Article

Total Roman \{3\}-domination in Graphs

Zehui Shao ${ }^{1}{ }^{(\mathbb{D}}$, Doost Ali Mojdeh ${ }^{2, *}$ (D) and Lutz Volkmann ${ }^{3}$
1 Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China; zshao@gzhu.edu.cn
2 Department of Mathematics, University of Mazandaran, Babolsar 47416-95447, Iran
3 Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany; volkm@math2.rwth-aachen.de
* Correspondence: damojdeh@umz.ac.ir; Tel.: +98-1135302448

Received: 4 January 2020; Accepted: 3 February 2020; Published: 9 February 2020

Abstract

For a graph $G=(V, E)$ with vertex set $V=V(G)$ and edge set $E=E(G)$, a Roman $\{3\}$-dominating function ($\mathrm{R}\{3\}-\mathrm{DF}$) is a function $f: V(G) \rightarrow\{0,1,2,3\}$ having the property that $\sum_{u \in N_{G}(v)} f(u) \geq 3$, if $f(v)=0$, and $\sum_{u \in N_{G}(v)} f(u) \geq 2$, if $f(v)=1$ for any vertex $v \in V(G)$. The weight of a Roman $\{3\}$-dominating function f is the $\operatorname{sum} f(V)=\sum_{v \in V(G)} f(v)$ and the minimum weight of a Roman $\{3\}$-dominating function on G is the Roman $\{3\}$-domination number of G, denoted by $\gamma_{\{R 3\}}(G)$. Let G be a graph with no isolated vertices. The total Roman $\{3\}$-dominating function on G is an $\mathrm{R}\{3\}-\mathrm{DF} f$ on G with the additional property that every vertex $v \in V$ with $f(v) \neq 0$ has a neighbor w with $f(w) \neq 0$. The minimum weight of a total Roman $\{3\}$-dominating function on G, is called the total Roman $\{3\}$-domination number denoted by $\gamma_{t\{R 3\}}(G)$. We initiate the study of total Roman $\{3\}$-domination and show its relationship to other domination parameters. We present an upper bound on the total Roman $\{3\}$-domination number of a connected graph G in terms of the order of G and characterize the graphs attaining this bound. Finally, we investigate the complexity of total Roman $\{3\}$-domination for bipartite graphs.

Keywords: Roman domination; Roman $\{3\}$-domination; Total Roman $\{3\}$-domination

1. Introduction

In this paper, we introduce and study a variant of Roman dominating functions, namely, total Roman $\{3\}$-dominating functions. First we present some necessary terminology and notation. Let $G=(V, E)$ be a graph of order n with vertex set $V=V(G)$ and edge set $E=E(G)$. The open neighborhood of a vertex $v \in V(G)$ is the set $N_{G}(v)=N(v)=\{u: u v \in E(G)\}$. The closed neighborhood of a vertex $v \in V(G)$ is $N_{G}[v]=N[v]=N(v) \cup\{v\}$. The open neighborhood of a set $S \subseteq V$ is the set $N_{G}(S)=N(S)=\bigcup_{v \in S} N(v)$. The closed neighborhood of a set $S \subseteq V$ is the set $N_{G}[S]=N[S]=N(S) \cup S=\bigcup_{v \in S} N[v]$. We denote the degree of v by $d_{G}(v)=d(v)=|N(v)|$. By $\Delta=\Delta(G)$ and $\delta=\delta(G)$, we denote the maximum degree and minimum degree of a graph G, respectively. A vertex of degree one is called a leaf and its neighbor a support vertex. We denote the set of leaves and support vertices of a graph G by $L(G)$ and $S(G)$, respectively. We write K_{n}, P_{n} and C_{n} for the complete graph, path and cycle of order n, respectively. A tree T is an acyclic connected graph. The corona $H \circ K_{1}$ of a graph H is the graph constructed from H, where for each vertex $v \in V(H)$, a new vertex v^{\prime} and a pendant edge $v v^{\prime}$ are added. The union of two graphs G_{1} and $G_{2}\left(G_{1} \cup G_{2}\right)$ is a graph G such that $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$.

A set $S \subseteq V$ in a graph G is called a dominating set if $N[S]=V$. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set in G, and a dominating set of G of cardinality $\gamma(G)$ is called a γ-set of G, [1]. A set $S \subseteq V$ in a graph G is called a total dominating set if $N(S)=V$.

The total domination number $\gamma_{t}(G)$ of G is the minimum cardinality of a total dominating set in G, and a total dominating set of G of cardinality $\gamma_{t}(G)$ is called a γ_{t}-set of G, [2].

Given a graph G and a positive integer m, assume that $g: V(G) \rightarrow\{0,1,2, \ldots, m\}$ is a function, and suppose that $\left(V_{0}, V_{1}, V_{2}, \ldots, V_{m}\right)$ is the ordered partition of V induced by g, where $V_{i}=\{v \in$ $V: g(v)=i\}$ for $i \in\{0,1, \ldots, m\}$. So we can write $g=\left(V_{0}, V_{1}, V_{2}, \ldots, V_{m}\right)$. A Roman dominating function on graph G is a function $f: V \rightarrow\{0,1,2\}$ such that if $v \in V_{0}$ for some $v \in V$, then there exists a vertex $w \in N(v)$ such that $w \in V_{2}$. The weight of a Roman dominating function (RDF) is the sum $w_{f}=\sum_{v \in V(G)} f(v)$, and the minimum weight of w_{f} for every Roman dominating function f on G is called the Roman domination number of G, denoted by $\gamma_{R}(G)$, see also [3].

Let G be a graph with no isolated vertices. The total Roman dominating function (TRDF) on G, is an $\operatorname{RDF} f$ on G with the additional property that every vertex $v \in V$ with $f(v) \neq 0$ has a neighbor w with $f(w) \neq 0$. The minimum weight of any TRDF on G is called the total Roman domination number of G denoted by $\gamma_{t R}(G)$. A TRDF on G with weight $\gamma_{t R}(G)$ is called a $\gamma_{t R}(G)$-function.

The mathematical concept of Roman domination, is originally defined and discussed by Stewart [4] in 1999, and ReVelle and Rosing [5] in 2000. Recently, Chellali et al. [6] have introduced the Roman $\{2\}$-dominating function f as follows. A Roman $\{2\}$-dominating function is a function $f: V \rightarrow\{0,1,2\}$ such that for every vertex $v \in V$, with $f(v)=0, f(N(v)) \geq 2$ where $f(N(v))=\sum_{x \in N(v)} f(x)$, that is, either v has a neighbor u with $f(u)=2$, or has two neighbors x, y with $f(x)=f(y)=1$ [7].

In terms of the Roman Empire, this defense strategy requires that every location with no legion has a neighboring location with two legions, or at least two neighboring locations with one legion each.

Note that for a Roman $\{2\}$-dominating function ($\operatorname{R}\{2\}-D F) f$, and for some vertex v with $f(v)=1$, it is possible that $f(N(v))=0$. The sum $w_{f}=\sum_{v \in V(G)} f(v)$ is denoted the weight of a Roman $\{2\}$-dominating function, and the minimum weight of a Roman $\{2\}$-dominating function f is the Roman $\{2\}$-domination number, denoted by $\gamma_{\{R 2\}}(G)$. Roman $\{2\}$-domination is a generalization of Roman domination that has also studied by Henning and Klostermeyer [8] with the name Italian domination.

The total Roman $\{2\}$-domination for graphs are defined as follows [9]. Let G be a graph without isolated vertices. Then $f: V \rightarrow\{0,1,2\}$ is total Roman $\{2\}$-dominating function (TR\{2\}-DF) if it is a Roman $\{2\}$-dominating function and the subgraph induced by the positive weight vertices has no isolated vertex. The minimum weight $w_{f}=\sum_{v \in V(G)} f(v)$ of a any total Roman $\{2\}$-dominating function of a graph G is called the total Roman $\{2\}$-domination number of G and is denoted by $\gamma_{t\{R 2\}}(G)$. Beeler et al. [10] have defined double Roman domination.

A double Roman dominating function (DRDF) on a graph G is a function $f: V \rightarrow\{0,1,2,3\}$ such that the following conditions are hold:
(a) if $f(v)=0$, then the vertex v must have at least two neighbors in V_{2} or one neighbor in V_{3}.
(b) if $f(v)=1$, then the vertex v must have at least one neighbor in $V_{2} \cup V_{3}$.

The weight of a double Roman dominating function is the sum $w_{f}=\sum_{v \in V(G)} f(v)$, and the minimum weight of w_{f} for every double Roman dominating function f on G is called the double Roman domination number of G. We denote this number with $\gamma_{d R}(G)$ and a double Roman dominating function of G with weight $\gamma_{d R}(G)$ is called a $\gamma_{d R}(G)$-function of G, see also [11].

Hao et al. [12] have recently defined total double Roman domination. The total double Roman dominating function (TDRDF) on a graph G with no isolated vertex is a DRDF f on G with the additional property that the subgraph of G induced by the set $\{v \in V(G): f(v) \neq 0\}$ has no isolated vertices. The total double Roman domination number $\gamma_{t d R}(G)$ is the minimum weight of a TDRDF on G. A TDRDF on G with weight $\gamma_{t d R}(G)$ is called a $\gamma_{t d R}(G)$-function. Mojdeh et al. [13] have recently defined the Roman $\{3\}$-dominating function correspondingly to the Roman $\{2\}$-dominating function of graphs. For a graph G, a Roman $\{3\}$-dominating function ($\mathrm{R}\{3\}$ - DF) is a function $f: V \rightarrow\{0,1,2,3\}$ having the property that $f(N[u]) \geq 3$ for every vertex $u \in V$ with $f(u) \in\{0,1\}$. Formally, a Roman
$\{3\}$-dominating function $f: V \rightarrow\{0,1,2,3\}$ has the property that for every vertex $v \in V$, with $f(v)=$ 0 , there exist at least either three vertices in $V_{1} \cap N(v)$, or one vertex in $V_{1} \cap N(v)$ and one in $V_{2} \cap N(v)$, or two vertices in $V_{2} \cap N(v)$, or one vertex in $V_{3} \cap N(v)$ and for every vertex $v \in V$, with $f(v)=1$, there exist at least either two vertices in $V_{1} \cap N(v)$, or one vertex in $\left(V_{2} \cup V_{3}\right) \cap N(v)$. This notion has been defined recently by Mojdeh and Volkmann [13] as Roman \{3\}-domination.

