mathbb{R}$ be a continuous symmetric function (cf. (6)). If $f : [a,b] \to \mathbb{R}$ is an integrable F-convex function then

$$f \left(\frac{a+b}{2} \right) \leq \frac{1}{b-a} \int_a^b f(t)dt + \frac{1}{b-a} \int_a^b F \left(\frac{1}{2}, x, a+b-x \right) dx$$

and

$$\frac{1}{b-a} \int_a^b f(t)dt \leq f(a) + f(b) + \int_0^1 F(t, a, b)dt.$$ \hspace{1cm} (8)

Proof. Assume that $f : [a,b] \to \mathbb{R}$ is an integrable F-convex function. In view of (3), we obtain

$$\frac{1}{b-a} \int_a^b f(s)ds = \int_0^1 f(ta + (1-t)b)dt \leq \frac{1}{2} f(a) + \frac{1}{2} f(b) + \int_0^1 F(t, a, b)dt,$$

which gives (8). Note also that, as f is F-convex, we have

$$f \left(\frac{x+y}{2} \right) \leq \frac{f(x) + f(y)}{2} + F \left(\frac{1}{2}, x, y \right) \quad \text{for} \quad x, y \in [a,b].$$
Setting in (9) \(x = ta + (1-t)b, y = tb + (1-t)a \), where \(t \in [0,1] \), and integrating obtained in this way inequality with respect to \(t \), we obtain (7). \(\square \)

Now, we are going to formulate and prove the Hermite–Hadamard type inequalities for co-ordinated \((F,G)\)-convex functions.

Theorem 2. Assume that \(f : [a,b] \times [c,d] \rightarrow \mathbb{R} \) is an integrable co-ordinated \((F,G)\)-convex function. Then:

\[
f \left(\frac{a+b}{2}, \frac{c+d}{2} \right) \leq \frac{1}{2} \left[\frac{1}{b-a} \int_a^b f \left(\frac{c+d}{2}, \frac{x}{2}, x, a+b-x \right) dx + \frac{1}{d-c} \int_c^d f \left(\frac{a+b}{2}, y \right) dy \right] + R_1, \tag{10}
\]

where

\[
R_1 = \frac{1}{2} \left[\frac{1}{b-a} \int_a^b F \left(\frac{c+d}{2}, \frac{x}{2}, x, a+b-x \right) dx + \frac{1}{d-c} \int_c^d G \left(\frac{a+b}{2}, \frac{y}{2}, y, c+d-y \right) dy \right];
\]

\[
\frac{1}{2} \left[\frac{1}{b-a} \int_a^b f \left(\frac{c+d}{2}, \frac{x}{2}, y, c+d-y \right) dx + \frac{1}{d-c} \int_c^d f \left(\frac{a+b}{2}, y \right) dy \right] \leq \frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f(x,y)dydx + R_2, \tag{11}
\]

where

\[
R_2 = \frac{1}{2(b-a)(d-c)} \left[\int_a^b \int_c^d G \left(\frac{x}{2}, y, c+d-y \right) dydx + \int_a^b \int_c^d F \left(\frac{y}{2}, x, a+b-x \right) dydx \right];
\]

\[
\leq \frac{1}{4} \left[\frac{1}{b-a} \int_a^b f(x,c)dx + \frac{1}{b-a} \int_a^b f(x,d)dx + \frac{1}{d-c} \int_c^d f(a,y)dy + \frac{1}{d-c} \int_c^d f(b,y)dy \right] + R_3, \tag{12}
\]

where

\[
R_3 = \frac{1}{2} \left[\frac{1}{b-a} \int_a^b \int_0^1 G(x,t,c,d)dtdx + \frac{1}{d-c} \int_c^d \int_0^1 F(y,t,a,b)dtdy \right];
\]

and

\[
\frac{1}{4} \left[\frac{1}{b-a} \int_a^b f(x,c)dx + \frac{1}{b-a} \int_a^b f(x,d)dx + \frac{1}{d-c} \int_c^d f(a,y)dy + \frac{1}{d-c} \int_c^d f(b,y)dy \right]
\leq \frac{f(a,c)+f(a,d)+f(b,c)+f(b,d)}{4} + R_4, \tag{13}
\]

where

\[
R_4 = \frac{1}{4} \left[\int_0^1 F(c,t,a,b)dt + \int_0^1 F(d,t,a,b)dt + \int_0^1 G(a,t,c,d)dt + \int_0^1 G(b,t,c,d)dt \right].
\]

