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Abstract: In this paper, we present splitting approaches for stochastic/deterministic coupled
differential equations, which play an important role in many applications for modelling stochastic
phenomena, e.g., finance, dynamics in physical applications, population dynamics, biology and
mechanics. We are motivated to deal with non-Lipschitz stochastic differential equations, which have
functions of growth at infinity and satisfy the one-sided Lipschitz condition. Such problems studied
for example in stochastic lubrication equations, while we deal with rational or polynomial functions.
Numerically, we propose an approximation, which is based on Picard iterations and applies the
Doléans-Dade exponential formula. Such a method allows us to approximate the non-Lipschitzian
SDEs with iterative exponential methods. Further, we could apply symmetries with respect to
decomposition of the related matrix-operators to reduce the computational time. We discuss the
different operator splitting approaches for a nonlinear SDE with multiplicative noise and compare
this to standard numerical methods.

Keywords: picard iteration; doléans-dade exponential; exponential splitting; stochastic differential
equation; iterative splitting; splitting analysis
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1. Introduction

We are motivated to solve delicate stochastic differential equations, which are non-Lipschitz
continuous, e.g., the nonlinear growth is polynomial or exponential, see [1]. Such SDEs are applied
in different engineering problems, e.g., fluctuations in hydrodynamics, e.g., liquid jets in spraying
and coating apparatuses, see [2–4]. For such modelling equation, the standard stochastic scheme
have problems and we apply novel so called Picard iteration schemes, which apply Doléans-Dade
exponential formula to overcome the local Lipschitzian problem, see [5]. The idea is to overcome the
non-Lipschitzian problem with iterative scheme based on exponential functions, see [6]. The novelty
in the paper is the additional splitting approaches, which are combined with the Doléans-Dade
exponentials and included into the Picard iteration scheme. The splitting use ideas to decompose the
underlying operators with respect to reduce the computational time, while we decompose into simpler
solvable operators, which can be solved with much more faster solvers, see also [7].

Here, we deal with the following splitting ideas:

• Symmetries: We consider symmetries in the operators and decompose to symmetrical operators,
such that we could apply fast solver methods for each symmetric operator-part, see [7–9].

• Deterministic-Stochastic splitting: We decompose into deterministic and stochastic parts, while we
apply fast deterministic and fast stochastic solver, see [10,11].
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Such splitting approaches are important to optimize and speedup the solver-processes, see [12].
Further, the symmetries are also important for the specific solver method, while we apply iterative
splitting methods, the decomposition into homogeneous and inhomogeneous solver parts are
important, see [12]. We decompose the iterative splitting method into a fast solvable exp-matrix
operator, which can apply fast symmetric solvers, see [7,13], and a right hand side part, which is a
integral operator based on convolution operator. The convolution operator is based on the exp-matrix
operators with an additional linear or nonlinear operator, see [14]. Here, we could also apply fast
symmetric numerical integration methods and accelerate the solver-process, see [9].

In the paper, we concentrate on the following general form of the non-Lipschitz SDE, which is
given as:

dX(t) = A(t, X(t)) dt + B(t, X(t))dWt, t ∈ ×[0, T], (1)

X(0) = X0, (2)

where we have a(t, X(t)) = a1(t, X(t)) + a2(t, X(t)) = A(t, X(t))/X(t) ∈ IR\{0}, which is the drift
coefficient and b(t, X(t)) = B(t, X(t))/X(t) ∈ IR\{0}, which is the diffusion coefficient. Further we
assume a and b are bounded and Wt is the Wiener process and we assume Wt is independent from X0

for t ≥ t0. For the sake of convenience, we have also assumed, that t0 = 0, but we can also generalise
to t0 ∈ IR+

0 , which is only a shift in the initial conditions, see [15].
We have the following Assumption 1:

Assumption 1. The SDE (1) can be rewritten into the stochastic differential equation:

dX(t) = X(t)(a1(t, X(t)) + a2(t, X(t))) dt + X(t)b(t, X(t))dWt, t ∈ ×[0, T], (3)