The weight of a Roman $\{3\}$-dominating function is the sum $w_{f}=f(V)=\sum_{v \in V} f(v)$, and the minimum weight of a Roman $\{3\}$-dominating function f is the Roman $\{3\}$-domination number, denoted by $\gamma_{\{R 3\}}(G)$.

Now we introduce the total Roman $\{3\}$-domination concept to consider such situation.
Definition 1. Let G be a graph G with no isolated vertex. The total Roman \{3\}-dominating function $(T R\{3\}-D F)$ on G is an $R\{3\}-D F f$ on G with the additional property that every vertex $v \in V$ with $f(v) \neq 0$ has a neighbor w with $f(w) \neq 0$, in the other words, the subgraph of G induced by the set $\{v \in V(G): f(v) \neq 0\}$ has no isolated vertices. The minimum weight of a total Roman $\{3\}$-dominating function on G is called the total Roman $\{3\}$-domination number of G denoted by $\gamma_{t\{R 3\}}(G)$. $A \gamma_{t\{R 3\}}(G)$-function is a total Roman $\{3\}$-dominating function on G with weight $\gamma_{t\{R 3\}}(G)$.

In this paper We study of total Roman \{3\}-domination versus to other domination parameters. We present an upper bound on the total Roman $\{3\}$-domination number of a connected graph G in terms of the order of G and characterize the graphs attaining this bound. Finally, we investigate the complexity of total Roman $\{3\}$-domination for bipartite graphs.

2. Total Roman $\{3\}$-domination of Some Graphs

First we easily see that $\gamma_{\{R 3\}}(G) \leq \gamma_{t\{R 3\}}(G) \leq \gamma_{t d R}(G)$, because by the definitions every total Roman $\{3\}$-dominating function is a Roman $\{3\}$-dominating function and every total double Roman dominating function is a total Roman $\{3\}$-dominating function.

In [10] we have.
Proposition 1. ([10] Proposition 2) Let G be a graph and $f=\left(V_{0}, V_{1}, V_{2}\right)$ a γ_{R}-function of G. Then $\gamma_{d R}(G) \leq 2\left|V_{1}\right|+3\left|V_{2}\right|$. This bound is sharp.

As an immediate result we also have:
Corollary 1. Let G be a graph and $f=\left(V_{0}, V_{1}, V_{2}\right)$ a total Roman $\{2\}$-dominating function or a Roman dominating function for which the induced subgraph by $V_{1} \cup V_{2}$ has no isolated vertex. Then $\gamma_{t\{R 3\}}(G) \leq$ $2\left|V_{1}\right|+3\left|V_{2}\right|$. This bound is sharp.

For some special graphs we obtain the total Roman $\{3\}$-domination numbers.
Observation 1. Let $n \geq 2$. Then $\gamma_{t\{R 3\}}\left(P_{n}\right)=\left\{\begin{array}{cc}n+2 & \text { if } n \equiv 1(\bmod 3) \\ n+1 & \text { otherwise }\end{array}\right.$,
Proof. Let $P_{n}=v_{1} v_{2} \ldots v_{n}$. Since by assigning 2 to the vertices v_{1} and v_{n} and value 1 to the other vertices, we have $\gamma_{t\{R 3\}}\left(P_{n}\right) \leq n+2$. Since $f\left(v_{1}\right)+f\left(v_{2}\right) \geq 3$ and $f\left(v_{n-1}\right)+f\left(v_{n}\right) \geq 3, f\left(v_{i-1}\right)+$ $f\left(v_{i}\right)+f\left(v_{i+1}\right) \geq 3$ for $4 \leq i \leq n-3, f\left(v_{i-1}\right)+f\left(v_{i}\right)+f\left(v_{i+1}\right)+f\left(v_{i+2}\right) \geq 3$ for $4 \leq i \leq n-4$ and $f\left(v_{i-2}\right)+f\left(v_{i-1}\right)+f\left(v_{i}\right)+f\left(v_{i+1}\right)+f\left(v_{i+2}\right) \geq 4$ for $5 \leq i \leq n-4$, we observe that $\gamma_{t\{R 3\}}\left(P_{n}\right) \geq$ $n+1$ and $\gamma_{t\{R 3\}}\left(P_{n}\right) \geq n+2$ if $n \equiv 1(\bmod 3)$. If $n=3 k$, then by assigning 1 to $v_{3 t+1}$ and $v_{n}, 2$ to $v_{3 t+2}, 0$ to $v_{3 t}$ except v_{n}, we have $\gamma_{t\{R 3\}}\left(P_{n}\right) \geq 3 k+1=n+1$. If $n=2+3 k$, then by assigning 1 to $v_{3 t+1}$, 2 to $v_{3 t+2}, 0$ to $v_{3 t}$, we have $\gamma_{t\{R 3\}}\left(P_{n}\right) \geq 3 k+1=n+1$. Thus the proof is complete.

In [10], it has been shown that $\gamma_{d R}\left(C_{n}\right)=n$ if $n \equiv 0,2,3,4(\bmod 6)$ and otherwise $\gamma_{d R}\left(C_{n}\right)=$ $n+1$ and since $\gamma_{t d R}(G) \geq \gamma_{d R}(G)$, we deduce that $\gamma_{t d R}\left(C_{n}\right) \geq n$.

Here we show that $\gamma_{t\{R 3\}}\left(C_{n}\right)=n$ for all $n \geq 3$. If we assign weight 1 to every vertex of C_{n}, then it is a total Roman $\{3\}$-dominating function of C_{n}. Hence $\gamma_{t\{R 3\}}\left(C_{n}\right) \leq n$. In [13], we have shown that $\gamma_{\{R 3\}}\left(C_{n}\right)=n$. Since $\gamma_{\{R 3\}}\left(C_{n}\right) \leq \gamma_{t\{R 3\}}\left(C_{n}\right)$, we obtain the desired result.

Observation 2. $\gamma_{t\{R 3\}}\left(C_{n}\right)=n$
The next result shows another family of graphs G with $\gamma_{t\{R 3\}}(G)=|V(G)|$. Let C_{n} be a cycle with vertices $v_{1}, v_{2}, \ldots, v_{n}$ and P_{m} be a path with vertices $u_{1}, u_{2}, \ldots, u_{m}$ for which $u_{1}=v_{1}$ and for some $2 \leq i \leq m, u_{i} \neq v_{j}$. Let H be a graph obtained from a cycle C_{n} and k paths like $P_{m_{1}}, P_{m_{2}}, \ldots, P_{m_{k}}$ ($1 \leq k \leq n$) such that the first vertex of any path $P_{m_{i}}$ must be v_{i}. Let G be a graph consisting of m graphs like H such that any both of them have at most one common vertex on their cycles. Figure 1 is a sample of graph G is formed of 4 cycles and 15 paths $P_{m_{i}}$, where $m_{i} \equiv 1(\bmod 3)$.

Figure 1. A sample of graph G.
Observation 3. Let G be the graph constructed as above. If $P_{m_{i}}$ with vertices $u_{1_{i}}, u_{2_{i}}, \ldots, u_{m_{i}}$ is a path such that $3 \mid\left(m_{i}-1\right)$, then $\gamma_{t\{R 3\}}(G)=|V(G)|$

Proof. Let f be a function that assign value 1 to every vertex of the cycles and if $3 \mid\left(m_{i}-1\right)$, we assign value 2 to vertices with indices $3 t$, value 1 to vertices with indices $3 t+1$, ($1 \leq t \leq \frac{m_{i}-1}{3}$) and value 0 to the other vertices of the path $P_{m_{i}}$, except to the common vertex $u_{1_{i}}=v_{i}$ of the cycle. Therefore $\gamma_{t\{R 3\}}(G)=|V(G)|$.

Let C_{n} be a cycle and P_{m} be a path with m vertices and let the first vertex of P_{m} be the vertex v_{i} of C_{n}. If $3 \mid m_{i}$ or $3 \mid\left(m_{i}-2\right)$, then $\gamma_{t\{R 3\}}\left(C_{n} \cup P_{m}\right)=\left|V\left(C_{n} \cup P_{m}\right)\right|+1$. Therefore we have the following result.

Corollary 2. In the graphs constructed above, if there are l paths $P_{m_{1}}, P_{m_{2}}, \ldots, P_{m_{l}}$ such that $3 \mid m_{i}$ or $3 \mid\left(m_{i}-2\right)$ for $1 \leq m_{i} \leq l$, then $\gamma_{t\{R 3\}}(G)=|V(G)|+l$.

The Observation 3 and Corollary 2 show that for every nonnegative integer k, there is a graph G such that $\gamma_{t\{R 3\}}(G)=|V(G)|+k$.

Proposition 2. If G is a connected graph of order $n \geq 2$, then $\gamma_{t\{R 3\}}(G) \geq 3$ and $\gamma_{t\{R 3\}}(G)=3$ if and only if G has at least two vertices of degree $\Delta(G)=n-1$.

Proof. If $n=2$, then the statement is clear. Let now $n \geq 3$ and let $f=\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ be a total Roman $\{3\}$-dominating function on G of weight $\gamma_{\{R 3\}}(G)$. If $V_{0} \neq \varnothing$, then $\sum_{u \in N(v)} f(u) \geq 3$ for a vertex
$v \in V_{0}$ and thus $\gamma_{t\{R 3\}}(G) \geq 3$. If $V_{0}=\varnothing$, then $f(x) \geq 1$ for each vertex $x \in V(G)$ and therefore $\gamma_{t\{R 3\}}(G) \geq n \geq 3$.

If G has at least two vertices of degree $\Delta(G)=n-1$, then we may assume v and u are two adjacent vertices of maximum degree. Define the function f by $f(v)=1, f(u)=2$ and $f(x)=0$ for $x \in V(G) \backslash\{v, u\}$. Then f is a total Roman $\{3\}$-dominating function on G of weight 3 and hence $\gamma_{t\{R 3\}}(G)=3$.