Proof. Note that, for every \(x \in [a,b] \), the function \(f(x,\cdot) \) is \(G(x,\cdot,\cdot,\cdot) \)-convex. Thus, applying Theorem 1, we obtain

\[
f \left(x, \frac{c+d}{2} \right) \leq \frac{1}{d-c} \int_c^d f(x,y)dy + \frac{1}{d-c} \int_c^d G \left(x, \frac{1}{2}, y, c+d-y \right) dy
\]
Adding up these inequalities, we obtain (11) and (12).

Integrating this inequality with respect to x, we find

\[\frac{1}{b-a} \int_{a}^{b} f \left(x, \frac{c+d}{2} \right) \, dx \]

\leq \frac{1}{(b-a)(d-c)} \left[\int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx + \int_{a}^{b} \int_{c}^{d} G \left(x, \frac{1}{2}, y, c+d-y \right) \, dy \, dx \right]

\leq \frac{1}{2(b-a)} \left[\int_{c}^{d} f(x,c) \, dx + \int_{a}^{b} f(x,d) \, dx \right]

+ \frac{1}{b-a} \int_{a}^{b} G(x,t,c,d) \, dt \, dx + \frac{1}{(b-a)(d-c)} \int_{c}^{d} \int_{a}^{b} G \left(x, \frac{1}{2}, y, c+d-y \right) \, dy \, dx.

Moreover, since for every $y \in [c,d]$, $f(\cdot, y)$ is $F(y, \cdot, \cdot)$-convex, using the similar arguments, we conclude that

\[\frac{1}{d-c} \int_{c}^{d} f \left(\frac{a+b}{2}, y \right) \, dy \]

\leq \frac{1}{(b-a)(d-c)} \left[\int_{c}^{d} \int_{a}^{b} f(x,y) \, dx \, dy + \int_{c}^{d} \int_{a}^{b} F \left(y, \frac{1}{2}, x, a+b-x \right) \, dx \, dy \right]

\leq \frac{1}{2(d-c)} \left[\int_{c}^{d} f(a,y) \, dy + \int_{a}^{b} f(b,y) \, dy \right]

+ \frac{1}{d-c} \int_{c}^{d} \int_{0}^{1} F(y,t,a,b) \, dt \, dy + \frac{1}{(b-a)(d-c)} \int_{c}^{d} \int_{a}^{b} G \left(y, \frac{1}{2}, x, a+b-x \right) \, dx \, dy.

Adding up these inequalities, we obtain (11) and (12).

Since $f(\cdot, c+d)$ is $F(\frac{c+d}{2}, \cdot, \cdot)$-convex and $f(\frac{a+b}{2}, \cdot)$ is $G(\frac{a+b}{2}, \cdot, \cdot)$-convex, taking into account the first inequality in Theorem 1, we have

\[f \left(\frac{a+b}{2}, \frac{c+d}{2} \right) \leq \frac{1}{b-a} \int_{a}^{b} f \left(x, \frac{c+d}{2} \right) \, dx + \frac{1}{b-a} \int_{a}^{b} F \left(\frac{c+d}{2}, \frac{1}{2}, x, a+b-x \right) \, dx \]

and

\[f \left(\frac{a+b}{2}, \frac{c+d}{2} \right) \leq \frac{1}{d-c} \int_{c}^{d} f \left(\frac{a+b}{2}, y \right) \, dy + \frac{1}{d-c} \int_{c}^{d} G \left(\frac{a+b}{2}, \frac{1}{2}, y, c+d-y \right) \, dy. \]

Adding them up we obtain (10).