X(0) = X0, (4)

and a1 : [0, T]× IR→ IR, a2 : [0, T]× IR→ IR and b : [0, T]× IR→ IR be a locally Lipschitz-functions, where
we assume, that there exist constants CL for every L > 0 with:

|a(t, X(t))− a(t, Y(t))| ≤ CL|X(t)−Y(t)|, (t, X, Y) ∈ IR+ × IR2,

|a1(t, X(t))− a1(t, Y(t))| ≤ CL|X(t)−Y(t)|, (t, X, Y) ∈ IR+ × IR2,

|a2(t, X(t))− a2(t, Y(t))| ≤ CL|X(t)−Y(t)|, (t, X, Y) ∈ IR+ × IR2,

|b(t, X(t))− b(t, Y(t))| ≤ CL|X(t)−Y(t)|, (t, X, Y) ∈ IR+ × IR2.

We assume, that the Equation (1) has a unique strong solution X and it is positive, see also the work [5].
Further, we assume to deal with a decomposition of the full operator A = A1 + A2, while the operator A1 = a1 X
is fast computable as exp(A1) with the, while A2 = a2 X is the more nonlinear operator and applied as a
right-hand side, see [16].

In the Section 2, we derive the approximation of stochastic process with the Picard iterations
and applied the numerical analysis of the new schemes. The numerical results are given in Section 3.
In Section 4, we conclude and summarize our results.

2. Numerical Analysis of the Splitting Approaches

In the following, we discuss the splitting approaches, which are based on a homogeneous and
inhomogeneous part.

For the stochastic differential equation (SDE), we define the homogeneous SDE as an linear or
linearised SDE, which can be solved analytically or numerically, see [17–19]. Further, there exists
also ideas for SDE and stochastic partial differential equations (SPDEs) to decompose into linear and
nonlinear parts of the SDE, which can be solved linear and nonlinear stochastic methods, see [20].
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We concentrate on linearized SDEs and we use the notation of homogeneous and inhomogeneous
parts, which are wel-known for linear SDEs, see [17]. We assume, that the solution of the homogeneous
SDE can be used with respect to the variation-of-constants formula, see [21], which is also wel-known
from the theory of ODEs, see [12,22]. Such a formula also holds in the infinite dimensional case (under
suitable assumptions, see [19]). Therefore, we obtain a solution of the inhomogeneous SDE, which is a
mild solution, see [23].

We apply the splitting for the stochastic differential equation in the following homogeneous and
inhomogeneous parts:

• Homogeneous equation:

dX(t) = X(t)a1(t, X(t)) dt + X(t)b(t, X(t))dWt, t ∈ ×[0, T], (5)

X(0) = X0, (6)

where we have the solution Xhom(t) = Sm(t), where m are the iterative steps of the Picard
iterations, see the Section 2.1.

• Inhomogeneous equation:

dX(t) = X(t)(a1(t, X(t)) + a2(t, X(t))) dt ++X(t)b(t, X(t))dWt, t ∈ ×[0, T], (7)

X(0) = X0, (8)

where we have the solution Xinhom(t) = Sm(t) +
∫ t

0 Sm(t− s)a2(s) ds, where m are the iterative
steps of the Picard iterations, see the Section 2.1.

For the approximation of the scheme, we deal with three steps for the homogeneous part:

1. Approximate the diffusion process,
2. Picard iterations with Doléans-Dade solutions of the SDE,
3. Discretisation of the Picard iterations in time.

For the inhomogenous part, we deal with the following parts:

1. Discretisation of the Picard iterations in time for the inhomogeneous part,
2. Approximation of the integral-formulation of the inhomogeneous part.

