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Abstract: For a graph G = (V, E) with vertex set V = V(G) and edge set E = E(G), a Roman
{3}-dominating function (R{3}-DF) is a function f : V(G) → {0, 1, 2, 3} having the property that
∑u∈NG(v) f (u) ≥ 3, if f (v) = 0, and ∑u∈NG(v) f (u) ≥ 2, if f (v) = 1 for any vertex v ∈ V(G).
The weight of a Roman {3}-dominating function f is the sum f (V) = ∑v∈V(G) f (v) and the minimum
weight of a Roman {3}-dominating function on G is the Roman {3}-domination number of G,
denoted by γ{R3}(G). Let G be a graph with no isolated vertices. The total Roman {3}-dominating
function on G is an R{3}-DF f on G with the additional property that every vertex v ∈ V with
f (v) 6= 0 has a neighbor w with f (w) 6= 0. The minimum weight of a total Roman {3}-dominating
function on G, is called the total Roman {3}-domination number denoted by γt{R3}(G). We initiate
the study of total Roman {3}-domination and show its relationship to other domination parameters.
We present an upper bound on the total Roman {3}-domination number of a connected graph G in
terms of the order of G and characterize the graphs attaining this bound. Finally, we investigate the
complexity of total Roman {3}-domination for bipartite graphs.
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1. Introduction

In this paper, we introduce and study a variant of Roman dominating functions, namely,
total Roman {3}-dominating functions. First we present some necessary terminology and notation.
Let G = (V, E) be a graph of order n with vertex set V = V(G) and edge set E = E(G). The open
neighborhood of a vertex v ∈ V(G) is the set NG(v) = N(v) = {u : uv ∈ E(G)}. The closed
neighborhood of a vertex v ∈ V(G) is NG[v] = N[v] = N(v) ∪ {v}. The open neighborhood of a
set S ⊆ V is the set NG(S) = N(S) =

⋃
v∈S N(v). The closed neighborhood of a set S ⊆ V is the

set NG[S] = N[S] = N(S) ∪ S =
⋃

v∈S N[v]. We denote the degree of v by dG(v) = d(v) = |N(v)|.
By ∆ = ∆(G) and δ = δ(G), we denote the maximum degree and minimum degree of a graph G,
respectively. A vertex of degree one is called a leaf and its neighbor a support vertex. We denote the
set of leaves and support vertices of a graph G by L(G) and S(G), respectively. We write Kn, Pn and Cn

for the complete graph, path and cycle of order n, respectively. A tree T is an acyclic connected graph.
The corona H ◦ K1 of a graph H is the graph constructed from H, where for each vertex v ∈ V(H),
a new vertex v′ and a pendant edge vv′ are added. The union of two graphs G1 and G2 (G1 ∪ G2) is a
graph G such that V(G) = V(G1) ∪V(G2) and E(G) = E(G1) ∪ E(G2).

A set S ⊆ V in a graph G is called a dominating set if N[S] = V. The domination number γ(G)

of G is the minimum cardinality of a dominating set in G, and a dominating set of G of cardinality
γ(G) is called a γ-set of G, [1]. A set S ⊆ V in a graph G is called a total dominating set if N(S) = V.
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The total domination number γt(G) of G is the minimum cardinality of a total dominating set in G,
and a total dominating set of G of cardinality γt(G) is called a γt-set of G, [2].

Given a graph G and a positive integer m, assume that g : V(G)→ {0, 1, 2, . . . , m} is a function,
and suppose that (V0, V1, V2, . . . , Vm) is the ordered partition of V induced by g, where Vi = {v ∈
V : g(v) = i} for i ∈ {0, 1, . . . , m}. So we can write g = (V0, V1, V2, . . . , Vm). A Roman dominating
function on graph G is a function f : V → {0, 1, 2} such that if v ∈ V0 for some v ∈ V, then there exists
a vertex w ∈ N(v) such that w ∈ V2. The weight of a Roman dominating function (RDF) is the sum
w f = ∑v∈V(G) f (v), and the minimum weight of w f for every Roman dominating function f on G is
called the Roman domination number of G, denoted by γR(G), see also [3].

Let G be a graph with no isolated vertices. The total Roman dominating function (TRDF) on G,
is an RDF f on G with the additional property that every vertex v ∈ V with f (v) 6= 0 has a neighbor w
with f (w) 6= 0. The minimum weight of any TRDF on G is called the total Roman domination number
of G denoted by γtR(G). A TRDF on G with weight γtR(G) is called a γtR(G)-function.

The mathematical concept of Roman domination, is originally defined and discussed by
Stewart [4] in 1999, and ReVelle and Rosing [5] in 2000. Recently, Chellali et al. [6] have introduced the
Roman {2}-dominating function f as follows. A Roman {2}-dominating function is a function
f : V → {0, 1, 2} such that for every vertex v ∈ V, with f (v) = 0, f (N(v)) ≥ 2 where
f (N(v)) = ∑x∈N(v) f (x), that is, either v has a neighbor u with f (u) = 2, or has two neighbors
x, y with f (x) = f (y) = 1 [7].

In terms of the Roman Empire, this defense strategy requires that every location with no legion
has a neighboring location with two legions, or at least two neighboring locations with one legion each.

Note that for a Roman {2}-dominating function (R{2}-DF) f , and for some vertex v with f (v) = 1,
it is possible that f (N(v)) = 0. The sum w f = ∑v∈V(G) f (v) is denoted the weight of a Roman
{2}-dominating function, and the minimum weight of a Roman {2}-dominating function f is the
Roman {2}-domination number, denoted by γ{R2}(G). Roman {2}-domination is a generalization
of Roman domination that has also studied by Henning and Klostermeyer [8] with the name
Italian domination.

The total Roman {2}-domination for graphs are defined as follows [9]. Let G be a graph without
isolated vertices. Then f : V → {0, 1, 2} is total Roman{2}-dominating function (TR{2}-DF) if it
is a Roman {2}-dominating function and the subgraph induced by the positive weight vertices has
no isolated vertex. The minimum weight w f = ∑v∈V(G) f (v) of a any total Roman{2}-dominating
function of a graph G is called the total Roman {2}-domination number of G and is denoted by
γt{R2}(G) . Beeler et al. [10] have defined double Roman domination.

A double Roman dominating function (DRDF) on a graph G is a function f : V → {0, 1, 2, 3} such
that the following conditions are hold:

(a) if f (v) = 0, then the vertex v must have at least two neighbors in V2 or one neighbor in V3.
(b) if f (v) = 1 , then the vertex v must have at least one neighbor in V2 ∪V3.

The weight of a double Roman dominating function is the sum w f = ∑v∈V(G) f (v), and the
minimum weight of w f for every double Roman dominating function f on G is called the double
Roman domination number of G. We denote this number with γdR(G) and a double Roman dominating
function of G with weight γdR(G) is called a γdR(G)-function of G, see also [11].