Conversely, assume that $\gamma_{t\{R 3\}}(G)=3$. Then there are two adjacent vertices v, u with weights 1 and 2 respectively, for which $n-2$ vertices with weight 0 are adjacent to them, or there are three mutuality adjacent vertices u, v, w with weights 1 for which $n-3$ vertices with weight 0 are adjacent to them. Therefore there are at least two vertices of degree $n-1$.

As an immediate result we have:

Corollary 3. If G has only one vertex of degree $\Delta(G)=n-1$, then $\gamma_{t\{R 3\}}(G)=4$.
In the follow, total Roman $\{3\}$-domination and total double Roman domination numbers are compared.

Since any partite set of a bipartite graph is an independent set, the weight of total Roman $\{3\}$-domination number of any partite set is positive. Therefore we have the following.

Proposition 3. For any complete bipartite graph we have.

1. $\gamma_{t\{R 3\}}\left(K_{1, n}\right)=4$,
2. $\gamma_{t\{R 3\}}\left(K_{m, n}\right)=5$ for $m \in\{2,3\}$ and $n \geq 3$.
3. $\gamma_{t\{R 3\}}\left(K_{m, n}\right)=\gamma_{d R}\left(K_{m, n}\right)=6$ for $m, n \geq 4$.

Proof. In any complete bipartite graph, let $V(G)=U \cup W$, where U is the small partite set and W is the big partite set.

1. This follows from Corollary 3.
2. We consider two cases.
(i) Let $U=\left\{u_{1}, u_{2}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$. Let f be a $\operatorname{TR}\{3\} \operatorname{DF}$ of $K_{2, n}$. If $f(W)=2$, then $f(U) \geq 3$. If $f(W)=3$, then $f(U) \geq 2$. If $f(W) \geq 4$, since $f(U)$ is positive, then $f(V) \geq 5$. Therefore $f(V) \geq 5$. Assigning $f\left(u_{1}\right)=2, f\left(u_{2}\right)=1$ and $f\left(w_{1}\right)=2$, shows that $\gamma_{t\{R 3\}}\left(K_{2, n}\right) \leq 5$.
(ii) Let $U=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$. Using sketch of the proof of item 2 , $\gamma_{t\{R 3\}}\left(K_{3, n}\right) \geq 5$. If we assign value 1 to the vertices u_{1}, u_{2}, u_{3}, weight 2 to w_{1} and 0 to w_{j}, for $j \geq 2$, then $\gamma_{t\{R 3\}}\left(K_{3, n}\right) \leq 5$.
3. The function f with $f\left(u_{1}\right)=3=f\left(w_{1}\right)$ and $f\left(u_{i}\right)=0=f\left(u_{j}\right)$ for $i, j \neq 1$ is a $\operatorname{TR}\{3\} \operatorname{DF}$ for $K_{m, n}$. Therefore $\gamma_{t\{R 3\}}\left(K_{m, n}\right) \leq 6$.

Now let f be a $\gamma_{t\{R 3\}}$ function of $K_{m, n}$ for $m, n \geq 4$. If $m, n \geq 5$, then it is easy to see that f should be assigned 0 to at least one vertex of each partite set. Therefore every partite set must have weight at least 3. If, without loss of generality, $n=4$, then let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. If $f\left(u_{i}\right) \geq 1$ for $1 \leq i \leq 4$, then $f\left(u_{i}\right)=1$ for $1 \leq i \leq 4$ and thus $f(W) \geq 2$. So $f(V) \geq 6$ and therefore $\gamma_{t\{R 3\}}\left(K_{m, n}\right) \geq 6$, and the proof is complete.

One can obtain a similar result for complete r-partite graphs for $r \geq 3$.
Proposition 4. Let $G=K_{n_{1}, n_{2}, \ldots, n_{r}}$ be the complete r-partite graph with $r \geq 3$ and $n_{1} \leq n_{2} \leq \cdots \leq n_{r}$. Then:

1. If $n_{1}=n_{2}=1$, then $\gamma_{t\{R 3\}}(G)=3$.
2. If $n_{1}=1$ and $n_{2} \geq 2$, then $\gamma_{t\{R 3\}}(G)=4$.
3. If $n_{1}=2$ or $n_{1} \geq 3$ and $r \geq 4$, then $\gamma_{t\{R 3\}}(G)=4$.
4. If $r=3$ and $n_{1} \geq 3$, then $\gamma_{t\{R 3\}}(G)=5$.

Proof. Let $V=\bigcup_{i=1}^{r} U_{i}$ where U_{i} is the i th partite set with vertices $\left\{u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{n_{i}}}\right\}$.

1. This follows from Proposition 2.
2. This follows from Corollary 3.
3. Let $n_{1} \geq 2$. By Proposition 2, we have $\gamma_{t\{R 3\}}(G) \geq 4$. If $n_{1}=2$, then define $f\left(u_{1_{1}}\right)=f\left(u_{1_{2}}\right)=$ $f\left(u_{2_{1}}\right)=f\left(u_{3_{1}}\right)=1$ and $f(v)=0$ otherwise. Then f is a TR\{3\}-DF on G with $f(V)=4$ and thus $\gamma_{t\{R 3\}}(G)=4$. Now let $n_{1} \geq 3$ and $r \geq 4$. Then any TR\{3\}-DF f on G with $f\left(u_{1_{1}}\right)=$ $f\left(u_{2_{1}}\right)=f\left(u_{3_{1}}\right)=f\left(u_{4_{1}}\right)=1$ and $f(v)=0$ for the other vertices, is a $\gamma_{t\{R 3\}}$ function on G. Therefore $\gamma_{t\{R 3\}}(G)=4$.
4. Let $n_{1} \geq 3$ and $r=3$, and let f be a TR\{3\}-DF function on G. Since two partite sets must have positive weight, we can assume $f\left(U_{2}\right) \geq 1$. If $f\left(U_{2}\right)=1$, then $f\left(U_{1} \cup U_{3}\right) \geq 4$. If $f\left(U_{2}\right)=2$, then $f\left(U_{1} \cup U_{3}\right) \geq 3$. If $f\left(U_{2}\right)=3$, then $f\left(U_{1} \cup U_{3}\right) \geq 2$. If $f\left(U_{2}\right) \geq 4$, then $f\left(U_{1} \cup U_{3}\right) \geq 1$. Thus $f(V) \geq 5$. Conversely, define $f\left(u_{1_{1}}\right)=f\left(u_{2_{1}}\right)=2$ and $f\left(u_{3_{1}}\right)=1$ and $f(v)=0$ otherwise. Then f is a TR\{3\}-DF on G with $f(V)=5$ and so $\gamma_{t\{R 3\}}(G)=5$.

Theorem 4. If G is a graph with $\delta(G)=\delta \geq 2$, then $\gamma_{t\{R 3\}}(G) \leq|V(G)|+2-\delta$, and this bound is sharp.
Proof. Let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$, and let v be a vertex of degree δ with neighbors $\left\{u_{1}, u_{2}, \ldots, u_{\delta}\right\}$. Let $U=\left\{v, u_{\delta+2}, u_{\delta+3}, \ldots, u_{n}\right\} \cup\left\{u_{1}, u_{2}\right\}$. Define the function f by $f(x)=1$ for $x \in U$ and $f(x)=0$ for $x \in V(G) \backslash U$. Then $\sum_{x \in N(u)} f(x) \geq 2$ for $u \in U$ and $\sum_{x \in N(u)} f(x) \geq 3$ for $u \in V(G) \backslash U$. Therefore f is a total Roman $\{3\}$-dominating function on G of weight $n+2-\delta$ and thus $\gamma_{t\{R 3\}}(G) \leq$ $|V(G)|+2-\delta$.

According to Observation 2 and Propositions 3 and 8, we note that $\gamma_{t\{R 3\}}\left(C_{n}\right)=n=\left|V\left(C_{n}\right)\right|+$ $2-\delta\left(C_{n}\right), \gamma_{t\{R 3\}}\left(K_{n}\right)=3=\left|V\left(K_{n}\right)\right|+2-\delta\left(K_{n}\right)$ for $n \geq 3, \gamma_{t\{R 3\}}\left(K_{3,3}\right)=5=\left|V\left(K_{3,3}\right)\right|+2-$ $\delta\left(K_{3,3}\right), \gamma_{t\{R 3\}}\left(K_{4,4}\right)=6=\left|V\left(K_{4,4}\right)\right|+2-\delta\left(K_{4,4}\right), \gamma_{t\{R 3\}}\left(K_{3,3,3}\right)=5=\left|V\left(K_{3,3,3}\right)\right|+2-\delta\left(K_{3,3,3}\right)$ and $\gamma_{t\{R 3\}}\left(K_{n_{1}, n_{2}, \ldots, n_{r}}\right)=4=\left|V\left(K_{n_{1}, n_{2}, \ldots, n_{r}}\right)\right|+2-\delta\left(K_{n_{1}, n_{2}, \ldots, n_{r}}\right)$ for $r \geq 4$ and $n_{1} \leq n_{2} \leq \cdots \leq n_{r}=2$. All these examples demonstrate that the inequality $\gamma_{t\{R 3\}}(G) \leq|V(G)|+2-\delta$ is sharp.

Hao et al. defined in [12] the family of graphs \mathcal{G} as follows and have proved Theorem 5 below. Let \mathcal{G} be the family of graphs that can be obtained from a star $S_{t}=K_{1, t-1}$ of order $t \geq 2$ by adding a pendant edge to each vertex of $V\left(S_{t}\right)$ and adding any number of edges joining the leaves of S_{t}.

Theorem 5. [12] For any connected graph G of order $n \geq 2$,

$$
\gamma_{t d R}(G) \leq 2 n-\Delta
$$

with equality if and only if $G \in\left\{P_{2}, P_{3}, C_{3}\right\} \cup \mathcal{G}$.
This theorem with a little changing may be explored as follows.
Theorem 6. For any connected graph G of order $n \geq 2$,

$$
\gamma_{t\{R 3\}}(G) \leq 2 n-\Delta
$$

with equality if and only if $G \in\left\{P_{2}, P_{3}\right\} \cup \mathcal{G}$.