2.1. Homogeneous Equation

In the homogeneous part, we approximate the solution of the

2.1.1. Approximate the Diffusion Process

We consider the SDE (1) and we assume Y is the unique solution to the SDE:

dY(t) = c(S0 exp(Y(t)), t)dt + b(S0 exp(Y(t)), t)dWt, t ∈ ×[0, T],

Y(0) = 0,

where c(X, t) = a(X, t)− 1
2 b2(X, t) and we assume that for all t ∈ [0, T], we have:

S(t) := S0 exp(
∫ t

0
c(S(u), u)du +

∫ t

0
b(S(u), u)dWu),

S(0) = S0,

see also the idea in [10,12].
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2.1.2. Picard Iterations with Doléans-Dade Solutions of the SDE

In the following, we construct the iterative process, which is based on the idea Sm → S for m→ ∞.
We have the following iterative scheme:

Sm+1(t) := Ft(a1,m+1)E(bm+1),

S0 = S(t = 0),

where a1,m+1 = a1(Sm(t), t) and bm+1 = b(Sm(t), t).
Therefore, we obtain:

Sm+1(t) = S0 exp(
∫ t

0
c(Sm(u), u)du +

∫ t

0
b(Sm(u), u)dWu).

Further, we can rewrite to

Ym(t) := log Sm(t)− log S0, t ∈ [0, T],

and we have the following Picard iteration:

dYm+1(t) = c(Sm(t), t)dt + b(Sm(t), t)dWt. (9)

We have the following convergence result of the Picard iterations:

Lemma 1. The Picard iteration (9) converge in L2 with:

E(supt≤T |Ym+1(t)−Ym(t)|2) ≤ C̃
Tm+1

(m + 1)!
, (10)

where C̃ is a constant, depending on C, CL and S0.

Proof. We apply the recursion of the Lemma A1, see in the Appendix A.1.
We obtain:

E(supt≤T |Ym+1(t)−Ym(t)|2) ≤ Cm
L

Tm

m!
E(
∫

supt≤T |Y1(t)−Y0(t)|2),

we have Y1(t) = S0 and Y0(t) = 0, we apply

Cm
L E(

∫
supt≤T |Y1(t)−Y0(t)|2) ≤ CCm+1

L
Tm+1

m!
S2

0 ≤ C̃
Tm+1

(m + 1)!
,

where C̃ is a constant depending on C and CL.

The convergence shows, that for m→ ∞ we have limm→ C̃ Tm+1

(m+1)! → 0.
We apply Picard iterations, which are deduced from the Doléans-Dade exponential formula,

see [5].
We have the following Assumption:

Assumption 2. We have the the stochastic differential equation:

dX(t) = X(t)a1(t, X(t)) dt + X(t)b(t, X(t))dWt, t ∈ ×[0, T], (11)

X(0) = X0, (12)
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and a1 : [0, T] × IR → IR and b : [0, T] × IR → IR be locally Lipschitz-functions. We assume, that the
Equation (11) has a unique strong solution X and it is positive.

A generalization of the Equation (11) is given as:

dX(t) = A1(t, X(t)) dt + B(t, X(t))dWt, t ∈ ×[0, T], (13)

X(0) = X0, (14)

where we define a1(t, X(t)) = A1(t, X(t))/X(t) and b(t, X(t)) = B(t, X(t))/X(t) on IR\{0} and we
assume a and b are bounded.

We apply the iterated Doléans-Dade-process for Xi, i ∈ IN+ such that Xi converge to S when
i→ ∞.

We have the following scheme:

X0(t) = X(t0), (15)

Xi(t) = X0 Ft(a1,i) Et(bi), t ∈ ×[0, T],

where we have

Ft(a1,i) = exp
[∫ t

0
a1(s, Xi−1(s))ds

]
, i ≥ 1, t ∈ [0, T],

Et(bi) = exp
[∫ t

0
b(s, Xi−1(s))dWs −

1
2

∫ t

0
b2(s, Xi−1(s))ds

]
,

i ≥ 1, t ∈ [0, T],

where we have Yi = log(Xi)− log(Xo), this process satisfies the following s.d.e.

dYi+1(t) = ã1(t, Xi(t)) + b(t, Xi(t))dWt,

where ã1(t, X) = a1(t, X)− 1
2 b2(t, X).

Then, we can prove, that we have the convergence of Xi to X for i→ ∞, see also [5].