Hao et al. [12] have recently defined total double Roman domination. The total double Roman
dominating function (TDRDF) on a graph G with no isolated vertex is a DRDF f on G with the additional
property that the subgraph of G induced by the set {v ∈ V(G) : f (v) 6= 0} has no isolated vertices.
The total double Roman domination number γtdR(G) is the minimum weight of a TDRDF on G. A TDRDF
on G with weight γtdR(G) is called a γtdR(G)-function. Mojdeh et al. [13] have recently defined the
Roman {3}-dominating function correspondingly to the Roman {2}-dominating function of graphs.
For a graph G, a Roman {3}-dominating function (R{3}-DF) is a function f : V → {0, 1, 2, 3} having
the property that f (N[u]) ≥ 3 for every vertex u ∈ V with f (u) ∈ {0, 1}. Formally, a Roman
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{3}-dominating function f : V → {0, 1, 2, 3} has the property that for every vertex v ∈ V, with f (v) =
0, there exist at least either three vertices in V1 ∩ N(v), or one vertex in V1 ∩ N(v) and one in V2 ∩ N(v),
or two vertices in V2 ∩ N(v), or one vertex in V3 ∩ N(v) and for every vertex v ∈ V, with f (v) = 1,
there exist at least either two vertices in V1 ∩ N(v), or one vertex in (V2 ∪V3) ∩ N(v). This notion has
been defined recently by Mojdeh and Volkmann [13] as Roman {3}-domination.

The weight of a Roman {3}-dominating function is the sum w f = f (V) = ∑v∈V f (v), and the
minimum weight of a Roman {3}-dominating function f is the Roman {3}-domination number,
denoted by γ{R3}(G).

Now we introduce the total Roman {3}-domination concept to consider such situation.

Definition 1. Let G be a graph G with no isolated vertex. The total Roman {3}-dominating function
(TR{3}-DF) on G is an R{3}-DF f on G with the additional property that every vertex v ∈ V with f (v) 6= 0 has
a neighbor w with f (w) 6= 0, in the other words, the subgraph of G induced by the set {v ∈ V(G) : f (v) 6= 0}
has no isolated vertices. The minimum weight of a total Roman {3}-dominating function on G is called the
total Roman {3}-domination number of G denoted by γt{R3}(G). A γt{R3}(G)-function is a total Roman
{3}-dominating function on G with weight γt{R3}(G).

In this paper We study of total Roman {3}-domination versus to other domination parameters.
We present an upper bound on the total Roman {3}-domination number of a connected graph G in
terms of the order of G and characterize the graphs attaining this bound. Finally, we investigate the
complexity of total Roman {3}-domination for bipartite graphs.

2. Total Roman {3}-domination of Some Graphs

First we easily see that γ{R3}(G) ≤ γt{R3}(G) ≤ γtdR(G), because by the definitions every total
Roman {3}-dominating function is a Roman {3}-dominating function and every total double Roman
dominating function is a total Roman {3}-dominating function.

In [10] we have.

Proposition 1. ([10] Proposition 2) Let G be a graph and f = (V0, V1, V2) a γR-function of G.
Then γdR(G) ≤ 2|V1|+ 3|V2|. This bound is sharp.

As an immediate result we also have:

Corollary 1. Let G be a graph and f = (V0, V1, V2) a total Roman {2}-dominating function or a Roman
dominating function for which the induced subgraph by V1 ∪ V2 has no isolated vertex. Then γt{R3}(G) ≤
2|V1|+ 3|V2|. This bound is sharp.

For some special graphs we obtain the total Roman {3}-domination numbers.

Observation 1. Let n ≥ 2. Then γt{R3}(Pn) =

{
n + 2 if n ≡ 1 (mod 3)
n + 1 otherwise

,

Proof. Let Pn = v1v2 . . . vn. Since by assigning 2 to the vertices v1 and vn and value 1 to the other
vertices, we have γt{R3}(Pn) ≤ n + 2. Since f (v1) + f (v2) ≥ 3 and f (vn−1) + f (vn) ≥ 3, f (vi−1) +

f (vi) + f (vi+1) ≥ 3 for 4 ≤ i ≤ n− 3, f (vi−1) + f (vi) + f (vi+1) + f (vi+2) ≥ 3 for 4 ≤ i ≤ n− 4 and
f (vi−2) + f (vi−1) + f (vi) + f (vi+1) + f (vi+2) ≥ 4 for 5 ≤ i ≤ n− 4, we observe that γt{R3}(Pn) ≥
n + 1 and γt{R3}(Pn) ≥ n + 2 if n ≡ 1 (mod 3). If n = 3k, then by assigning 1 to v3t+1 and vn, 2 to
v3t+2, 0 to v3t except vn, we have γt{R3}(Pn) ≥ 3k + 1 = n + 1. If n = 2 + 3k, then by assigning 1 to
v3t+1, 2 to v3t+2, 0 to v3t, we have γt{R3}(Pn) ≥ 3k + 1 = n + 1. Thus the proof is complete.

In [10], it has been shown that γdR(Cn) = n if n ≡ 0, 2, 3, 4 ( mod 6) and otherwise γdR(Cn) =

n + 1 and since γtdR(G) ≥ γdR(G), we deduce that γtdR(Cn) ≥ n.
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Here we show that γt{R3}(Cn) = n for all n ≥ 3. If we assign weight 1 to every vertex of Cn,
then it is a total Roman {3}-dominating function of Cn. Hence γt{R3}(Cn) ≤ n. In [13], we have shown
that γ{R3}(Cn) = n. Since γ{R3}(Cn) ≤ γt{R3}(Cn), we obtain the desired result.

Observation 2. γt{R3}(Cn) = n

The next result shows another family of graphs G with γt{R3}(G) = |V(G)|. Let Cn be a cycle
with vertices v1, v2, . . . , vn and Pm be a path with vertices u1, u2, . . . , um for which u1 = v1 and for some
2 ≤ i ≤ m, ui 6= vj. Let H be a graph obtained from a cycle Cn and k paths like Pm1 , Pm2 , . . . , Pmk

(1 ≤ k ≤ n) such that the first vertex of any path Pmi must be vi. Let G be a graph consisting of m
graphs like H such that any both of them have at most one common vertex on their cycles. Figure 1 is
a sample of graph G is formed of 4 cycles and 15 paths Pmi , where mi ≡ 1( mod 3).
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Observation 3. Let G be the graph constructed as above. If Pmi with vertices u1i , u2i , . . . , umi is a path such
that 3 | (mi − 1), then γt{R3}(G) = |V(G)|

Proof. Let f be a function that assign value 1 to every vertex of the cycles and if 3 | (mi − 1), we assign
value 2 to vertices with indices 3t, value 1 to vertices with indices 3t + 1, (1 ≤ t ≤ mi−1

3 ) and value
0 to the other vertices of the path Pmi , except to the common vertex u1i = vi of the cycle. Therefore
γt{R3}(G) = |V(G)|.

Let Cn be a cycle and Pm be a path with m vertices and let the first vertex of Pm be the vertex
vi of Cn. If 3 | mi or 3 | (mi − 2), then γt{R3}(Cn ∪ Pm) = |V(Cn ∪ Pm)|+ 1. Therefore we have the
following result.

Corollary 2. In the graphs constructed above, if there are l paths Pm1 , Pm2 , . . . , Pml such that 3 | mi or
3 | (mi − 2) for 1 ≤ mi ≤ l, then γt{R3}(G) = |V(G)|+ l.

The Observation 3 and Corollary 2 show that for every nonnegative integer k, there is a graph G
such that γt{R3}(G) = |V(G)|+ k.

Proposition 2. If G is a connected graph of order n ≥ 2, then γt{R3}(G) ≥ 3 and γt{R3}(G) = 3 if and only
if G has at least two vertices of degree ∆(G) = n− 1.

Proof. If n = 2, then the statement is clear. Let now n ≥ 3 and let f = (V0, V1, V2, V3) be a total Roman
{3}-dominating function on G of weight γ{R3}(G). If V0 6= ∅, then ∑u∈N(v) f (u) ≥ 3 for a vertex

Figure 1. A sample of graph G.