Finally, as $f(\cdot, c)$, $f(\cdot, d)$, $f(a, \cdot)$ and $f(b, \cdot)$ are $F(c, \cdot, \cdot)$, $F(d, \cdot, \cdot)$, $G(a, \cdot, \cdot)$ and $G(b, \cdot, \cdot)$-convex, respectively, applying the second inequality in Theorem 1, we find

\[\frac{1}{b-a} \int_{a}^{b} f(x,c) \, dx \leq \frac{f(a,c) + f(b,c)}{2} + \int_{0}^{1} F(c,t,a,b) \, dt, \]

\[\frac{1}{b-a} \int_{a}^{b} f(x,d) \, dx \leq \frac{f(a,d) + f(b,d)}{2} + \int_{0}^{1} F(d,t,a,b) \, dt, \]
Adding up these inequalities, we obtain (13). □

2.2. Fejér Type Inequalities

In order to prove the Fejér type inequalities for co-ordinated \((F, G)\)-convex functions we need the following auxiliary result.

Lemma 1. Assume that \(f : [a, b] \times [c, d] \to \mathbb{R} \) is a co-ordinated \((F, G)\)-convex function.

(i) If \([x_1, x_2] \subset [x_1', x_2'] \subset [a, b]\) and \(x_1 + x_2 = x_1' + x_2'\) then

\[
\frac{1}{d - c} \int_c^d f(a, y) dy \leq \frac{f(a, c) + f(a, d)}{2} + \int_0^1 G(a, t, c, d) dt
\]

and

\[
\frac{1}{d - c} \int_c^d f(b, y) dy \leq \frac{f(b, c) + f(b, d)}{2} + \int_0^1 G(b, t, c, d) dt.
\]

Adding up these inequalities, we obtain (13).

(ii) If \([y_1, y_2] \subset [y_1', y_2'] \subset [c, d]\) and \(y_1 + y_2 = y_1' + y_2'\) then

\[
f(x, y_1) + f(x, y_2) \leq f(x, y_1') + f(x, y_2') + G \left(x, \frac{y_2' - y_1'}{y_2' - y_1}, y_1', y_2' \right) + G \left(x, \frac{y_2 - y_1}{y_2 - y_1'}, y_1, y_2 \right)
\]

for \(x \in [a, b]\).

Proof. We prove only the first part of the lemma since the proof of the second part is similar. Assume that \([x_1, x_2] \subset [x_1', x_2'] \subset [a, b]\) and \(x_1 + x_2 = x_1' + x_2'\). Since

\[
x_1 = \frac{x_2' - x_1}{x_2' - x_1'} x_1' + \frac{x_1 - x_1'}{x_2 - x_1} x_2
\]

and

\[
x_2 = \frac{x_2' - x_2}{x_2' - x_1} x_1' + \frac{x_2 - x_1'}{x_2 - x_1} x_2',
\]

for every \(y \in [c, d]\), we obtain

\[
f(x_1, y) + f(x_2, y) \leq \frac{x_2' - x_1}{x_2' - x_1'} f(x_1', y) + \frac{x_1 - x_1'}{x_2 - x_1} f(x_2', y) + F \left(y, \frac{x_2' - x_1}{x_2' - x_1'}, x_1', x_2' \right)
\]

\[
+ \frac{x_2' - x_2}{x_2' - x_1} f(x_1', y) + \frac{x_2 - x_1'}{x_2 - x_1} f(x_2', y) + F \left(y, \frac{x_2' - x_2}{x_2' - x_1}, x_1', x_2' \right)
\]

\[
= \frac{2x_2' - (x_1 + x_2)}{x_2' - x_1} f(x_1', y) + \frac{x_1 + x_2 - 2x_1'}{x_2' - x_1} f(x_2', y) + F \left(y, \frac{x_2' - x_1}{x_2' - x_1'}, x_1', x_2' \right) + F \left(y, \frac{x_2' - x_2}{x_2' - x_1}, x_1', x_2' \right)
\]

\[
= f(x_1', y) + f(x_2', y) + F \left(y, \frac{x_2' - x_1}{x_2' - x_1'}, x_1', x_2' \right) + F \left(y, \frac{x_2' - x_2}{x_2' - x_1}, x_1', x_2' \right),
\]
In the next theorem we establish the Fejér type inequalities for \((F, G)\)-convex functions.