2.1.3. Discretisation of the Picard Iterations in Time

We have the uniform discretization with ∆t = T/n for all ∆t = tj+1 − tj, with j = 0, . . . , n− 1.
We have the recursive process with j = 0, . . . , n− 1 with the iterative steps i ≥ 1:

Xj = X(tj), (16)

Xi(tj+1) = Xj Ft(a1,i,j) Et(bi,j), (17)

where we have

Ft(a1,i,j) = exp

[∫ tj+1

tj

a1(s, Xi−1(s))ds

]
, i ≥ 1,

Et(bi,j) = exp

[∫ tj+1

tj

b(s, Xi−1(s))dWs −
1
2

∫ tj+1

tj

b2(s, Xi−1(s))ds

]
, i ≥ 1.
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2.2. Inhomogeneous Equation

For the inhomogeneous part, we have the following scheme:

X0(t) = X(t0), (18)

Xi(t) = X0Ft(a1,i) Et(bi) +
∫ t

0
Ft−s(a1,i) Et−s(bi) a2,i(X(s)) ds t ∈ ×[0, T], (19)

where a2,i(x) is a right hand side based on our decomposition of a(x) = a1(x) + a2(x).

2.2.1. Discretisation of the Picard Iterations in Time for the Inhomogeneous Part

We have the uniform discretization with ∆t = T/n for all ∆t = tj+1 − tj, with j = 0, . . . , n− 1.
We have the recursively process with j = 0, . . . , n− 1 with the iterative steps i ≥ 1:

Xj(t) = X(tj), (20)

Xi(tj+1) = XjFt(a1,i,j) Et(bi,j) +
∫ tj+1

tj

Ftj+1−s(a1,i,j) Etj+1−s(bi,j) a2,i,j(X(s)) ds,

where we have

Ftj+1−s(a1,i,j) = exp

[∫ tj+1

tj

a1(tj+1 − s, Xi−1(tj+1 − s))ds

]
, i ≥ 1,

Etj+1−s(bi,j) = exp

[∫ tj+1

tj

b(tj+1 − s, Xi−1(tj+1 − s))dWs

−1
2

∫ tj+1

tj

b2(tj+1 − s, Xi−1(tj+1 − s))ds

]
, i ≥ 1.

2.2.2. Approximation of the Integral-Formulation of the Inhomogeneous Part

The integration of the inhomogeneous part can be done with numerical integration methods,
e.g., trapezoidal rule, Romberg’s method, see [24].

We have the following convergence results in Lemma 2.

Lemma 2. The inhomogeneous part of the Picard iteration (20) and (21) converge in L2 with:

E(supt≤T |Ym+1(t)−Ym(t)|2) ≤ Ĉ
Tm+1

(m + 1)!
, (21)

where C̃ is a constant, depending on C, CL and S0.

Proof. We deal with the inhomogeneous part and estimate the integral part, which is given as:

S̃m+1 =
∫ T

0
FT−s(a1,i,j) EtT−s(bi,j) a2,i,j(X(s)) ds

≤ ˜̃C T sup
0≤t≤T

Ft(a1,i,j) Et(bi,j) sup
0≤t≤T

a2,i,j(X(t)),

and ˜̃C is a constant. We obtain:

S̃m+1 ≤ Ŝm+1 â2 sup
0≤t≤T

a2,i,j(X(t)).
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Then, we could deal with the idea in the homogeneous part, we apply:

Ŷm(t) := log Ŝm(t)− log â2, t ∈ [0, T],

and we have the following Picard iteration:

dŶm+1(t) = c(Ŝm(t), t)dt + b(Ŝm(t), t)dWt.

The estimation is done with the same results as in the homogeneous part and we receive:

E(supt≤T |Ŷm+1(t)− Ŷm(t)|2) ≤ Cm
L

Tm

m!
E(
∫

supt≤T |Ŷ1(t)− Ŷ0(t)|2),

we have Ŷ1(t) = â2 and Ŷ0(t) = 0, we apply

Cm
L E(

∫
supt≤T |Ŷ1(t)− Ŷ0(t)|2) ≤ CCm+1

L
Tm+1

m!
â2

2 ≤ Ĉ
Tm+1

(m + 1)!
,

where Ĉ is a constant depending on C and CL.