3. Total Roman $\{3\}$-domination and Total Domination

In this section we study the relationship between total domination and total Roman $\{3\}$-domination of a graph.

In [10] (Proposition 8) the authors proved that, if G is a graph, then $2 \gamma(G) \leq \gamma_{d R}(G) \leq 3 \gamma(G)$. If we use the method of the proof of Proposition 8 of [10], then it is easy to show that: If G is a graph with a $\gamma_{\{R 3\}}$-function $f=\left(V_{0}, V_{2}, V_{3}\right)$, then $2 \gamma(G) \leq \gamma_{\{R 3\}}(G) \leq 3 \gamma(G)$. In [13] Proposition 17 authors proved that:
If G is a graph, then $\gamma(G)+2 \leq \gamma_{\{R 3\}}(G) \leq 3 \gamma(G)$, and these bounds are sharp. However, we have the following.

Proposition 5. If G is a graph without isolated vertices, then $\gamma_{t}(G)+1 \leq \gamma_{t\{R 3\}}(G) \leq 3 \gamma_{t}(G)$.
Proof. Let S be a γ_{t}-set of G. Then $\left(V_{0}=V \backslash S, \varnothing, \varnothing, V_{3}=S\right)$ is a $\gamma_{t\{R 3\}}$-function of G. Therefore $\gamma_{t\{R 3\}}(G) \leq 3 \gamma_{t}(G)$.
For the lower bound, let $f=\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ be a $\gamma_{t\{R 3\}}$-function of G. We distinguish two cases.
Case 1. Let $\left|V_{2}\right| \geq 1$ or $\left|V_{3}\right| \geq 1$. Then $\gamma_{t}(G) \leq\left|V_{1}\right|+\left|V_{2}\right|+\left|V_{3}\right| \leq\left|V_{1}\right|+2\left|V_{2}\right|+3\left|V_{3}\right|-1=$ $\gamma_{t\{R 3\}}(G)-1$.

Case 2. Let $V_{2}=V_{3}=\varnothing$. By the definition, $\delta\left(G\left[V_{1}\right]\right) \geq 2$. Therefore, for each vertex $v \in$ V_{1}, the subgraph $G\left[V_{1} \backslash\{v\}\right]$ does not contain an isolated vertex. Consequently, $V_{1} \backslash\{v\}$ is total dominating set of G and hence $\gamma_{t}(G) \leq \gamma_{t\{R 3\}}(G)-1$.

By Proposition 5 the question may arise as whether for any positive integer r, exists a graph G for which $\gamma_{t\{R 3\}}(G)=\gamma_{t}(G)+r$, where $1 \leq r \leq 2 \gamma_{t}(G)$. For $r=1$ we have. If G is a connected graph of order $n \geq 2$ with at least two vertices of maximum degree $\Delta(G)=n-1$, then Proposition 2 implies that $\gamma_{t\{R 3\}}(G)=3$. Since $\gamma_{t}(G)=2$ for such graphs, we observe that $\gamma_{t\{R 3\}}(G)=\gamma_{t}(G)+1$.

Proposition 6. If G is a graph without isolated vertices, then $\gamma_{t\{R 3\}}(G)=\gamma_{t}(G)+1$ if and only if G has at least two vertices of degree $\Delta=|V(G)|-1$, in the other words $\gamma_{t\{R 3\}}(G)=3$ and $\gamma_{t}(G)=2$.

Proof. The part "if" has been proved. Part "only if": Let G be a graph with $\gamma_{t\{R 3\}}(G)=\gamma_{t}(G)+1$. Let $f=\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ be a $\gamma_{t\{R 3\}}(G)$ function. Therefore $V_{1} \cup V_{2} \cup V_{3}$ is a total dominating set for G, and $\left|V_{1}\right|+\left|V_{2}\right|+\left|V_{3}\right| \geq \gamma_{t}(G)=\gamma_{t\{R 3\}}(G)-1=\left|V_{1}\right|+2\left|V_{2}\right|+3 V_{3} \mid-1$. Therefore $\left|V_{2}\right|+2\left|V_{3}\right| \leq 1$ that is $\left|V_{2}\right| \leq 1$ and $\left|V_{3}\right|=0$. If $\left|V_{2}\right|=1=\left|V_{1}\right|$ or $\left|V_{2}\right|=0$ and $\left|V_{1}\right|=3$, then G has at least two vertices of degree $\Delta(G)=|V(G)|-1$. Now we show that there are not any cases for G. On the contrary, we suppose that there are different cases. (1) $\left|V_{2}\right|=1$ and $\left|V_{1}\right| \geq 2$. (2) $\left|V_{2}\right|=0$ and $\left|V_{1}\right| \geq 4$. Case 1. Let $V_{2}=\{v\},\left|V_{1}\right| \geq 2$. Assume first that there exist two vertices $v_{1}, v_{2} \in V_{1}$ which are adjacent to the vertex v. Then $V_{2} \cup V_{1} \backslash\left\{v_{1}\right\}$ is a $\gamma_{t}(G)$-set of size $\left|V_{1}\right|$ and so $\gamma_{t\{R 3\}}(G)=2+\left|V_{1}\right|$, a contradiction. Assume next that there exists only one vertex, say $v_{1} \in V_{1}$, which is adjacent to v. Then all other vertices of V_{1} have at least two neighbors in V_{1}. If $v_{2} \in V_{1}$ with $v_{2} \neq v_{1}$, then we observe that $V_{2} \cup V_{1} \backslash\left\{v_{2}\right\}$ is a $\gamma_{t}(G)$-set of size $\left|V_{1}\right|$. It follows that $\gamma_{t\{R 3\}}(G)=2+\left|V_{1}\right|$, a contradiction.

Case 2. Let $\left|V_{2}\right|=0$ and $\left|V_{1}\right| \geq 4$. Then there exist two vertices v_{1}, v_{2} in which each of them has neighbors in $V_{1} \backslash\left\{v_{1}, v_{2}\right\}$ and $G\left(V_{1} \backslash\left\{v_{1}, v_{2}\right\}\right)$ has no isolated vertex. Therefore $V_{1} \backslash\left\{v_{1}, v_{2}\right\}$ is a $\gamma_{t}(G)$-set that is also a contradiction.

Now we show that for any positive integer n and integer $2 \leq r \leq 2 n$, there exists a graph G for which $\gamma_{t}(G)=n$ and $\gamma_{t\{R 3\}}(G)=n+r$.

Proposition 7. Let n and r be positive integers with $2 \leq r \leq 2 n$. Then there exists a graph G for which $\gamma_{t}(G)=n$ and $\gamma_{t\{R 3\}}(G)=n+r$.

Proof. For graph G with $\gamma_{t}(G)=n$ and $\gamma_{t\{R 3\}}(G)=n+2$, we consider the following graph. Let H be the graph consisting of a cycle C_{n+2} with $n \geq 3$ and a vertex set V_{0} of $\binom{n+2}{3}$ further vertices. Let each vertex of V_{0} be adjacent to 3 vertices of $V\left(C_{n+2}\right)$ such that the neighborhoods of every two distinct vertices of V_{0} are different. Let $V_{1}=V\left(C_{n+2}\right)$. Then $\gamma_{t\{R 3\}}(H)=n+2$ and $\gamma_{t}(H)=n$ (Figure 2).

Figure 2. A graph H with $n=3$.
For $\gamma_{t}(G)=n$ and $\gamma_{t\{R 3\}}(G)=n+k$, where $3 \leq k \leq n-1$. Let $k=3$. For $\gamma_{t}(G)=4$ and $\gamma_{t\{R 3\}}(G)=7$, we consider the cycle C_{7}. For $\gamma_{t}(G) \geq 5$, let H be the above graph where $\gamma_{t}(H)=n \geq 3$ and $\gamma_{t\{R 3\}}(H)=n+2 \geq 5$. Now we consider $G=H \cup K_{3}$. Then $\gamma_{t}(G) \geq n \geq 4$ and $\gamma_{t\{R 3\}}(G)=n+3$.

Let $k=4$. For $\gamma_{t}(G)=5$ and $\gamma_{t\{R 3\}}(G)=9$, we consider the cycle C_{9}. For $\gamma_{t}(G) \geq 6$, consider the graphs G^{\prime} with $\gamma_{t\{R 3\}}\left(G^{\prime}\right)=\gamma_{t}\left(G^{\prime}\right)+3$ for $\gamma_{t}\left(G^{\prime}\right) \geq 4$. Now we let $G=G^{\prime} \cup K_{3}$. Then we have $\gamma_{t\{R 3\}}(G)=\gamma_{t}(G)+4$.

For $5 \leq k \leq n-1$ we use induction on k. Let for any integer $4 \leq m \leq k-1$ there exist graphs G^{\prime} such that $\gamma_{t\{R 3\}}(G)=\gamma_{t}(G)+m$ for $\gamma_{t}(G) \geq m+1$. Let $m=k$. For $\gamma_{t}(G)=k+1$ and $\gamma_{t\{R 3\}}(G)=2 k+1$, we consider the cycle $C_{2 k+1}$. For graphs G with $\gamma_{t\{R 3\}}(G)=\gamma_{t}(G)+k$ for $\gamma_{t}(G) \geq k+2$, using hypothesis of induction, let G^{\prime} be the graphs with $\gamma_{t\{R 3\}}\left(G^{\prime}\right)=\gamma_{t}\left(G^{\prime}\right)+k-1$ with $\gamma_{t}\left(G^{\prime}\right) \geq k$. Now we let $G=G^{\prime} \cup K_{3}$. It can be seen $\gamma_{t\{R 3\}}(G)=\gamma_{t}(G)+k$ for $\gamma_{t}(G) \geq k+2$.