Observation 3. Let G be the graph constructed as above. If Pmi with vertices u1i , u2i , . . . , umi is a path such
that 3 | (mi − 1), then γt{R3}(G) = |V(G)|

Proof. Let f be a function that assign value 1 to every vertex of the cycles and if 3 | (mi − 1),
we assign value 2 to vertices with indices 3t, value 1 to vertices with indices 3t + 1, (1 ≤ t ≤ mi−1

3 )
and value 0 to the other vertices of the path Pmi , except to the common vertex u1i = vi of the cycle.
Therefore γt{R3}(G) = |V(G)|.

Let Cn be a cycle and Pm be a path with m vertices and let the first vertex of Pm be the vertex
vi of Cn. If 3 | mi or 3 | (mi − 2), then γt{R3}(Cn ∪ Pm) = |V(Cn ∪ Pm)|+ 1. Therefore we have the
following result.

Corollary 2. In the graphs constructed above, if there are l paths Pm1 , Pm2 , . . . , Pml such that 3 | mi or
3 | (mi − 2) for 1 ≤ mi ≤ l, then γt{R3}(G) = |V(G)|+ l.

The Observation 3 and Corollary 2 show that for every nonnegative integer k, there is a graph G
such that γt{R3}(G) = |V(G)|+ k.

Proposition 2. If G is a connected graph of order n ≥ 2, then γt{R3}(G) ≥ 3 and γt{R3}(G) = 3 if and only
if G has at least two vertices of degree ∆(G) = n− 1.

Proof. If n = 2, then the statement is clear. Let now n ≥ 3 and let f = (V0, V1, V2, V3) be a total Roman
{3}-dominating function on G of weight γ{R3}(G). If V0 6= ∅, then ∑u∈N(v) f (u) ≥ 3 for a vertex
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v ∈ V0 and thus γt{R3}(G) ≥ 3. If V0 = ∅, then f (x) ≥ 1 for each vertex x ∈ V(G) and therefore
γt{R3}(G) ≥ n ≥ 3.

If G has at least two vertices of degree ∆(G) = n − 1, then we may assume v and u are two
adjacent vertices of maximum degree. Define the function f by f (v) = 1, f (u) = 2 and f (x) = 0
for x ∈ V(G) \ {v, u}. Then f is a total Roman {3}-dominating function on G of weight 3 and hence
γt{R3}(G) = 3.

Conversely, assume that γt{R3}(G) = 3. Then there are two adjacent vertices v, u with weights
1 and 2 respectively, for which n− 2 vertices with weight 0 are adjacent to them, or there are three
mutuality adjacent vertices u, v, w with weights 1 for which n− 3 vertices with weight 0 are adjacent
to them. Therefore there are at least two vertices of degree n− 1.

As an immediate result we have:

Corollary 3. If G has only one vertex of degree ∆(G) = n− 1, then γt{R3}(G) = 4.

In the follow, total Roman {3}-domination and total double Roman domination numbers
are compared.

Since any partite set of a bipartite graph is an independent set, the weight of total Roman
{3}-domination number of any partite set is positive. Therefore we have the following.

Proposition 3. For any complete bipartite graph we have.

1. γt{R3}(K1,n) = 4,
2. γt{R3}(Km,n) = 5 for m ∈ {2, 3} and n ≥ 3.
3. γt{R3}(Km,n) = γdR(Km,n) = 6 for m, n ≥ 4.

Proof. In any complete bipartite graph, let V(G) = U ∪W, where U is the small partite set and W is
the big partite set.

1. This follows from Corollary 3.
2. We consider two cases.

(i) Let U = {u1, u2} and W = {w1, w2, . . . , wn}. Let f be a TR{3}DF of K2,n. If f (W) = 2,
then f (U) ≥ 3. If f (W) = 3, then f (U) ≥ 2. If f (W) ≥ 4, since f (U) is positive, then
f (V) ≥ 5. Therefore f (V) ≥ 5. Assigning f (u1) = 2, f (u2) = 1 and f (w1) = 2, shows that
γt{R3}(K2,n) ≤ 5.

(ii) Let U = {u1, u2, u3} and W = {w1, w2, . . . , wn}. Using sketch of the proof of item 2,
γt{R3}(K3,n) ≥ 5. If we assign value 1 to the vertices u1, u2, u3, weight 2 to w1 and 0 to wj,
for j ≥ 2, then γt{R3}(K3,n) ≤ 5.

3. The function f with f (u1) = 3 = f (w1) and f (ui) = 0 = f (uj) for i, j 6= 1 is a TR{3}DF for Km,n.
Therefore γt{R3}(Km,n) ≤ 6.

Now let f be a γt{R3} function of Km,n for m, n ≥ 4. If m, n ≥ 5, then it is easy to see that f should
be assigned 0 to at least one vertex of each partite set. Therefore every partite set must have weight
at least 3. If, without loss of generality, n = 4, then let U = {u1, u2, u3, u4}. If f (ui) ≥ 1 for 1 ≤ i ≤ 4,
then f (ui) = 1 for 1 ≤ i ≤ 4 and thus f (W) ≥ 2. So f (V) ≥ 6 and therefore γt{R3}(Km,n) ≥ 6, and the
proof is complete.

One can obtain a similar result for complete r-partite graphs for r ≥ 3.

Proposition 4. Let G = Kn1,n2,...,nr be the complete r-partite graph with r ≥ 3 and n1 ≤ n2 ≤ · · · ≤ nr.
Then:
1. If n1 = n2 = 1, then γt{R3}(G) = 3.
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2. If n1 = 1 and n2 ≥ 2, then γt{R3}(G) = 4.
3. If n1 = 2 or n1 ≥ 3 and r ≥ 4, then γt{R3}(G) = 4.
4. If r = 3 and n1 ≥ 3, then γt{R3}(G) = 5.

Proof. Let V =
⋃r

i=1 Ui where Ui is the ith partite set with vertices {ui1 , ui2 , . . . , uini
}.

1. This follows from Proposition 2.
2. This follows from Corollary 3.
3. Let n1 ≥ 2. By Proposition 2, we have γt{R3}(G) ≥ 4. If n1 = 2, then define f (u11) = f (u12) =

f (u21) = f (u31) = 1 and f (v) = 0 otherwise. Then f is a TR{3}-DF on G with f (V) = 4 and
thus γt{R3}(G) = 4. Now let n1 ≥ 3 and r ≥ 4. Then any TR{3}-DF f on G with f (u11) =

f (u21) = f (u31) = f (u41) = 1 and f (v) = 0 for the other vertices, is a γt{R3} function on G.
Therefore γt{R3}(G) = 4.

4. Let n1 ≥ 3 and r = 3, and let f be a TR{3}-DF function on G. Since two partite sets must have
positive weight, we can assume f (U2) ≥ 1. If f (U2) = 1, then f (U1 ∪U3) ≥ 4. If f (U2) = 2,
then f (U1 ∪U3) ≥ 3. If f (U2) = 3, then f (U1 ∪U3) ≥ 2. If f (U2) ≥ 4, then f (U1 ∪U3) ≥ 1.
Thus f (V) ≥ 5. Conversely, define f (u11) = f (u21) = 2 and f (u31) = 1 and f (v) = 0 otherwise.
Then f is a TR{3}-DF on G with f (V) = 5 and so γt{R3}(G) = 5.