The convergence results for the homogeneous and inhomogeneous parts can be combined.
Therefore, we have a convergence of the Picard iterative scheme in the homogeneous and
inhomogeneous case.

Example 1. For the mid-point rule, we following recursion:
Based on the uniform discretization with ∆t = T/n for all ∆t = tj+1 − tj, with j = 0, . . . , n− 1 and the

iterative steps i ≥ 1, we have:

Xj(t) = X(tj), (22)

Xi(tj+1) = XjFt(a1,i,j) Et(bi,j) + ∆t(F∆t/2(a1,i,j) E∆t/2(bi,j) a2,i,j(Xi(tj + ∆t/2))), (23)

where we have

F∆t/2(a1,i,j) = exp
[
∆t a1((tj + ∆t/2), Xi−1((tj + ∆t/2)))

]
, i ≥ 1,

E∆t/2(bi,j) = exp
[
∆Wt b((tj + ∆t/2), Xi−1((tj + ∆t/2)))

−1
2

∆t b2((tj + ∆t/2), Xi−1((tj + ∆t/2)))
]

, i ≥ 1.

3. Numerical Examples

In the following, we study the different numerical examples, which are based on rational
polynomials of the deterministic and stochastic coefficients. Such delicate an only local Lipschitz
continuous coefficients are also applied in thin-liquid film models, see [2].

We compare the standard stochastic methods, which are based on the

• Euler-Maruyama-Scheme (EM), see [25],
• Milstein-Scheme (Milstein), see [25],

and the different standard splitting methods, which are based on the

• AB-splitting approaches (AB), see [26],
• ABA-splitting approaches (ABA), see [27,28],

with the new splitting approaches, which are based on the Picard iteration approach

• Iterative Picard approach (Picard), see [10,11],
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• Iterative Picard with Doléans-Dade exponential approach (Picard-Doleans), see Section 2 and [5],
• Iterative Picard-splitting with Doléans-Dade exponential approach (Picard-Splitt-Doleans),

see Section 2.

For simpler notation, we apply in the following the entries in the brackets for the labelling of the
methods in the tables and figures.

3.1. First Example: Nonlinear SDE With Root-Function or Irrational Function

We deal with a test-example based on root- or irrational functions, see also [29].
The function is given as:

dX(t) = (
2
5

X3/5 + 5X4/5)dt + X4/5dWt, t ∈ ×[0, 1], (24)

X(0) = 1. (25)

The analytical solution can be derived by the Ito-Taylor expansion, see [29] and we obtain:

X(t) =
(

X(0) + t +
1
5

W(t)
)5

,

where W(t) = Wt −W0 =
√

t ξ and ξ obeys the Gaussian normal distribution N(0, 1) with E(ξ) = 0
and E(ξ2) = Var(ξ) = 1.

We deal with the following numerical methods. Further, we apply the time-intervals ∆t = 1
N with

N = 29, 210, 211, 212, 213.

• Euler-Maruyama-Scheme

X(ti+1) = X(ti) +

(
2
5

X3/5(ti) + 5X4/5(ti)

)
∆t + X4/5(ti)∆Wt,

where ∆t = ti+1 − ti, ∆Wt = Wti+1 −Wti =
√

∆t ξ and ξ obeys the Gaussian normal distribution
N(0, 1) with E(ξ) = 0 and E(ξ2) = Var(ξ) = 1.

We have i = 0, . . . , N − 1 with X(t0) = 1.0.
• Milstein-Scheme

X(ti+1) = X(ti) +

(
2
5

X3/5(ti) + 5X4/5(ti)

)
∆t + X4/5(ti)∆Wt

+
2
5

X3/5(ti)((∆Wt)
2 − ∆t),

where ∆t = ti+1 − ti, ∆Wt = Wti+1 −Wti =
√

∆t ξ and ξ obeys the Gaussian normal distribution
N(0, 1) with E(ξ) = 0 and E(ξ2) = Var(ξ) = 1.