Theorem 3. Assume that \(p : [a, b] \times [c, d] \to \mathbb{R}\) is a positive integrable function symmetric with respect to the lines \(x = \frac{a+b}{2}\) and \(y = \frac{c+d}{2}\) (cf. (1) and (2)). If \(f : [a, b] \times [c, d] \to \mathbb{R}\) is a continuous co-ordinated \((F, G)\)-convex function such that \(fp\) is integrable on \([a, b] \times [c, d]\) then

\[
f \left(\frac{a + b}{2}, \frac{c + d}{2} \right) \leq \frac{\int_a^b \int_c^d f(x, y) p(x, y) dy dx + K}{\int_c^d f(x, y) dy dx},
\]

where

\[
K = 2 \int_a^b \int_c^{c+d} G \left(x, \frac{1}{2}, y, c + d - y \right) p(x, y) dy dx + 2 \int_a^b \int_c^{c+d} G \left(a + b - x, \frac{1}{2}, y, c + d - y \right) p(x, y) dy dx + 4 \int_a^b \int_c^{c+d} F \left(\frac{c + d}{2}, \frac{1}{2}, x, a + b - x \right) p(x, y) dy dx
\]

and

\[
\frac{\int_a^b \int_c^d f(x, y) p(x, y) dy dx - L}{\int_c^d f(x, y) dy dx} \leq \frac{f(a, c) + f(a, d) + f(b, c) + f(b, d)}{4},
\]

where

\[
L = L_1 + L_2 + L_3.
\]

\[
L := \int_a^b \int_c^{c+d} \left[F \left(y, \frac{b - a}{b - a}, a, b \right) + F \left(y, \frac{a - b}{b - a}, a, b \right) + F \left(c + d - y, \frac{b - a}{b - a}, a, b \right) + F \left(c + d - y, \frac{a - b}{b - a}, a, b \right) \right] p(x, y) dy dx + \int_a^b \int_c^{c+d} \left[G \left(a, \frac{d - y}{d - c}, c, d \right) + G \left(a, \frac{y - c}{d - c}, c, d \right) \right] p(x, y) dy dx + \int_a^b \int_c^{c+d} \left[G \left(b, \frac{d - y}{d - c}, c, d \right) + G \left(b, \frac{y - c}{d - c}, c, d \right) \right] p(x, y) dy dx.
\]

Proof. Assume that \(f : [a, b] \times [c, d] \to \mathbb{R}\) is an integrable co-ordinated \((F, G)\)-convex function such that \(fp\) is integrable. Then, for every \(x \in [a, b]\) and \(y \in [c, d]\), we have

\[
f \left(\frac{a + b}{2}, \frac{c + d}{2} \right) \leq \frac{1}{2} f \left(x, \frac{c + d}{2} \right) + \frac{1}{2} f \left(a + b - x, \frac{c + d}{2} \right) + f \left(\frac{c + d}{2}, \frac{c + d}{2}, x, a + b - x \right) \leq \frac{1}{4} f(x, y) + \frac{1}{4} f(x, c + d - y) + \frac{1}{4} f(a + b - x, y) + \frac{1}{4} f(a + b - x, c + d - y) + \frac{1}{2} G \left(x, \frac{1}{2}, y, c + d - y \right) + \frac{1}{2} G \left(a + b - x, \frac{1}{2}, y, c + d - y \right) + f \left(\frac{c + d}{2}, \frac{c + d}{2}, x, a + b - x \right).
\]
Therefore, as p is symmetric with respect to the lines $x = \frac{a+b}{2}$ and $y = \frac{c+d}{2}$, we obtain

$$f \left(\frac{a+b}{2}, \frac{c+d}{2} \right) \int_a^b \int_c^d p(x,y)dydx = 4 \int_a^{\frac{a+b}{2}} \int_c^{\frac{c+d}{2}} f \left(\frac{a+b}{2}, \frac{c+d}{2} \right) p(x,y)dydx$$

$$\leq \int_a^{\frac{a+b}{2}} \int_c^{\frac{c+d}{2}} [f(x,y) + f(a+b-x, c+d-y)] p(x,y)dydx + \int_a^{\frac{a+b}{2}} \int_c^{\frac{c+d}{2}} f(x,c+d-y) + f(a+b-x,y)] p(x,y)dydx + K$$

$$= \int_a^{\frac{a+b}{2}} \int_c^{\frac{c+d}{2}} [f(x,y) + f(a+b-x, c+d-y)] p(x,y)dydx + K$$

Thus, (14) holds.