Theorem 4. If G is a graph with δ(G) = δ ≥ 2, then γt{R3}(G) ≤ |V(G)|+ 2− δ, and this bound is sharp.

Proof. Let V(G) = {u1, u2, . . . , un}, and let v be a vertex of degree δ with neighbors {u1, u2, . . . , uδ}.
Let U = {v, uδ+2, uδ+3, . . . , un} ∪ {u1, u2}. Define the function f by f (x) = 1 for x ∈ U and f (x) = 0
for x ∈ V(G) \ U. Then ∑x∈N(u) f (x) ≥ 2 for u ∈ U and ∑x∈N(u) f (x) ≥ 3 for u ∈ V(G) \ U.
Therefore f is a total Roman {3}-dominating function on G of weight n + 2− δ and thus γt{R3}(G) ≤
|V(G)|+ 2− δ.

According to Observation 2 and Propositions 3 and 8, we note that γt{R3}(Cn) = n = |V(Cn)|+
2 − δ(Cn), γt{R3}(Kn) = 3 = |V(Kn)| + 2 − δ(Kn) for n ≥ 3, γt{R3}(K3,3) = 5 = |V(K3,3)| + 2 −
δ(K3,3), γt{R3}(K4,4) = 6 = |V(K4,4)|+ 2− δ(K4,4), γt{R3}(K3,3,3) = 5 = |V(K3,3,3)|+ 2− δ(K3,3,3) and
γt{R3}(Kn1,n2,...,nr ) = 4 = |V(Kn1,n2,...,nr )|+ 2− δ(Kn1,n2,...,nr ) for r ≥ 4 and n1 ≤ n2 ≤ · · · ≤ nr = 2.
All these examples demonstrate that the inequality γt{R3}(G) ≤ |V(G)|+ 2− δ is sharp.

Hao et al. defined in [12] the family of graphs G as follows and have proved Theorem 5 below.
Let G be the family of graphs that can be obtained from a star St = K1,t−1 of order t ≥ 2 by adding a
pendant edge to each vertex of V(St) and adding any number of edges joining the leaves of St.

Theorem 5. [12] For any connected graph G of order n ≥ 2,

γtdR(G) ≤ 2n− ∆

with equality if and only if G ∈ {P2, P3, C3} ∪ G.

This theorem with a little changing may be explored as follows.

Theorem 6. For any connected graph G of order n ≥ 2,

γt{R3}(G) ≤ 2n− ∆

with equality if and only if G ∈ {P2, P3} ∪ G.
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3. Total Roman {3}-domination and Total Domination

In this section we study the relationship between total domination and total Roman
{3}-domination of a graph.

In [10] (Proposition 8) the authors proved that, if G is a graph, then 2γ(G) ≤ γdR(G) ≤ 3γ(G).
If we use the method of the proof of Proposition 8 of [10], then it is easy to show that:
If G is a graph with a γ{R3}-function f = (V0, V2, V3), then 2γ(G) ≤ γ{R3}(G) ≤ 3γ(G).
In [13] Proposition 17 authors proved that:
If G is a graph, then γ(G) + 2 ≤ γ{R3}(G) ≤ 3γ(G), and these bounds are sharp. However, we have
the following.

Proposition 5. If G is a graph without isolated vertices, then γt(G) + 1 ≤ γt{R3}(G) ≤ 3γt(G).

Proof. Let S be a γt-set of G. Then (V0 = V \ S, ∅, ∅, V3 = S) is a γt{R3}-function of G. Therefore
γt{R3}(G) ≤ 3γt(G).
For the lower bound, let f = (V0, V1, V2, V3) be a γt{R3}-function of G. We distinguish two cases.

Case 1. Let |V2| ≥ 1 or |V3| ≥ 1. Then γt(G) ≤ |V1|+ |V2|+ |V3| ≤ |V1|+ 2|V2|+ 3|V3| − 1 =

γt{R3}(G)− 1.
Case 2. Let V2 = V3 = ∅. By the definition, δ(G[V1]) ≥ 2. Therefore, for each vertex v ∈

V1, the subgraph G[V1 \ {v}] does not contain an isolated vertex. Consequently, V1 \ {v} is total
dominating set of G and hence γt(G) ≤ γt{R3}(G)− 1.

By Proposition 5 the question may arise as whether for any positive integer r, exists a graph G for
which γt{R3}(G) = γt(G) + r, where 1 ≤ r ≤ 2γt(G). For r = 1 we have. If G is a connected graph of
order n ≥ 2 with at least two vertices of maximum degree ∆(G) = n− 1, then Proposition 2 implies
that γt{R3}(G) = 3. Since γt(G) = 2 for such graphs, we observe that γt{R3}(G) = γt(G) + 1.

Proposition 6. If G is a graph without isolated vertices, then γt{R3}(G) = γt(G) + 1 if and only if G has at
least two vertices of degree ∆ = |V(G)| − 1, in the other words γt{R3}(G) = 3 and γt(G) = 2.

Proof. The part “if“ has been proved. Part “only if“: Let G be a graph with γt{R3}(G) = γt(G) + 1.
Let f = (V0, V1, V2, V3) be a γt{R3}(G) function. Therefore V1 ∪V2 ∪V3 is a total dominating set for G,
and |V1|+ |V2|+ |V3| ≥ γt(G) = γt{R3}(G)− 1 = |V1|+ 2|V2|+ 3V3| − 1. Therefore |V2|+ 2|V3| ≤ 1
that is |V2| ≤ 1 and |V3| = 0. If |V2| = 1 = |V1| or |V2| = 0 and |V1| = 3, then G has at least two
vertices of degree ∆(G) = |V(G)| − 1. Now we show that there are not any cases for G. On the
contrary, we suppose that there are different cases. (1) |V2| = 1 and |V1| ≥ 2. (2) |V2| = 0 and |V1| ≥ 4.
Case 1. Let V2 = {v}, |V1| ≥ 2. Assume first that there exist two vertices v1, v2 ∈ V1 which are
adjacent to the vertex v. Then V2 ∪ V1 \ {v1} is a γt(G)-set of size |V1| and so γt{R3}(G) = 2 + |V1|,
a contradiction. Assume next that there exists only one vertex, say v1 ∈ V1, which is adjacent to v.
Then all other vertices of V1 have at least two neighbors in V1. If v2 ∈ V1 with v2 6= v1, then we observe
that V2 ∪V1 \ {v2} is a γt(G)-set of size |V1|. It follows that γt{R3}(G) = 2 + |V1|, a contradiction.

Case 2. Let |V2| = 0 and |V1| ≥ 4. Then there exist two vertices v1, v2 in which each of them
has neighbors in V1 \ {v1, v2} and G(V1 \ {v1, v2}) has no isolated vertex. Therefore V1 \ {v1, v2} is a
γt(G)-set that is also a contradiction.

Now we show that for any positive integer n and integer 2 ≤ r ≤ 2n, there exists a graph G for
which γt(G) = n and γt{R3}(G) = n + r.

Proposition 7. Let n and r be positive integers with 2 ≤ r ≤ 2n. Then there exists a graph G for which
γt(G) = n and γt{R3}(G) = n + r.
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Proof. For graph G with γt(G) = n and γt{R3}(G) = n + 2, we consider the following graph. Let H be
the graph consisting of a cycle Cn+2 with n ≥ 3 and a vertex set V0 of (n+2

3 ) further vertices. Let each
vertex of V0 be adjacent to 3 vertices of V(Cn+2) such that the neighborhoods of every two distinct
vertices of V0 are different. Let V1 = V(Cn+2). Then γt{R3}(H) = n + 2 and γt(H) = n (Figure 2).

a
b

c

d e

v1

v3

v5

v7

v9

v2

v4

v6

v8

v10

Figure 2. A graph H with n = 3.