We now verify the case of $\gamma_{t\{R 3\}}(G)=2 \gamma_{t}(G)+r$ for $0 \leq r \leq \gamma_{t}(G)$, that is, we wish to show the existence of graphs G, so that $\gamma_{t}(G)=n$ and $\gamma_{t\{R 3\}}(G)=2 n+r$ for $0 \leq r \leq n$. Let $r=0$. For even n, let $G=C_{2 n}$. Then $\gamma_{t}(G)=n$ and $\gamma_{t\{R 3\}}(G)=2 n$.
For odd $n=2 k+1$, if $2 n \equiv 1(\bmod 3)$ or $2 n \equiv 0(\bmod 3)$, then we let $G=P_{2 n-1}$, and by Observation 1 , it can be seen that $\gamma_{t}(G)=n$ and $\gamma_{t\{R 3\}}(G)=2 n$.
If $2 n \equiv 2(\bmod 3)$, consider a cycle $C_{2 n-1}$ with an additional vertex a that is adjacent to two vertices v_{1} and v_{2}. Then $\gamma_{t}(G)=n$ and $\gamma_{t\{R 3\}}(G)=2 n$.

For $r=1$ and positive even integer n, consider $G=\left(\frac{n}{2}-1\right) P_{3} \cup C_{5}^{+}$, where $\left(\frac{n}{2}-1\right) P_{3}$ is the union of $\frac{n}{2}-1$ of path P_{3} and C_{5}^{+}is the cycle C_{5} with a chord, then $\gamma_{t}(G)=n$ and $\gamma_{t\{R 3\}}(G)=2 n+1$. For $r=1$ and positive odd integer n, consider $G=\left(\frac{n-1}{2}-1\right) P_{3} \cup P_{5}^{+}$where P_{5}^{+}is the path P_{5} with an additional vertex adjacent to the second or fourth vertex of P_{5}, then $\gamma_{t}(G)=n$ and $\gamma_{t\{R 3\}}(G)=2 n+1$.

For $2 \leq r \leq n-1$, we do as follows. Let $r=2$ and so $n \geq 3$. Let $n=3$ and $2 n+2=8$. Let G_{1} be a graph constructed from path P_{5} with vertices $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ with additional vertices $u_{12}, u_{13}, u_{14}, u_{52}, u_{53}, u_{54}, u_{24}$ such that the given vertex $u_{i, j}$ is adjacent to vertices v_{i} and v_{j} of P_{5}. Then $\gamma_{t}\left(G_{1}\right)=3$ and $\gamma_{t\{R 3\}}\left(G_{1}\right)=8$.

Let $n=4$ and $2 n+2=10$. Then say $G_{2}=2 C_{5}^{+}$. Let $n=5$ and so $2 n+2=12$. Then say $G_{3}=C_{5}^{+} \cup P_{5}^{+}$. For $\gamma_{t}(G)=k$ and $\gamma_{t\{R 3\}}(G)=2 k+2$, where $r+1 \leq k \leq n$, there consider three cases.

1. If $k \equiv 0(\bmod 3)$, then we say $G=\frac{k-3}{3} P_{5} \cup G_{1}$.
2. If $k \equiv 1(\bmod 3)$, then we say $G=\frac{k-4}{3} P_{5} \cup G_{2}$.
3. If $k \equiv 2(\bmod 3)$, then we say $G=\frac{k-5}{3} P_{5} \cup G_{3}$.

It is easy to verifiable, $\gamma_{t}(G)=k$ and $\gamma_{t\{R 3\}}(G)=2 k+2$.

Let $r=3$ and so $n \geq 4$. For graph G_{1}^{\prime} with $\gamma_{t}\left(G_{1}^{\prime}\right)=4$ and $\gamma_{t\{R 3\}}\left(G_{1}^{\prime}\right)=11$, we let $G_{1}^{\prime}=P_{4} \cup C_{5}^{+}$. For graph G_{2}^{\prime} with $\gamma_{t}\left(G_{2}^{\prime}\right)=5$ and $\gamma_{t\{R 3\}}\left(G_{2}^{\prime}\right)=13$, we let $G_{2}^{\prime}=P_{4} \cup P_{5}^{+}$. And for graph G_{3}^{\prime} with $\gamma_{t}\left(G_{3}^{\prime}\right)=6$ and $\gamma_{t\{R 3\}}\left(G_{3}^{\prime}\right)=15$, we let $G_{3}^{\prime}=3 C_{5}^{+}$. For $\gamma_{t}(G)=k$ and $\gamma_{t\{R 3\}}(G)=2 k+3$, where $r+1 \leq k \leq n$, there consider three cases.

1. If $k \equiv 1(\bmod 3)$, then we say $G=\frac{k-4}{3} P_{5} \cup G_{1}^{\prime}$.
2. If $k \equiv 2(\bmod 3)$, then we say $G=\frac{k-5}{3} P_{5} \cup G_{2}^{\prime}$.
3. If $k \equiv 0(\bmod 3)$, then we say $G=\frac{k-6}{3} P_{5} \cup G_{3}^{\prime}$.

Let $r \geq 4$ and $n \geq r+1$. For graph G with $\gamma_{t}(G)=k$ and $\gamma_{t\{R 3\}}(G)=2 k+r$ where $r+1 \leq k \leq n$, there consider two cases.

Case 1. Let r be an even integer. Then there exists a graph G^{\prime} for which $\gamma_{t}\left(G^{\prime}\right)=k-(r-2)$ and $\gamma_{t\{R 3\}}\left(G^{\prime}\right)=2 k-2(r-2)+2$. Now let $G=\frac{r-2}{2} P_{4} \cup G^{\prime}$. Then $\gamma_{t}(G)=r-2+\gamma_{t}\left(G^{\prime}\right)=k$ and $\gamma_{t\{R 3\}}(G)=3(r-2)+\gamma_{t\{R 3\}}\left(G^{\prime}\right)=3(r-2)+2 k-2(r-2)+2=2 k+r$.

Case 2. Let r be an odd integer. Then there exists a graph $G^{\prime \prime}$ for which $\gamma_{t}\left(G^{\prime \prime}\right)=k-(r-3)$ and $\gamma_{t\{R 3\}}\left(G^{\prime \prime}\right)=2 k-2(r-3)+3$. If we consider $G=\frac{r-3}{2} P_{4} \cup G^{\prime \prime}$. Then $\gamma_{t}(G)=r-3+\gamma_{t}\left(G^{\prime \prime}\right)=k$ and $\gamma_{t\{R 3\}}(G)=3(r-3)+\gamma_{t\{R 3\}}\left(G^{\prime \prime}\right)=2 k+r$.

Finally, we want discuss the case of $r=n$, that is we want to find graphs G with $\gamma_{t}(G)=n$ and $\gamma_{t\{R 3\}}(G)=3 n$. For $n=2$ and $3 n=6$, let $G=P_{4}$. For G with $\gamma_{t}(G)=3$ and $\gamma_{t\{R 3\}}(G)=9$, let $G=H_{1}$ be a graph constructed from P_{5} with vertices $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ with three additional vertices w_{1}, w_{2}, w_{3} and three pendant edges $v_{2} w_{2}, v_{3} w_{3}, v_{4} w_{4}$. Then it can be seen that $\gamma_{t}\left(H_{1}\right)=3$ and $\gamma_{t\{R 3\}}\left(H_{1}\right)=9$.

Let $n \geq 4$. If n is an even, then let $G=\frac{n}{2} P_{4}$ and if n is an odd, then let $G=\frac{n-3}{2} P_{4} \cup H_{1}$. In both cases $\gamma_{t}(G)=n$ and $\gamma_{t\{R 3\}}(G)=3 n$.

4. Total Roman $\{3\}$ and Total Roman $\{2\}$-domination

In [13] it has been shown that, for a connected graph G with a $\gamma_{\{R 3\}}$-function $f=\left(V_{0}, V_{2}, V_{3}\right)$, $\gamma_{\{R 3\}}(G) \geq \gamma(G)+\gamma_{\{R 2\}}(G)$.

In this section we investigate the relation between total Roman $\{3\}$ and total Roman $\{2\}$-domination. First we have the following.

Observation 7. Let G be a graph and $\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{t\{R 2\}}$ function of G. Then $\left(V_{0}^{\prime}=V_{0}, V_{2}^{\prime}=V_{1}, V_{3}^{\prime}=\right.$ $\left.V_{2}\right)$ is a $T R\{3\}$-DF function. Conversely, if $\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ is a $\gamma_{t\{R 3\}}$ of G, then $\left(U_{0}=V_{0}, U_{1}=V_{1} \cup\right.$ $V_{2}, U_{2}=V_{3}$) is a $T R\{2\}-D F$ of G.

Proof. The proof is straightforward.
The following results state the relation between $\gamma_{t\{R 3\}}$ and $\gamma_{t\{R 2\}}$ of graphs G when $\gamma_{t\{R 3\}}(G)$ is small.

Proposition 8. Let G be a graph. Then:

1. $\gamma_{t\{R 3\}}(G)=3$ if and only if $\gamma_{t\{R 2\}}(G)=2$.
2. If $\gamma_{t\{R 3\}}(G)=4$, then $\gamma_{t\{R 2\}}(G)=3$.
3. If $\gamma_{t\{R 2\}}(G)=3$, then $4 \leq \gamma_{t\{R 3\}}(G) \leq 5$.