We have i = 0, . . . , N − 1 with X(t0) = 1.0.
• AB-splitting approach:

We initialize ti with i = 0, . . . , N − 1, while tN = T and we have X(0) is the initial condition.

We deal with the 2 steps:

1. A-step:

X̃(ti+1) = X(ti) +

(
2
5

X3/5(ti) + 5X4/5(ti)

)
∆t,
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2. B-part:

X(ti+1) = X̃(ti+1) + X̃4/5(ti+1)∆Wt +
2
5

X̃3/5(ti+1)((∆Wt)
2 − ∆t),

where we have the solution X(ti+1) and we go to the next time-step till i = N − 1.

• ABA-splitting approach:

We initialize ti with i = 0, . . . , N − 1, while tN = T and we have X(0) is the initial condition.

We deal with the 2 steps:

1. A-step (∆t/2):

X̃(ti+1) = X(ti) +

(
2
5

X3/5(ti) + 5X4/5(ti)

)
∆t/2,

2. B-part (∆t):

X̂(ti+1) = X̃(ti+1) + X̃4/5(ti+1)∆Wt +
2
5

X̃3/5(ti+1)((∆Wt)
2 − ∆t),

3. A-step (∆t/2):

X(ti+1) = X̂(ti) +

(
2
5

X̂3/5(ti) + 5X̂4/5(ti)

)
∆t/2,

where we have the solution X(ti+1) and we go to the next time-step till i = N − 1.

• Iterative Picard approach:

dX(t) = (
2
5

X3/5 + 5X4/5)dt + X4/5dWt, t ∈ ×[0, 1],

X(0) = 1,

we apply an Picard-Iteration

dXi(t) = (
2
5

X3/5
i−1 + 5X4/5

i−1)dt + X4/5
i−1dWt, t ∈ ×[0, 1],

X(0) = 1,

where X0(t) = x(0), while we apply the implicit method in the drift term and the explicit method
in the diffusion term.

The algorithm is given as: We initialize tn with n = 0, . . . , N − 1, while tN = T and we have X(0)
is the initial condition.

We deal with the 2 loops (loop 1 is the computation over the full time-domain and loop 2 is the
computation with i = 1, 2, . . .):

1. n = 0, . . . , N − 1:
2. i = 1, . . . , I:
3. Computation

X(tn+1)
i = X(tn) +

(
2
5

X3/5(tn+1)
i−1 + 5X4/5(tn+1)

i−1
)

∆t

+X4/5(tn)∆Wt +
2
5

X3/5(tn)((∆Wt)
2 − ∆t),
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4. i = i + 1, if i = I + 1 then we are done, else we go to Step (c)
5. n = n + 1, if n + 1 = N + 1 then we are done, else we go to Step (b)

• Iterative Picard with Doléans-Dade exponential approach:

dX(t) = (
2
5

X3/5 + 5X4/5)dt + X4/5dWt, t ∈ ×[0, 1],

X(0) = 1,

we apply an Picard with Doléans-Dade exponential approach

dXi(t) = (
2
5

X−2/5
i−1 + 5X−1/5

i−1 )Xidt + X−1/5
i−1 XidWt, t ∈ ×[0, 1],

X(0) = 1,

where X0(t) = x(0), while we apply the implicit method in the drift term and the explicit method
in the diffusion term.

The algorithm is given as: We initialize tn with n = 0, . . . , N − 1, while tN = T and we have X(0)
is the initial condition.

We deal with the 2 loops (loop 1 is the computation over the full time-domain and loop 2 is the
computation with i = 1, 2, . . .):

1. n = 0, . . . , N − 1:
2. i = 1, . . . , I:
3. Computation

X(tn+1)
i = X(tn) exp

∆t
2
5

(
X−2/5(tn+1)

i−1 + X−2/5(tn)
)

2

+∆t 5

(
X−1/5(tn+1)

i−1 + X−1/5(tn)
)

2
− ∆t

1
2

(
X−2/5(tn+1)

i−1 + X−2/5(tn)
)

2

+X−1/5(tn)∆Wt +
1
2

X−2/5(tn)((∆Wt)
2 − ∆t)