For γt(G) = n and γt{R3}(G) = n + k, where 3 ≤ k ≤ n − 1. Let k = 3. For γt(G) = 4
and γt{R3}(G) = 7, we consider the cycle C7. For γt(G) ≥ 5, let H be the above graph where
γt(H) = n ≥ 3 and γt{R3}(H) = n + 2 ≥ 5. Now we consider G = H ∪ K3. Then γt(G) ≥ n ≥ 4 and
γt{R3}(G) = n + 3.

Let k = 4. For γt(G) = 5 and γt{R3}(G) = 9, we consider the cycle C9. For γt(G) ≥ 6, consider the
graphs G′ with γt{R3}(G′) = γt(G′) + 3 for γt(G′) ≥ 4. Now we let G = G′ ∪ K3. Then we have
γt{R3}(G) = γt(G) + 4.

For 5 ≤ k ≤ n − 1 we use induction on k. Let for any integer 4 ≤ m ≤ k − 1 there exist
graphs G′ such that γt{R3}(G) = γt(G) + m for γt(G) ≥ m + 1. Let m = k. For γt(G) = k + 1
and γt{R3}(G) = 2k + 1, we consider the cycle C2k+1. For graphs G with γt{R3}(G) = γt(G) + k for
γt(G) ≥ k + 2, using hypothesis of induction, let G′ be the graphs with γt{R3}(G′) = γt(G′) + k− 1
with γt(G′) ≥ k. Now we let G = G′ ∪ K3. It can be seen γt{R3}(G) = γt(G) + k for γt(G) ≥ k + 2.

We now verify the case of γt{R3}(G) = 2γt(G) + r for 0 ≤ r ≤ γt(G), that is, we wish to show the
existence of graphs G, so that γt(G) = n and γt{R3}(G) = 2n + r for 0 ≤ r ≤ n. Let r = 0. For even n,
let G = C2n. Then γt(G) = n and γt{R3}(G) = 2n.
For odd n = 2k + 1, if 2n ≡ 1 (mod 3) or 2n ≡ 0 (mod 3), then we let G = P2n−1, and by Observation 1,
it can be seen that γt(G) = n and γt{R3}(G) = 2n.
If 2n ≡ 2 (mod 3), consider a cycle C2n−1 with an additional vertex a that is adjacent to two vertices v1

and v2. Then γt(G) = n and γt{R3}(G) = 2n.
For r = 1 and positive even integer n, consider G = ( n

2 − 1)P3 ∪ C+
5 , where ( n

2 − 1)P3 is the union
of n

2 − 1 of path P3 and C+
5 is the cycle C5 with a chord, then γt(G) = n and γt{R3}(G) = 2n + 1.

For r = 1 and positive odd integer n, consider G = ( n−1
2 − 1)P3 ∪ P+

5 where P+
5 is the path P5 with an

additional vertex adjacent to the second or fourth vertex of P5, then γt(G) = n and γt{R3}(G) = 2n + 1.
For 2 ≤ r ≤ n − 1, we do as follows. Let r = 2 and so n ≥ 3. Let n = 3 and 2n + 2 = 8.

Let G1 be a graph constructed from path P5 with vertices v1, v2, v3, v4, v5 with additional vertices
u12, u13, u14, u52, u53, u54, u24 such that the given vertex ui,j is adjacent to vertices vi and vj of P5.
Then γt(G1) = 3 and γt{R3}(G1) = 8.

Let n = 4 and 2n + 2 = 10. Then say G2 = 2C+
5 . Let n = 5 and so 2n + 2 = 12. Then say

G3 = C+
5 ∪ P+

5 . For γt(G) = k and γt{R3}(G) = 2k + 2, where r + 1 ≤ k ≤ n, there consider
three cases.
1. If k ≡ 0 (mod 3), then we say G = k−3

3 P5 ∪ G1.
2. If k ≡ 1 (mod 3), then we say G = k−4

3 P5 ∪ G2.
3. If k ≡ 2 (mod 3), then we say G = k−5

3 P5 ∪ G3.
It is easy to verifiable, γt(G) = k and γt{R3}(G) = 2k + 2.
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Let r = 3 and so n ≥ 4. For graph G′1 with γt(G′1) = 4 and γt{R3}(G′1) = 11, we let G′1 = P4 ∪ C+
5 .

For graph G′2 with γt(G′2) = 5 and γt{R3}(G′2) = 13, we let G′2 = P4 ∪ P+
5 . And for graph G′3

with γt(G′3) = 6 and γt{R3}(G′3) = 15, we let G′3 = 3C+
5 . For γt(G) = k and γt{R3}(G) = 2k + 3,

where r + 1 ≤ k ≤ n, there consider three cases.
1. If k ≡ 1 (mod 3), then we say G = k−4

3 P5 ∪ G′1.
2. If k ≡ 2 (mod 3), then we say G = k−5

3 P5 ∪ G′2.
3. If k ≡ 0 (mod 3), then we say G = k−6

3 P5 ∪ G′3.

Let r ≥ 4 and n ≥ r + 1. For graph G with γt(G) = k and γt{R3}(G) = 2k + r where r + 1 ≤ k ≤ n,
there consider two cases.

Case 1. Let r be an even integer. Then there exists a graph G′ for which γt(G′) = k − (r − 2)
and γt{R3}(G′) = 2k− 2(r− 2) + 2. Now let G = r−2

2 P4 ∪ G′. Then γt(G) = r− 2 + γt(G′) = k and
γt{R3}(G) = 3(r− 2) + γt{R3}(G′) = 3(r− 2) + 2k− 2(r− 2) + 2 = 2k + r.

Case 2. Let r be an odd integer. Then there exists a graph G′′ for which γt(G′′) = k− (r− 3) and
γt{R3}(G′′) = 2k− 2(r− 3) + 3. If we consider G = r−3

2 P4 ∪ G′′. Then γt(G) = r− 3 + γt(G′′) = k
and γt{R3}(G) = 3(r− 3) + γt{R3}(G′′) = 2k + r.

Finally, we want discuss the case of r = n, that is we want to find graphs G with γt(G) = n
and γt{R3}(G) = 3n. For n = 2 and 3n = 6, let G = P4. For G with γt(G) = 3 and γt{R3}(G) = 9,
let G = H1 be a graph constructed from P5 with vertices v1, v2, v3, v4, v5 with three additional vertices
w1, w2, w3 and three pendant edges v2w2, v3w3, v4w4. Then it can be seen that γt(H1) = 3 and
γt{R3}(H1) = 9.

Let n ≥ 4. If n is an even, then let G = n
2 P4 and if n is an odd, then let G = n−3

2 P4 ∪ H1. In both
cases γt(G) = n and γt{R3}(G) = 3n.

4. Total Roman {3} and Total Roman {2}-domination

In [13] it has been shown that, for a connected graph G with a γ{R3}-function f = (V0, V2, V3),
γ{R3}(G) ≥ γ(G) + γ{R2}(G).

In this section we investigate the relation between total Roman {3} and total Roman
{2}-domination. First we have the following.