Proof. 1. Let $\gamma_{t\{R 3\}}(G)=3$. Then there exist two adjacent vertices v, u with label 2,1 respectively so that each vertex with label 0 is adjacent to them or there exist three mutually adjacent vertices v, u, w with label 1 so that each vertex with label 0 is adjacent to them. In the first case, we change the vertex with label 2 to the label 1 and in the second case we change one of the vertices with label 1 to the label 0 . These changing labels give us a $\gamma_{t\{R 2\}}(G)$-function with weight 2 . Conversely, let $\gamma_{t\{R 2\}}(G)=2$. Then there exist two vertices with label 1 for which every vertex is adjacent to them. We change one of the labels to 2 , and therefore the result holds.
2. Let $\gamma_{t\{R 3\}}(G)=4$. There are three cases.
2.1. There exist 4 vertices v, u, w, z with label 1 for which the induced subgraph by them is the cycle C_{4}, the graph $K=K_{4}-e$ or the complete graph K_{4}. In any induced subgraph, there are no two vertices of them for which any vertex with label 0 is adjacent to them. Thus in the case of a $\operatorname{TR}\{2\}-\mathrm{DF}$ we change one of the labels 1 to the label 0 . Therefore $\gamma_{t\{R 2\}}(G)=3$.
2.2. There exist 2 vertices v, u with label 1 and one vertex w with label 2 , for which the induced subgraph by them is the cycle C_{3}, or the path $P_{3}=v-w-u$. In any of the two cases each vertex with label 0 is adjacent to v, w or u, w or three of them. Now we change the label of w to 1 , and we obtain a $\gamma_{t\{R 2\}}$-function for G with weight 3 .
2.3. There exist 2 vertices v, u with label 3 and label 1, respectively, for which the induced subgraph by v, u is K_{2}. By this assumption each vertex with label 0 is adjacent to v, but there maybe exist some vertices (none of them) which are adjacent to u. Now we change the label v to 2 , and we obtain a $\gamma_{t\{R 2\}}$-function for G with weight 3 .
3. Let $\gamma_{t\{R 2\}}(G)=3$. There are two cases.
3.1. There exist 3 vertices v, u, w with label 1 for which the induced subgraph by v, u, w is the cycle C_{3} or a path P_{3}. If each vertex with label 0 is adjacent to v, w or u, w, then by changing the label w to 2 , we obtain a $\gamma_{t\{R 3\}}$-function for G with weight 4 .
If some vertices with label 0 are adjacent to v, u, some of them are adjacent to v, w and the other are adjacent u, w, then by changing two vertices of v, u, w to label 2 , we obtain a $\gamma_{t\{R 3\}}$-function for G with weight 5 .
3.2. There exist 2 vertices v, u with label 2 and label 1, respectively, for which the induced subgraph by v, u is K_{2}. By this assumption each vertex with label 0 is adjacent to v, but there maybe exist some vertices (none of them) which are adjacent to u. Now we change the label v to 3 , and we obtain a $\gamma_{t\{R 3\}}$-function for G with weight 4 . Therefore $4 \leq \gamma_{t\{R 3\}}(G) \leq 5$.

In the following we want to find the relation between total Roman \{3\}-domination, total domination and total Roman $\{2\}$-domination of graphs.

Observation 8. Let G be a connected graph with a $\gamma_{t\{R 3\}}$-function $f=\left(V_{0}, V_{2}, V_{3}\right)$. Then $\gamma_{t\{R 3\}}(G) \geq$ $\gamma_{t}(G)+\gamma_{t\{R 2\}}(G)$.

Proof. Let $\left(V_{0}, V_{2}, V_{3}\right)$ be a $\gamma_{t\{R 3\}}$-function of G. Then $\gamma_{t}(G) \leq\left|V_{2}\right|+\left|V_{3}\right|$. If we define $g=\left(V_{0}^{\prime}=\right.$ $V_{0}, V_{1}^{\prime}=V_{2}, V_{2}^{\prime}=V_{3}$), then g is a total Roman $\{2\}$-dominating function on G. Therefore $\gamma_{t}(G)+$ $\gamma_{t\{R 2\}}(G) \leq\left|V_{2}\right|+\left|V_{3}\right|+\left|V_{1}^{\prime}\right|+2\left|V_{2}^{\prime}\right| \leq 2\left|V_{2}\right|+3\left|V_{3}\right|=\gamma_{t\{R 3\}}(G)$.

In Observation 8 the condition of $\gamma_{t\{R 3\}}$-function $f=\left(V_{0}, V_{2}, V_{3}\right)$ is necessary. Because there are many graphs for which the result of Observation 8 does not hold. For example, for the complete graphs $K_{n}(n \geq 2)$, cycles C_{n} and paths P_{n} for $n \geq 5$, we observe that $\gamma_{t\{R 3\}}(G)<\gamma_{t}(G)+\gamma_{t\{R 2\}}(G)$. However, in the following we establish, for any integer $n \geq 5$, there is a graph G such that $\gamma_{t\{R 3\}}(G)=\gamma_{t\{R 2\}}(G)+\gamma_{t}(G)$.

Proposition 9. For any positive integer $n \geq 5$, there is a graph G for which $\gamma_{t\{R 3\}}(G)=\gamma_{t\{R 2\}}(G)+\gamma_{t}(G)$.
Proof. For $n=5$ let $G=C_{5}^{+}$. Then $\gamma_{t\{R 2\}}(G)=3, \gamma_{t}(G)=2$ and $\gamma_{t\{R 3\}}(G)=5$. For $n=6$, let G be a bistar of order 6. Then $\gamma_{t\{R 3\}}(G)=6=4+2=\gamma_{t\{R 2\}}(G)+\gamma_{t}(G)$. For $n=7$, let $G=G_{1}$ in Figure 3. For $n=8$, let $G=G_{2}$ in Figure 3. For $n=9$, let $G=G_{2}$ in Figure 3. For $n \geq 10$, by induction we
consider the graph $G=C_{5}^{+} \cup H$ where the graph H (H may be connected or disconnected) for which $\gamma_{t\{R 3\}}(H)=n-5=\gamma_{t\{R 2\}}(H)+\gamma_{t}(H)$.

G_{1}

G_{2}

G_{3}

Figure 3. Examples.

Finally, we show that for any positive integer $n \geq 5$, there is a graph G such that $\gamma_{t\{R 3\}}(G)=n$, $\gamma_{t\{R 2\}}(G)=n-1$ and $\gamma_{t}(G)=n-2$.
For this, let G be the graph constructed in Proposition 3 as graph H for $n \geq 5$. Then $\gamma_{t\{R 3\}}(H)=n$, $\gamma_{t\{R 2\}}(H)=n-1$ and $\gamma_{t}(H)=n-2$.

5. Large Total Roman \{3\}-domination Number

In this section, we characterize connected graphs G of order n with $\gamma_{t\{R 3\}}(G)=2 n-k$ for $1 \leq k \leq 4$. For this we use the following result.

Theorem 9. Let G be a connected graph of order $n \geq 2$. Then $\gamma_{t\{R 3\}}(G) \leq(3 n) / 2$, with equality if and only if G is the corona $H \circ K_{1}$ where H is a connected graph.

Proof. If $n=2$, then the statement is valid. Let now $n \geq 3$. If $|L(G)| \leq n / 2$, then define $f: V(G) \rightarrow$ $\{0,1,2,3\}$ by $f(x)=2$ for $x \in L(G)$ and $f(x)=1$ for $x \in V(G) \backslash L(G)$. Then f is a total Roman $\{3\}$-dominating function on G of weight

$$
2|L(G)|+n-|L(G)|=n+|L(G)| \leq \frac{3 n}{2}
$$

If $|L(G)|>n / 2$, then define $f: V(G) \rightarrow\{0,1,2,3\}$ by $f(x)=1$ for $x \in L(G)$ and $f(x)=2$ for $x \in V(G) \backslash L(G)$. Then f is a total Roman $\{3\}$-dominating function on G of weight

$$
|L(G)|+2(n-|L(G)|)=2 n-|L(G)|<\frac{3 n}{2}
$$

If $G=H \circ K_{1}$ for a is a connected graph H, then $\gamma_{t\{R 3\}}(G)=(3 n) / 2$.
Conversely, let $\gamma_{t\{R 3\}}(G)=(3 n) / 2$. Then the proof above shows that $|L(G)|=n / 2$. Assume that there exists a vertex $v \in V(G)$ which is neither a leaf nor a support vertex. Define $f: V(G) \rightarrow$ $\{0,1,2,3\}$ by $f(x)=1$ for $x \in L(G) \cup\{v\}$ and $f(x)=2$ for $x \in V(G) \backslash(L(G) \cup\{v\})$. Then f is a total Roman $\{3\}$-dominating function on G of weight

$$
|L(G)|+2(n-|L(G)|-1)+1=2 n-|L(G)|-1=\frac{3 n}{2}-1
$$

a contradiction. Thus every vertex is a leaf or a support vertex. Since $|L(G)|=n / 2$, we deduce that $G=H \circ K_{1}$ with a connected graph H.

Corollary 4. For any connected graph G of order $n \geq 2, \gamma_{t\{R 3\}}(G)=2 n-1$ if and only if $G=P_{2}$.
Proof. Let $\gamma_{t\{R 3\}}(G)=2 n-1$. Then Theorem 9 implies $2 n-1 \leq(3 n) / 2$ and thus $n=2$. Clearly, the statement is valid for P_{2}.

Corollary 5. For any connected graph G of order $n \geq 3, \gamma_{t\{R 3\}}(G)=2 n-2$ if and only if $G \in\left\{P_{3}, P_{4}\right\}$.
Proof. If $G \in\left\{P_{3}, P_{4}\right\}$, then the statement is valid. Conversely, let $\gamma_{t\{R 3\}}(G)=2 n-2$. Then Theorem 9 implies $2 n-2 \leq(3 n) / 2$ and thus $n \leq 4$, with equality if and only if $G=P_{4}$. In the remaining case $n=3$, we observe that $G \in\left\{P_{3}, C_{3}\right\}$ with $\gamma_{t\{R 3\}}\left(P_{3}\right)=4$ and $\gamma_{t\{R 3\}}\left(C_{3}\right)=3$, and therefore $G=P_{3}$.

Next we characterize the graphs G with the property that $\gamma_{t\{R 3\}}(G)=2|V(G)|-3$.
Theorem 10. For any connected graph G of order $n \geq 3, \gamma_{t\{R 3\}}(G)=2 n-3$ if and only if $G \in\left\{C_{3}, P_{3} \circ\right.$ $\left.K_{1}, C_{3} \circ K_{1}\right\}$.