)
,

4. i = i + 1, if i = I + 1 then we are done, else we go to Step (c)
5. n = n + 1, if n + 1 = N + 1 then we are done, else we go to Step (b)

• Iterative Picard-Splitting with Doléans-Dade exponential approach:

dX(t) = (
2
5

X3/5 + 5X4/5)dt + X4/5dWt, t ∈ ×[0, 1],

X(0) = 1,

we apply the following splitting approach:

A(X(t)) =
2
5

X3/5 + 5X4/5,

A1(X(t)) = 5X4/5, A2(X(t)) =
2
5

X3/5,

where a1(X(t)) = 5X−1/5(t).
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We apply the Picard-iterations with Doléans-Dade exponential approach and the
splitting approach:

dXi(t) = (5X−1/5
i−1 Xidt + X−1/5

i−1 XidWt) +
2
5

X3/5
i−1+, t ∈ ×[0, 1],

X(0) = 1,

where X0(t) = x(0), while we apply the implicit method in the drift term and the explicit method
in the diffusion term.

The algorithm is given as: We initialize tn with n = 0, . . . , N − 1, while tN = T and we have X(0)
is the initial condition.

We deal with the 2 loops (loop 1 is the computation over the full time-domain and loop 2 is the
computation with i = 1, 2, . . .):

1. n = 0, . . . , N − 1:
2. i = 1, . . . , I:
3. Computation (we apply the full exp):

X(tn+1)
i = X(tn) exp

(
∆t 5 (

X−1/5(tn+1)
i−1+X−1/5(tn))
2 − ∆t 1

2
(X−2/5(tn+1)

i−1+X−2/5(tn))
2

+ X−1/5(tn)∆Wt +
1
2 X−2/5(tn)((∆Wt)2 − ∆t)

)
+∆t exp

(
∆t 5 (

X−1/5(tn+1)
i−1+X−1/5(tn))
2 − ∆t 1

2
(X−2/5(tn+1)

i−1+X−2/5(tn))
2

+ X−1/5(tn)∆Wt +
1
2 X−2/5(tn)((∆Wt)2 − ∆t)

)
· 25

(X−2/5(tn+1)
i−1+X−2/5(tn))
2 .

(26)

4. i = i + 1, if i = I + 1 then we are done, else we go to Step (c)
5. n = n + 1, if n + 1 = N + 1 then we are done, else we go to Step (b)

We obtain a critical CFL condition, given as following:

∆t ≤ X2/5

ξ2 , (27)

where ξ is N(0, 1) distributed. If the criterion is done all is fine and we go on. If we reach such a value,
we reduce the time-step ∆t for the recent time step to ∆t = X2/5

ξ2 . For the next time-step, we could use
the old time step and so on.

For the error analysis, we apply the different errors:

1. Mean value at t = tn and J-sample paths:

E(Xmethod(tn)) =
1
J

J

∑
j=1

X j
method(tn), (28)

we deal with time-step ∆t = 1
N with N = 512, 1024, 2048, 4096 and the time-points are tn,

n = 1, . . . , N with end-time-point tN = 1.0. For the sample paths, we apply J = 100 or J = 1000
and for the methods, we have method = {AB, ABA, Em, Mil, Picard, Picard− Doleans, Picard−
Splitt− Doleans}.
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2. Local mean square error value at t = tn and J-sample paths:

Var(Xmethod(tn))local =
1
J

J

∑
j=1
|E(Xmethod(tn))− X j

method(tn)|2, (29)

we deal with time-step ∆t = 1
N with N = 512, 1024, 2048, 4096 and the time-points are tn,

n = 1, . . . , N with end-time-point tN = 1.0. For the sample paths, we apply J = 100 or J = 1000
and for the methods, we have method = {AB, ABA, Em, Mil, Picard, Picard− Doleans, Picard−
Splitt− Doleans}.