Observation 7. Let G be a graph and (V0, V1, V2) be a γt{R2} function of G. Then (V′0 = V0, V′2 = V1, V′3 =

V2) is a TR{3}-DF function. Conversely, if (V0, V1, V2, V3) is a γt{R3} of G, then (U0 = V0, U1 = V1 ∪
V2, U2 = V3) is a TR{2}-DF of G.

Proof. The proof is straightforward.

The following results state the relation between γt{R3} and γt{R2} of graphs G when γt{R3}(G)

is small.

Proposition 8. Let G be a graph. Then:
1. γt{R3}(G) = 3 if and only if γt{R2}(G) = 2.
2. If γt{R3}(G) = 4, then γt{R2}(G) = 3.
3. If γt{R2}(G) = 3, then 4 ≤ γt{R3}(G) ≤ 5.

Proof. 1. Let γt{R3}(G) = 3. Then there exist two adjacent vertices v, u with label 2, 1 respectively so
that each vertex with label 0 is adjacent to them or there exist three mutually adjacent vertices v, u, w
with label 1 so that each vertex with label 0 is adjacent to them. In the first case, we change the vertex
with label 2 to the label 1 and in the second case we change one of the vertices with label 1 to the label
0. These changing labels give us a γt{R2}(G)-function with weight 2. Conversely, let γt{R2}(G) = 2.
Then there exist two vertices with label 1 for which every vertex is adjacent to them. We change one of
the labels to 2, and therefore the result holds.
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2. Let γt{R3}(G) = 4. There are three cases.

2.1. There exist 4 vertices v, u, w, z with label 1 for which the induced subgraph by them is the cycle
C4, the graph K = K4 − e or the complete graph K4. In any induced subgraph, there are no two
vertices of them for which any vertex with label 0 is adjacent to them. Thus in the case of a
TR{2}-DF we change one of the labels 1 to the label 0. Therefore γt{R2}(G) = 3.

2.2. There exist 2 vertices v, u with label 1 and one vertex w with label 2, for which the induced
subgraph by them is the cycle C3, or the path P3 = v− w− u. In any of the two cases each vertex
with label 0 is adjacent to v, w or u, w or three of them. Now we change the label of w to 1, and
we obtain a γt{R2}-function for G with weight 3.

2.3. There exist 2 vertices v, u with label 3 and label 1, respectively, for which the induced subgraph
by v, u is K2. By this assumption each vertex with label 0 is adjacent to v, but there maybe exist
some vertices (none of them) which are adjacent to u. Now we change the label v to 2, and we
obtain a γt{R2}-function for G with weight 3.

3. Let γt{R2}(G) = 3. There are two cases.

3.1. There exist 3 vertices v, u, w with label 1 for which the induced subgraph by v, u, w is the cycle C3

or a path P3. If each vertex with label 0 is adjacent to v, w or u, w, then by changing the label w to
2, we obtain a γt{R3}-function for G with weight 4.
If some vertices with label 0 are adjacent to v, u, some of them are adjacent to v, w and the other
are adjacent u, w, then by changing two vertices of v, u, w to label 2, we obtain a γt{R3}-function
for G with weight 5.

3.2. There exist 2 vertices v, u with label 2 and label 1, respectively, for which the induced subgraph
by v, u is K2. By this assumption each vertex with label 0 is adjacent to v, but there maybe exist
some vertices (none of them) which are adjacent to u. Now we change the label v to 3, and we
obtain a γt{R3}-function for G with weight 4. Therefore 4 ≤ γt{R3}(G) ≤ 5.

In the following we want to find the relation between total Roman {3}-domination,
total domination and total Roman {2}-domination of graphs.

Observation 8. Let G be a connected graph with a γt{R3}-function f = (V0, V2, V3). Then γt{R3}(G) ≥
γt(G) + γt{R2}(G).

Proof. Let (V0, V2, V3) be a γt{R3}-function of G. Then γt(G) ≤ |V2|+ |V3|. If we define g = (V′0 =

V0, V′1 = V2, V′2 = V3), then g is a total Roman {2}-dominating function on G. Therefore γt(G) +

γt{R2}(G) ≤ |V2|+ |V3|+ |V′1|+ 2|V′2| ≤ 2|V2|+ 3|V3| = γt{R3}(G).

In Observation 8 the condition of γt{R3}-function f = (V0, V2, V3) is necessary. Because there are
many graphs for which the result of Observation 8 does not hold. For example, for the complete
graphs Kn (n ≥ 2), cycles Cn and paths Pn for n ≥ 5, we observe that γt{R3}(G) < γt(G) + γt{R2}(G).
However, in the following we establish, for any integer n ≥ 5, there is a graph G such that
γt{R3}(G) = γt{R2}(G) + γt(G).

Proposition 9. For any positive integer n ≥ 5, there is a graph G for which γt{R3}(G) = γt{R2}(G) + γt(G).

Proof. For n = 5 let G = C+
5 . Then γt{R2}(G) = 3, γt(G) = 2 and γt{R3}(G) = 5. For n = 6, let G be a

bistar of order 6. Then γt{R3}(G) = 6 = 4 + 2 = γt{R2}(G) + γt(G). For n = 7, let G = G1 in Figure
3. For n = 8, let G = G2 in Figure 3. For n = 9, let G = G2 in Figure 3. For n ≥ 10, by induction we
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consider the graph G = C+
5 ∪ H where the graph H (H may be connected or disconnected) for which

γt{R3}(H) = n− 5 = γt{R2}(H) + γt(H).

G1 G2 G3

Figure 3. Examples.

Finally, we show that for any positive integer n ≥ 5, there is a graph G such that γt{R3}(G) = n,
γt{R2}(G) = n− 1 and γt(G) = n− 2.
For this, let G be the graph constructed in Proposition 3 as graph H for n ≥ 5. Then γt{R3}(H) = n,
γt{R2}(H) = n− 1 and γt(H) = n− 2.

5. Large Total Roman {3}-domination Number

In this section, we characterize connected graphs G of order n with γt{R3}(G) = 2n − k for
1 ≤ k ≤ 4. For this we use the following result.

Theorem 9. Let G be a connected graph of order n ≥ 2. Then γt{R3}(G) ≤ (3n)/2, with equality if and only
if G is the corona H ◦ K1 where H is a connected graph.

Proof. If n = 2, then the statement is valid. Let now n ≥ 3. If |L(G)| ≤ n/2, then define f : V(G)→
{0, 1, 2, 3} by f (x) = 2 for x ∈ L(G) and f (x) = 1 for x ∈ V(G) \ L(G). Then f is a total Roman
{3}-dominating function on G of weight

2|L(G)|+ n− |L(G)| = n + |L(G)| ≤ 3n
2

.

If |L(G)| > n/2, then define f : V(G) → {0, 1, 2, 3} by f (x) = 1 for x ∈ L(G) and f (x) = 2 for
x ∈ V(G) \ L(G). Then f is a total Roman {3}-dominating function on G of weight

|L(G)|+ 2(n− |L(G)|) = 2n− |L(G)| < 3n
2

.

If G = H ◦ K1 for a is a connected graph H, then γt{R3}(G) = (3n)/2.
Conversely, let γt{R3}(G) = (3n)/2. Then the proof above shows that |L(G)| = n/2. Assume that

there exists a vertex v ∈ V(G) which is neither a leaf nor a support vertex. Define f : V(G) →
{0, 1, 2, 3} by f (x) = 1 for x ∈ L(G) ∪ {v} and f (x) = 2 for x ∈ V(G) \ (L(G) ∪ {v}). Then f is a total
Roman {3}-dominating function on G of weight

|L(G)|+ 2(n− |L(G)| − 1) + 1 = 2n− |L(G)| − 1 =
3n
2
− 1,

a contradiction. Thus every vertex is a leaf or a support vertex. Since |L(G)| = n/2, we deduce that
G = H ◦ K1 with a connected graph H.