Proof. If $G \in\left\{C_{3}, P_{3} \circ K_{1}, C_{3} \circ K_{1}\right\}$, then the statement is valid. Conversely, let $\gamma_{t\{R 3\}}(G)=2 n-3$. If $\Delta(G)=2$, then $G \in\left\{P_{n}, C_{n}\right\}$ and we conclude by Observations 1,2 that $G=C_{3}$. If $\Delta(G)=3$, then $\gamma_{t\{R 3\}}(G)=2 n-3=2 n-\Delta(G)$ and so by Theorem $6, G \in \mathcal{G}$. Therefore $G \in\left\{P_{3} \circ K_{1}, C_{3} \circ K_{1}\right\}$. Let $\Delta(G) \geq 4$. Then by Theorem, $6 \gamma_{t\{R 3\}}(G) \leq 2 n-\Delta(G)=2 n-4<2 n-3$. Thus $G \in$ $\left\{C_{3}, P_{3} \circ K_{1}, C_{3} \circ K_{1}\right\}$, and the proof is complete.

Let \mathcal{H} be the family of connected graphs order 5 with $\Delta(G)=3$ which have exactly one leaf or the tree T_{5} consisting of the path $v_{1} v_{2} v_{3} v_{4}$ such that v_{2} is adjacent to a further vertex w.

Let \mathcal{F} be the family of graphs $G=Q \circ K_{1}$ with a connected graph Q of order 4.
Observation 11. If $G \in\{\mathcal{F}, \mathcal{H}\}$, then $\gamma_{t\{R 3\}}(G)=2 n-4$.
Proof. Clearly, $\gamma_{t\{R 3\}}\left(T_{5}\right)=2 n-4=6$. Let $G \in \mathcal{H}$ be of order 5 with exactly one leaf u. If v is the support vertex of u, then $f: V(G) \rightarrow\{0,1,2,3\}$ with $f(v)=2$ and $f(x)=1$ for $x \in V(G) \backslash\{v\}$ is a $\operatorname{TR}\{3\}-\mathrm{DF}$ on G and therefore $\gamma_{t\{R 3\}}(G)=6=2 n-4$.

If $G=Q \circ K_{1}$ with a connected graph Q of order 4, then we have seen in proof of Theorem 9 that $\gamma_{t\{R 3\}}(G)=(3 n) / 2=2 n-4=12$.

Theorem 12. For any connected graph G of order $n \geq 4$, we have $\gamma_{t\{R 3\}}(G)=2 n-4$ if and only if $G \in\left\{C_{4}, P_{5}\right\} \cup\{c l a w, p a w\} \cup \mathcal{H} \cup \mathcal{F}$ where claw is $K_{1,3}$ and paw is obtained from $K_{1,3}$ by adding one edge between two arbitrary distinct vertices.

Proof. Let $G \in\left\{C_{4}, P_{5}\right\} \cup\{$ claw, paw $\} \cup \mathcal{H} \cup \mathcal{F}$. By Observations 1, 2 and 11, we have $\gamma_{t\{R 3\}}(G)=2 n-4$.

Conversely, let $\gamma_{t\{R 3\}}(G)=2 n-4$. According to Theorem 9, we have $2 n-4=\gamma_{t\{R 3\}}(G) \leq$ $(3 n) / 2$ and thus $n \leq 8$ with equality if and only if G is the corona $H \circ K_{1}$ with a connected graph H of order 4. Therefore $G \in \mathcal{F}$ if $n=8$. Let now $n \leq 7$.

If $\Delta(G)=2$, then $G \in\left\{P_{n}, C_{n}\right\}$ and by Observations 1,2 , we have $n=2 n-4$ which implies $n=4$ and $G=C_{4}$, or $n+1=2 n-4$ which implies $n=5$ and $G=P_{5}$ or $n+2=2 n-4$ which implies $G=P_{6}$. Since $\gamma_{t\{R 3\}}\left(C_{4}\right)=4=2 n-4$ and $\gamma_{t\{R 3\}}\left(P_{5}\right)=6=2 n-4$ but $\gamma_{t\{R 3\}}\left(P_{6}\right)=7 \neq 2 n-4$, we deduce that $G \in\left\{C_{4}, P_{5}\right\}$.

Let now $\Delta(G)=3$. Next we discuss the cases $n=4,5,6$ or $n=7$.
If $n=4$, then for only two graphs G, the claw and the paw, we have $\gamma_{t\{R 3\}}(G)=4=2 n-4$.
If $n=5$, it is simply verified that $\gamma_{t\{R 3\}}(G)=6=2 n-4$ if an only if $G \in \mathcal{H}$.
If $n=6$, then let v be a vertex of degree 3 with the neighbors u_{1}, u_{2}, u_{3}, and let w_{1} and w_{2} be the remaining vertices. Assume, without loss of generality, that w_{1} is adjacent to u_{1}.

Case 1: Assume that w_{2} is adjacent to u_{1}. Then $f: V(G) \rightarrow\{0,1,2,3\}$ with $f(v)=f\left(u_{1}\right)=3$ and $f(x)=0$ for $x \neq v, u_{1}$ is a $\operatorname{TR}\{3\}$-DF on G and therefore $\gamma_{t\{R 3\}}(G) \leq 6$.

Case 2: Assume that w_{2} is adjacent to w_{1}. Then $f: V(G) \rightarrow\{0,1,2,3\}$ with $f(v)=f\left(w_{1}\right)=3$, $f\left(u_{1}\right)=1$ and $f(x)=0$ for $x \neq v, u_{1}, w_{1}$ is a TR $\{3\}$-DF on G and therefore $\gamma_{t\{R 3\}}(G) \leq 7$.

Case 3: Assume that w_{2} is adjacent to u_{2} or u_{3}, say u_{2}. If there are no further edges, then $\gamma_{t\{R 3\}}(G)=9 \neq 2 n-4$.

Now assume that there are further edges. If w_{2} is adjacent to u_{3}, then $f: V(G) \rightarrow\{0,1,2,3\}$ with $f\left(u_{1}\right)=2$ and $f(x)=1$ for $x \neq u_{1}$ is a TR\{3\}-DF on G and therefore $\gamma_{t\{R 3\}}(G) \leq 7$. If w_{1} is adjacent to u_{2}, then $f: V(G) \rightarrow\{0,1,2,3\}$ with $f(v)=f\left(u_{2}\right)=3$ and $f(x)=0$ for $x \neq v, u_{2}$ is a $\operatorname{TR}\{3\}-\mathrm{DF}$ on G and therefore $\gamma_{t\{R 3\}}(G) \leq 6$. If u_{1} is adjacent to u_{2} and there are no further edges, then $\gamma_{t\{R 3\}}(G)=9 \neq 2 n-4$. If finally, u_{3} is adjacent to u_{2} or u_{1}, say u_{2}, then $f: V(G) \rightarrow\{0,1,2,3\}$ with $f\left(u_{1}\right)=f\left(u_{2}\right)=3, f(v)=1$ and $f(x)=0$ for $x \neq v, u_{1}, u_{2}$ is a TR\{3\}-DF on G and therefore $\gamma_{t\{R 3\}}(G) \leq 7$. Thus we see that there is no graph G of order 6 with $\gamma_{t\{R 3\}}(G)=8=2 n-4$.

Let now $n=7$. If $|L(G)| \leq 2$, then define $f: V(G) \rightarrow\{0,1,2,3\}$ by $f(x)=2$ for $x \in L(G)$ and $f(x)=1$ for $x \in V(G) \backslash L(G)$. Then f is a total Roman $\{3\}$-dominating function on G of weight $9<10=2 n-4$. If $|L(G)| \geq 4$, then define $f: V(G) \rightarrow\{0,1,2,3\}$ by $f(x)=0$ for $x \in L(G)$ and $f(x)=3$ for $x \in V(G) \backslash L(G)$. Then f is a total Roman $\{3\}$-dominating function on G of weight $9<10=2 n-4$.
Finally, assume that $|L(G)|=3$. If G has exactly 3 support vertices, then define $f: V(G) \rightarrow\{0,1,2,3\}$ by $f(x)=1$ for $x \in L(G), f(x)=2$ for $x \in S(G)$ and $f(x)=0$ for the remaining vertex. Then f is a total Roman $\{3\}$-dominating function on G of weight $9<10=2 n-4$. If G has exactly 2 support vertices, then define $f: V(G) \rightarrow\{0,1,2,3\}$ by $f(x)=0$ for $x \in L(G), f(x)=3$ for $x \in S(G)$ and $f(x)=1$ for the remaining two vertices. Then f is a total Roman $\{3\}$-dominating function on G of weight $8<10=2 n-4$.
Let $\Delta(G)=4$. By Theorem $6, \gamma_{t\{R 3\}}(G)=2 n-4$ if and only if $G \in \mathcal{G} \subseteq \mathcal{F}$.
Let $\Delta(G) \geq 5$. Then by Theorem $6 \gamma_{t\{R 3\}}(G) \leq 2 n-5<2 n-4$. Therefore the proof is complete.

6. Complexity

In this section, we study the complexity of total Roman $\{3\}$-domination of graphs. We show that the total Roman $\{3\}$-domination problem is $N P$-complete for bipartite graphs. Consider the following decision problem.

Total Roman \{3\}-domination problem TR3DP.

Instance: Graph $G=(V, E)$, and a positive integer $k \leq|V|$.
Question: Does G have a total Roman $\{3\}$-domination of weight at most k ?

It is well-known that the Exact-3-Cover (X3C) problem is NP-complete. We show that the NP-completeness of TR3D problem by reducing the Exact-3-Cover (X3C), to TR3D.

EXACT 3-COVER (X3C)

Instance: A finite set X with $|X|=3 q$ and a collection C of 3-element subsets of X.
Question: Is there a subcollection C^{\prime} of C such that every element of X appears in exactly one element of C^{\prime} ?

Theorem 13. TR3D is NP-Complete for bipartite graphs.
Proof. It is clear that TR3DP belongs to $\mathcal{N P}$. Now we show that, how to transform any instance of X3C into an instance G of TR3D so that, the solution one of them is equivalent to the solution of the other one. Let $X=\left\{x_{1}, x_{2}, \cdots, x_{3 r}\right\}$ and $C=\left\{C_{1}, C_{2}, \cdots, C_{t}\right\}$ be an arbitrary instance of X3C.