Furthermore, using again the symmetry of p and applying Lemma 1 to $[y, c + d - y] \subset [c, d]$ and $[x, a + b - x] \subset [a, b]$, where $x \in [a, \frac{a+b}{2}]$, $y \in [c, \frac{c+d}{2}]$, we have

$$f(a,c) + f(a,d) + f(b,c) + f(b,d) \frac{1}{4} \int_a^b \int_c^d p(x,y)dydx$$

$$= \int_a^{\frac{a+b}{2}} \int_c^{\frac{c+d}{2}} [f(a,c) + f(a,d) + f(b,c) + f(b,d)] p(x,y)dydx$$

$$\geq \int_a^{\frac{a+b}{2}} \int_c^{\frac{c+d}{2}} \left[f(a,y) + f(a,c + d - y) - G \left(a, \frac{d-y}{d-c}, c, d \right) \right] - G \left(a, \frac{y-c}{d-c}, c, d \right) - \int_a^{\frac{a+b}{2}} \int_c^{\frac{c+d}{2}} f(b,c) + f(b,d) - G \left(b, \frac{d-y}{d-c}, c, d \right) - \int_a^{\frac{a+b}{2}} \int_c^{\frac{c+d}{2}} f(x,y)dydx$$

$$\geq \int_a^{\frac{a+b}{2}} \int_c^{\frac{c+d}{2}} \left[f(x,y) + f(a+b-x, y) - F \left(y, \frac{b-x}{b-a}, a, b \right) \right] - F \left(b, \frac{d-y}{d-c}, c, d \right) - \int_a^{\frac{a+b}{2}} \int_c^{\frac{c+d}{2}} f(x,c+d-y) + f(a+b-x, c+d-y)$$

$$- F \left(c+d-y, \frac{b-x}{b-a}, a, b \right) - F \left(c+d-y, \frac{x-a}{b-a}, a, b \right) p(x,y)dydx - (L_2 + L_3)$$
which gives (15). □

3. Discussion

In this paper the Hermite–Hadamard and Fejér type inequalities for co-ordinated \((F, G)\)-convex functions are proved. Since every co-ordinated convex function is co-ordinated \((F, G)\)-convex (with \(F\) and \(G\) being identically 0), from our results, one can easily deduce the results by Dragomir [1] and Alomari and Darus [4]. Furthermore, applying Theorems 2 and 3, one can obtain the Hermite–Hadamard and Fejér type inequalities for co-ordinated \((C, D)\)-approximately convex functions and co-ordinated \((C, D)\)-strongly convex functions defined by

\[
f(t x_1 + (1 - t) x_2, y) \leq t f(x_1, y) + (1 - t) f(x_2, y) + D(y) t (1 - t) |x_1 - x_2|,
\]

\[
f(x, t y_1 + (1 - t) y_2) \leq t f(x, y_1) + (1 - t) f(x, y_2) + C(x) t (1 - t) |y_1 - y_2|
\]

for \(t \in [0, 1]\), \(x_1, x_2 \in [a, b]\), \(y_1, y_2 \in [c, d]\), \(x \in [a, b]\), \(y \in [c, d]\); and

\[
f(t x_1 + (1 - t) x_2, y) \leq t f(x_1, y) + (1 - t) f(x_2, y) - D(y) t (1 - t) (x_1 - x_2)^2,
\]

\[
f(x, t y_1 + (1 - t) y_2) \leq t f(x, y_1) + (1 - t) f(x, y_2) - C(x) t (1 - t) (y_1 - y_2)^2
\]

for \(t \in [0, 1]\), \(x_1, x_2 \in [a, b]\), \(y_1, y_2 \in [c, d]\), \(x \in [a, b]\), \(y \in [c, d]\), respectively, where \(C : [a, b] \to (0, \infty)\) and \(D : [c, d] \to (0, \infty)\) are given functions.

Note also that from Theorem 1 the Hermite–Hadamard inequalities for approximately convex functions and strongly convex functions can be derived. Finally, applying Theorem 1, with \(F \equiv 0\), we obtain the classical Hermite–Hadamard inequality.

Author Contributions: M.C. and M.Z. have contributed equally to this paper. All authors have read and agree to the published version of the manuscript.
Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