Corollary 4. For any connected graph G of order n ≥ 2, γt{R3}(G) = 2n− 1 if and only if G = P2.

Proof. Let γt{R3}(G) = 2n− 1. Then Theorem 9 implies 2n− 1 ≤ (3n)/2 and thus n = 2. Clearly, the
statement is valid for P2.
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Corollary 5. For any connected graph G of order n ≥ 3, γt{R3}(G) = 2n− 2 if and only if G ∈ {P3, P4}.

Proof. If G ∈ {P3, P4}, then the statement is valid. Conversely, let γt{R3}(G) = 2n− 2. Then Theorem
9 implies 2n− 2 ≤ (3n)/2 and thus n ≤ 4, with equality if and only if G = P4. In the remaining case
n = 3, we observe that G ∈ {P3, C3} with γt{R3}(P3) = 4 and γt{R3}(C3) = 3, and therefore G = P3.

Next we characterize the graphs G with the property that γt{R3}(G) = 2|V(G)| − 3.

Theorem 10. For any connected graph G of order n ≥ 3, γt{R3}(G) = 2n− 3 if and only if G ∈ {C3, P3 ◦
K1, C3 ◦ K1}.

Proof. If G ∈ {C3, P3 ◦ K1, C3 ◦ K1}, then the statement is valid. Conversely, let γt{R3}(G) = 2n− 3.
If ∆(G) = 2, then G ∈ {Pn, Cn} and we conclude by Observations 1, 2 that G = C3. If ∆(G) = 3,
then γt{R3}(G) = 2n− 3 = 2n− ∆(G) and so by Theorem 6, G ∈ G. Therefore G ∈ {P3 ◦ K1, C3 ◦ K1}.
Let ∆(G) ≥ 4. Then by Theorem, 6 γt{R3}(G) ≤ 2n − ∆(G) = 2n − 4 < 2n − 3. Thus G ∈
{C3, P3 ◦ K1, C3 ◦ K1}, and the proof is complete.

Let H be the family of connected graphs order 5 with ∆(G) = 3 which have exactly one leaf or
the tree T5 consisting of the path v1v2v3v4 such that v2 is adjacent to a further vertex w.

Let F be the family of graphs G = Q ◦ K1 with a connected graph Q of order 4.

Observation 11. If G ∈ {F ,H}, then γt{R3}(G) = 2n− 4.

Proof. Clearly, γt{R3}(T5) = 2n− 4 = 6. Let G ∈ H be of order 5 with exactly one leaf u. If v is the
support vertex of u, then f : V(G) → {0, 1, 2, 3} with f (v) = 2 and f (x) = 1 for x ∈ V(G) \ {v} is a
TR{3}-DF on G and therefore γt{R3}(G) = 6 = 2n− 4 .

If G = Q ◦ K1 with a connected graph Q of order 4, then we have seen in proof of Theorem 9 that
γt{R3}(G) = (3n)/2 = 2n− 4 = 12.

Theorem 12. For any connected graph G of order n ≥ 4, we have γt{R3}(G) = 2n − 4 if and only if
G ∈ {C4, P5} ∪ {claw, paw} ∪H ∪ F where claw is K1,3 and paw is obtained from K1,3 by adding one edge
between two arbitrary distinct vertices.

Proof. Let G ∈ {C4, P5} ∪ {claw, paw} ∪ H ∪ F . By Observations 1, 2 and 11, we have
γt{R3}(G) = 2n− 4.

Conversely, let γt{R3}(G) = 2n− 4. According to Theorem 9, we have 2n− 4 = γt{R3}(G) ≤
(3n)/2 and thus n ≤ 8 with equality if and only if G is the corona H ◦ K1 with a connected graph H of
order 4. Therefore G ∈ F if n = 8. Let now n ≤ 7.

If ∆(G) = 2, then G ∈ {Pn, Cn} and by Observations 1, 2, we have n = 2n− 4 which implies
n = 4 and G = C4, or n + 1 = 2n− 4 which implies n = 5 and G = P5 or n + 2 = 2n− 4 which implies
G = P6. Since γt{R3}(C4) = 4 = 2n− 4 and γt{R3}(P5) = 6 = 2n− 4 but γt{R3}(P6) = 7 6= 2n− 4,
we deduce that G ∈ {C4, P5}.

Let now ∆(G) = 3. Next we discuss the cases n = 4, 5, 6 or n = 7.
If n = 4, then for only two graphs G, the claw and the paw, we have γt{R3}(G) = 4 = 2n− 4.
If n = 5, it is simply verified that γt{R3}(G) = 6 = 2n− 4 if an only if G ∈ H.
If n = 6, then let v be a vertex of degree 3 with the neighbors u1, u2, u3, and let w1 and w2 be the

remaining vertices. Assume, without loss of generality, that w1 is adjacent to u1.
Case 1: Assume that w2 is adjacent to u1. Then f : V(G)→ {0, 1, 2, 3} with f (v) = f (u1) = 3 and

f (x) = 0 for x 6= v, u1 is a TR{3}-DF on G and therefore γt{R3}(G) ≤ 6.
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Case 2: Assume that w2 is adjacent to w1. Then f : V(G) → {0, 1, 2, 3} with f (v) = f (w1) = 3,
f (u1) = 1 and f (x) = 0 for x 6= v, u1, w1 is a TR{3}-DF on G and therefore γt{R3}(G) ≤ 7.

Case 3: Assume that w2 is adjacent to u2 or u3, say u2. If there are no further edges, then
γt{R3}(G) = 9 6= 2n− 4.

Now assume that there are further edges. If w2 is adjacent to u3, then f : V(G) → {0, 1, 2, 3}
with f (u1) = 2 and f (x) = 1 for x 6= u1 is a TR{3}-DF on G and therefore γt{R3}(G) ≤ 7. If w1 is
adjacent to u2, then f : V(G) → {0, 1, 2, 3} with f (v) = f (u2) = 3 and f (x) = 0 for x 6= v, u2 is a
TR{3}-DF on G and therefore γt{R3}(G) ≤ 6. If u1 is adjacent to u2 and there are no further edges,
then γt{R3}(G) = 9 6= 2n− 4. If finally, u3 is adjacent to u2 or u1, say u2, then f : V(G)→ {0, 1, 2, 3}
with f (u1) = f (u2) = 3, f (v) = 1 and f (x) = 0 for x 6= v, u1, u2 is a TR{3}-DF on G and therefore
γt{R3}(G) ≤ 7. Thus we see that there is no graph G of order 6 with γt{R3}(G) = 8 = 2n− 4.