For each $x_{i} \in X$, we form a graph G_{i} obtained from a path $P_{5}: y_{i_{1}}-y_{i_{2}}-y_{i_{3}}-y_{i_{4}}-y_{i_{5}}$ by adding the edge $y_{i_{2}} y_{i_{5}}$. For each $C_{j} \in C$, we form a star $K_{1,5}$ with center c_{j} for which one leaf is labeled l_{j}. Let $L=\left\{l_{1}, l_{2}, \cdots, l_{t}\right\}$. Now to obtain a graph G, we add edges $l_{j} y_{i_{1}}$ if $y_{i_{1}} \in C_{j}$. Set $k=$
$4 t+13 r$. Let $H=\left\langle\bigcup_{i=1}^{3 r} V\left(G_{i}\right)\right\rangle$ be the subgraph of G induced by the $\bigcup_{i=1}^{3 r} V\left(G_{i}\right)$. Observe that for every total Roman $\{3\}$-dominating function f on G with $f\left(V\left(G_{i}\right)\right) \geq 4$, all vertices on each cycle $C_{4}=y_{i_{2}}-y_{i_{3}}-y_{i_{4}}-y_{i_{5}}-y_{i_{2}}$ are total Roman $\{3\}$-dominated. Moreover, since G_{i} has a total Roman $\{3\}$-domination number equal to 6 , we can assume that $f\left(V\left(G_{i}\right)\right) \leq 6$. More precisely, if $f\left(V\left(G_{i}\right)\right)=6$, then, without loss of generality, we may assume that $f\left(y_{i_{2}}\right)=f\left(y_{i_{3}}\right)=f\left(y_{i_{2}}\right)=f\left(y_{i_{3}}\right)=1$ and $f\left(y_{i_{1}}\right)=2$. If also, $f\left(V\left(G_{i}\right)\right) \in\{4,5\}$, then obviously at least one vertex of G_{i} (including $y_{i_{1}}$) is not total Roman $\{3\}$-dominated. In this case, we can assume that vertices of G_{i} are assigned as $f\left(y_{i_{2}}\right)=f\left(y_{i_{3}}\right)=f\left(y_{i_{4}}\right)=f\left(y_{i_{5}}\right)=1$ so that, only $y_{i_{1}}$ is not total Roman $\{3\}$-dominated and $f\left(y_{i_{1}}\right) \in\{0,1\}$.

Suppose that the instance X, C of $X 3 C$ has a solution C^{\prime}. We build a total Roman $\{3\}$-dominating function f on G of weight k. For every C_{j}, assign the value 2 to l_{j} if $C_{j} \in C^{\prime}$ and 1 to the other l_{j} if $C_{j} \notin C^{\prime}$. Assign value 3 to every c_{j} and value 0 to each leaf adjacent to c_{j}. Finally, for every i, assign 1 to $y_{i_{2}}, y_{i_{3}}, y_{i_{4}}, y_{i_{5}}$, and 0 to $y_{i_{1}}$ of G_{i}. Since C^{\prime} exists, $\left|C^{\prime}\right|=r$, the number of $l_{j} s$ with weight 2 is r, having disjoint neighborhoods in $\left\{y_{1_{1}}, y_{2_{1}}, \cdots, y_{3 r_{1}}\right\}$, where every $y_{i_{1}}$ has one neighbors assigned 1 and one neighbor assigned 2 . Also since the number of l_{j} s with weight 1 is $t-r$. Hence, it can be easily seen that f is a TR3-D function with weight $f(V)=3 t+2 r+t-r+12 r=k$.

Conversely, let $g=\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ be a total Roman $\{3\}$-dominating function of G with weight at most k. Obviously, every star needs a weight of at least 4 , and so without loss of generality, we may assume that $g\left(c_{j}\right)=3$ and all the leaves neighbor of c_{j} are assigned 0 . Since $l_{j} c_{j} \in E(G)$, it implies that each vertex l_{j} can be assigned by 1 . Moreover, for each $i, g\left(V\left(G_{i}\right)\right) \in\{4,6\}$, as mentioned above. We can let the vertices of G_{i} are assigned the values given in the above paragraph depending on whether $g\left(V\left(G_{i}\right)\right)=4$ or $g\left(V\left(G_{i}\right)\right)=6$. Let p be the number of G_{i} s having weight 6 . Then $g(V(H))=$ $6 p+4(3 r-p)=12 r+2 p$. Now, if $g\left(l_{j}\right)>1$ for some j, then l_{j} total Roman $\{3\}$-dominates some vertex $y_{s_{1}}$, and, in that case, $g\left(l_{j}\right)=2$ (since $g\left(y_{i_{2}}\right)=1$). Let z be the number of $l_{j} \mathrm{~s}$ assigned 2 and $t-z$ of others be assigned 1 . Then $3 t+2 z+t-z+12 r+2 p \leq k=4 t+13 r$, implies that $z+2 p \leq q$. On the other hand, since each l_{j} has exactly three neighbors in $\left\{x_{1_{1}}, x_{2_{1}}, \cdots, x_{3 r_{1}}\right\}$, we must have $3 z \geq 3 r-p$. From these two inequalities, we achieve at $p=0$ and then $z=q$. Consequently, $C^{\prime}=\left\{C_{j}: g\left(l_{j}\right)=2\right\}$ is an exact cover for C.

7. Open Problems

In the preceding sections a new model of total Roman domination, total Roman $\{R 3\}$-domination has been introduced. There are the relationships between the total domination, total Roman $\{R 2\}$-domination and total Roman $\{R 3\}$-domination numbers as follows:

If G is a graph without isolated vertices, then $\gamma_{t}(G)+1 \leq \gamma_{t\{R 3\}}(G) \leq 3 \gamma_{t}(G)$, (Proposition 5).
If G is a graph without isolated vertices, then $\gamma_{t\{R 3\}}(G)=\gamma_{t}(G)+1$ if and only if G has at least two vertices of degree $\Delta=|V(G)|-1$, in the other words $\gamma_{t\{R 3\}}(G)=3$ and $\gamma_{t}(G)=2$. (Proposition 6).

For any positive integer $n \geq 5$, there is a graph G of order n in which $\gamma_{t\{R 3\}}(G)=\gamma_{t\{R 2\}}(G)+$ $\gamma_{t}(G)$, (Proposition 9).

For a family of graphs we have shown that $\gamma_{t\{R 3\}}(G)=|V(G)|$, (Observation 3).
We have already characterized graphs G in which $\gamma_{t\{R 3\}}(G)=2|V(G)|-r$, where $1 \leq r \leq 4$.

Problems

1. Characterize the graphs G for which $\gamma_{t\{R 3\}}(G)=3 \gamma_{t}(G)$.
2. Does there exist any characterization of graphs G for which $\gamma_{t\{R 3\}}(G)=\gamma_{t}(G)+r$, where $2 \leq$ $r \leq \gamma_{t}(G)-2$?
3. For positive integers $n \geq 5$, characterize the graphs G for which $\gamma_{t\{R 3\}}(G)=\gamma_{t\{R 2\}}(G)+\gamma_{t}(G)$.
4. Does there exist any characterization of graphs G for which $\gamma_{t\{R 3\}}(G)=|V(G)|$?
5. Can one characterize graphs G in which $\gamma_{t\{R 3\}}(G)=2|V(G)|-r$ for $5 \leq r \leq|V(G)|-1$?
6. Is it possible to construct a polynomial algorithm for computing of $\gamma_{t\{R 3\}}(T)$ for any tree T ?

Author Contributions: Conceptualization, D.A.M., Z.S., and L.V.; writing, D.A.M.; revising, L.V., Z.S., and D.A.M. All authors have read and agreed to the published version of the manuscript.
Funding: This research received no external funding.
Acknowledgments: The first author's research work was supported by the National Key R \& D Program of China (Grant No. 2019YFA0706402) and the Natural Science Foundation of Guangdong Province under Grant 2018A0303130115, and the second author's research work has been supported by a research grant from the University of Mazandaran. The authors thank the three referees of this paper for valuable suggestions and useful comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mojdeh, D.A.; Firoozi, P.; Hasni, R. On connected (γ, k)-critical graphs. Australas. J. Comb. 2010, 46, 25-36.
2. Mojdeh, D.A.; Rad, N.J. On the total domination critical graphs. Electron. Notes Discret. Math. 2006, 24, 89-92. [CrossRef]
3. Alhevaz, A.; Darkooti, M.; Rahbani, H.; Shang, Y. Strong Equality of Perfect Roman and Weak Roman Domination in Trees. Mathematics 2019, 7, 997, doi:10.3390/math7100997. [CrossRef]
4. Stewart, I. Defend the Roman empire! Sci. Am. 1999, 281, 136-138. [CrossRef]
5. ReVelle, C.S.; Rosing, K.E. Defendens imperium romanum: A classical problem in military strategy. Am. Math. Mon. 2000, 107, 585-594. [CrossRef]
6. Chellali, M.; Haynes, T.W.; Hedetniemi, S.T.; McRae, A.A. Roman 2-domination. Discret. Appl. Math. 2016, 204, 22 - 28. [CrossRef]
7. Gao, H.; Xi, C.; Li, K.; Zhang, Q.; Yang, Y. The Italian Domination Numbers of Generalized Petersen Graphs $\mathrm{P}(\mathrm{n}, 3)$. Mathematics 2019, 7, 714. [CrossRef]
8. Henning, M.A.; Klostermeyer, W.F. Italian domination in trees. Discret. Appl. Math. 2017, 217, 557-564. [CrossRef]
9. García, S.C.; Martínez, A.C.; Mira, F.A.H.; Yero, I.G. Total Roman 2-domination in graphs. Quaest. Math. 2019, 1-24. [CrossRef]
10. Beeler, R.A.; Haynes, T.W.; Hedetniemi, S.T. Double Roman domination. Discret. Appl. Math. 2016, 211, 23-29. [CrossRef]
11. Zhang, X.; Li, Z.; Jiang, H.; Shao, Z. Double Roman domination in trees. Inf. Process. Lett. 2018, 134, 31-34. [CrossRef]
12. Hao, G.; Volkmann, L.; Mojdeh, D.A. Total double Roman domination in graphs. Commun. Comb. Optim. 2020, 5, 27-39.
13. Mojdeh, D.A.; Volkmann, L. Roman 3-domination (Double Italian Domination). article in press.[CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