Let now n = 7. If |L(G)| ≤ 2, then define f : V(G) → {0, 1, 2, 3} by f (x) = 2 for x ∈ L(G) and
f (x) = 1 for x ∈ V(G) \ L(G). Then f is a total Roman {3}-dominating function on G of weight
9 < 10 = 2n− 4. If |L(G)| ≥ 4, then define f : V(G) → {0, 1, 2, 3} by f (x) = 0 for x ∈ L(G) and
f (x) = 3 for x ∈ V(G) \ L(G). Then f is a total Roman {3}-dominating function on G of weight
9 < 10 = 2n− 4.
Finally, assume that |L(G)| = 3. If G has exactly 3 support vertices, then define f : V(G)→ {0, 1, 2, 3}
by f (x) = 1 for x ∈ L(G), f (x) = 2 for x ∈ S(G) and f (x) = 0 for the remaining vertex. Then f is
a total Roman {3}-dominating function on G of weight 9 < 10 = 2n− 4. If G has exactly 2 support
vertices, then define f : V(G) → {0, 1, 2, 3} by f (x) = 0 for x ∈ L(G), f (x) = 3 for x ∈ S(G) and
f (x) = 1 for the remaining two vertices. Then f is a total Roman {3}-dominating function on G of
weight 8 < 10 = 2n− 4.
Let ∆(G) = 4. By Theorem 6, γt{R3}(G) = 2n− 4 if and only if G ∈ G ⊆ F .
Let ∆(G) ≥ 5. Then by Theorem 6 γt{R3}(G) ≤ 2n− 5 < 2n− 4. Therefore the proof is complete.

6. Complexity

In this section, we study the complexity of total Roman {3}-domination of graphs. We show that
the total Roman {3}-domination problem is NP-complete for bipartite graphs. Consider the following
decision problem.

Total Roman {3}-domination problem TR3DP.
Instance: Graph G = (V, E), and a positive integer k ≤ |V|.
Question: Does G have a total Roman {3}-domination of weight at most k?

It is well-known that the Exact-3-Cover (X3C) problem is NP-complete. We show that the
NP-completeness of TR3D problem by reducing the Exact-3-Cover (X3C), to TR3D.

EXACT 3-COVER (X3C)
Instance: A finite set X with |X| = 3q and a collection C of 3-element subsets of X.
Question: Is there a subcollection C′ of C such that every element of X appears in exactly one

element of C′?

Theorem 13. TR3D is NP-Complete for bipartite graphs.

Proof. It is clear that TR3DP belongs to NP . Now we show that, how to transform any instance of
X3C into an instance G of TR3D so that, the solution one of them is equivalent to the solution of the
other one. Let X = {x1, x2, · · · , x3r} and C = {C1, C2, · · · , Ct} be an arbitrary instance of X3C.

For each xi ∈ X, we form a graph Gi obtained from a path P5 : yi1-yi2-yi3-yi4-yi5 by adding
the edge yi2 yi5 . For each Cj ∈ C, we form a star K1,5 with center cj for which one leaf is labeled
lj. Let L = {l1, l2, · · · , lt}. Now to obtain a graph G, we add edges ljyi1 if yi1 ∈ Cj. Set k =
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4t + 13r. Let H = 〈⋃3r
i=1 V(Gi)〉 be the subgraph of G induced by the

⋃3r
i=1 V(Gi). Observe that

for every total Roman {3}-dominating function f on G with f (V(Gi)) ≥ 4, all vertices on each
cycle C4 = yi2-yi3-yi4-yi5-yi2 are total Roman {3}-dominated. Moreover, since Gi has a total Roman
{3}-domination number equal to 6, we can assume that f (V(Gi)) ≤ 6. More precisely, if f (V(Gi)) = 6,
then, without loss of generality, we may assume that f (yi2) = f (yi3) = f (yi2) = f (yi3) = 1 and
f (yi1) = 2. If also, f (V(Gi)) ∈ {4, 5}, then obviously at least one vertex of Gi (including yi1) is
not total Roman {3}-dominated. In this case, we can assume that vertices of Gi are assigned as
f (yi2) = f (yi3) = f (yi4) = f (yi5) = 1 so that, only yi1 is not total Roman {3}-dominated and
f (yi1) ∈ {0, 1}.

Suppose that the instance X, C of X3C has a solution C′. We build a total Roman {3}-dominating
function f on G of weight k. For every Cj, assign the value 2 to lj if Cj ∈ C′ and 1 to the other lj if
Cj /∈ C′. Assign value 3 to every cj and value 0 to each leaf adjacent to cj. Finally, for every i, assign 1
to yi2 , yi3 , yi4 , yi5 , and 0 to yi1 of Gi. Since C′ exists, |C′| = r, the number of ljs with weight 2 is r,
having disjoint neighborhoods in {y11 , y21 , · · · , y3r1}, where every yi1 has one neighbors assigned 1
and one neighbor assigned 2. Also since the number of ljs with weight 1 is t− r. Hence, it can be easily
seen that f is a TR3-D function with weight f (V) = 3t + 2r + t− r + 12r = k.

Conversely, let g = (V0, V1, V2, V3) be a total Roman {3}-dominating function of G with weight at
most k. Obviously, every star needs a weight of at least 4, and so without loss of generality, we may
assume that g(cj) = 3 and all the leaves neighbor of cj are assigned 0. Since ljcj ∈ E(G), it implies
that each vertex lj can be assigned by 1. Moreover, for each i, g(V(Gi)) ∈ {4, 6}, as mentioned above.
We can let the vertices of Gi are assigned the values given in the above paragraph depending on
whether g(V(Gi)) = 4 or g(V(Gi)) = 6. Let p be the number of Gis having weight 6. Then g(V(H)) =

6p + 4(3r − p) = 12r + 2p. Now, if g(lj) > 1 for some j, then lj total Roman {3}-dominates some
vertex ys1 , and, in that case, g(lj) = 2 (since g(yi2) = 1). Let z be the number of ljs assigned 2 and t− z
of others be assigned 1. Then 3t + 2z + t− z + 12r + 2p ≤ k = 4t + 13r, implies that z + 2p ≤ q. On the
other hand, since each lj has exactly three neighbors in {x11 , x21 , · · · , x3r1}, we must have 3z ≥ 3r− p.
From these two inequalities, we achieve at p = 0 and then z = q. Consequently, C′ = {Cj : g(lj) = 2}
is an exact cover for C.

7. Open Problems

In the preceding sections a new model of total Roman domination, total Roman {R3}-domination
has been introduced. There are the relationships between the total domination, total Roman
{R2}-domination and total Roman {R3}-domination numbers as follows:

If G is a graph without isolated vertices, then γt(G) + 1 ≤ γt{R3}(G) ≤ 3γt(G), (Proposition 5).
If G is a graph without isolated vertices, then γt{R3}(G) = γt(G) + 1 if and only if G has at

least two vertices of degree ∆ = |V(G)| − 1, in the other words γt{R3}(G) = 3 and γt(G) = 2.
(Proposition 6).

For any positive integer n ≥ 5, there is a graph G of order n in which γt{R3}(G) = γt{R2}(G) +

γt(G), (Proposition 9).
For a family of graphs we have shown that γt{R3}(G) = |V(G)|, (Observation 3).
We have already characterized graphs G in which γt{R3}(G) = 2|V(G)| − r, where 1 ≤ r ≤ 4.

Problems
1. Characterize the graphs G for which γt{R3}(G) = 3γt(G).
2. Does there exist any characterization of graphs G for which γt{R3}(G) = γt(G) + r, where 2 ≤

r ≤ γt(G)− 2?
3. For positive integers n ≥ 5, characterize the graphs G for which γt{R3}(G) = γt{R2}(G) + γt(G).
4. Does there exist any characterization of graphs G for which γt{R3}(G) = |V(G)|?
5. Can one characterize graphs G in which γt{R3}(G) = 2|V(G)| − r for 5 ≤ r ≤ |V(G)| − 1?
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6. Is it possible to construct a polynomial algorithm for computing of γt{R3}(T) for any tree T?
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