3. Global means square error over the full time-scale with different time-steps ∆t and J-sample path:

Var(Xmethod)global =
N

∑
n=0

∆t Var(Xmethod(tn))local , (30)

where we apply the Equation (29) for the local means square error. Further, we deal with ∆t = 1
N

with N = 512, 1024, 2048, 4096. For the sample paths, we apply J = 100 or J = 1000 and for
the methods, we have method = {AB, ABA, Em, Mil, Picard, Picard− Doleans, Picard− Splitt−
Doleans}.

Remark 1. We could reduce the computational time, while we decompose the exp-operator and apply
Pade-approximation. We saw in experiments, that we could accelerate the computation of 2–3 times, such that
we are in the same region as the ABA-splitting approach, see the remarks in Appendix A.2.

In the following Table 1, we present the means-values at t = 1.0.

Table 1. Mean values of the all the methods at time-point t = 1.0.

N EM- Milstein AB ABA Picard Picard- Picard-Splitt-
Doleans Doleans

i = 2 i = 2 i = 2

29 33.9535 35.5878 35.4419 34.6244 40.6004 37.8312 31.3049
210 34.4942 35.4737 34.1016 34.529 40.0732 37.9911 32.2207
211 34.7694 34.2016 35.2721 34.0984 40.6338 37.9833 30.5993
212 34.2202 36.2405 35.1938 35.8434 40.1492 37.9433 31.4823

In the following Figure 1, we present the exact solution of the first experiment.
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Figure 1. The exact solution of the stochastic differential equation (SDE) in the first experiment.
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In the following Figure 2, we present the mean value, while we apply Equation (28), with different
time-steps and for all numerical methods.

0 0.2 0.4 0.6 0.8 1

t

0

5

10

15

20

25

30

35

40

45
Mean N=512

AB

ABA

EM

Milstein

Picard

Picard-Doleans

Picard-Splitt-Doleans

0 0.2 0.4 0.6 0.8 1

t

0

5

10

15

20

25

30

35

40

45
Mean N=1024

AB

ABA

EM

Milstein

Picard

Picard-Doleans

Picard-Splitt-Doleans

0 0.2 0.4 0.6 0.8 1

t

0

5

10

15

20

25

30

35

40

45
Mean N=2048

AB

ABA

EM

Milstein

Picard

Picard-Doleans

Picard-Splitt-Doleans

0 0.2 0.4 0.6 0.8 1

t

0

5

10

15

20

25

30

35

40

45
Mean N=4096

AB

ABA

EM

Milstein

Picard

Picard-Doleans

Picard-Splitt-Doleans

Figure 2. Results of the mean values are computed with Equation (28) and they are presented for the
different methods with the following number of time steps N = 512, 1024, 2048, 4096.

In the following Figure 3, we present the mean square error, while we apply Equation (30),
with different time-steps and for all numerical methods.
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Figure 3. Results of mean square errors are computed with Equation (30) and they are presented for
the different methods with the following number of time steps N = 512, 1024, 2048, 4096.

In the following Figure 4, we present the performance of the schemes.
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Figure 4. Performance of the different schemes, where we compute the mean error values of
the different methods at t = 1.0 with J = 100 samples and different number of time-steps with
N = 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000.

Remark 2. In the Figures 2 and 3, we present the mean and the mean-square-errors of the different schemes.
We see the higher stability and the benefits of the iterative splitting, which applied symmetric techniques like
the Doléans-Dade exponential approach. The locally Lipschitz operators are more stable to compute, while we
could bound the operators in an exponential-approach, see [12]. In the performance, see Figure 7 in Section 3.2
we see, that the exponential based methods, like the Picard-Doleans or the Picard-Splitt-Doleans, are 2–3 times
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higher, than the standard schemes. But we obtain much more accurate and stable results and could use much
more larger time-steps, such that we accelerate the solver process. Here, the restriction to the CFL-condition for
the EM-, Milstein-schemes are higher and therefore the exponential based methods can use larger time-steps
or are more accuracy with the same time-steps. For an increasing of the volatility in the stochastic differential
equation, we have a stable method based on the Picard-Doleans or Picard-Splitt-Doleans. Here, we deal with an
implicit behaviour of the underlying methods and we have to be aware of the numerical diffusion, which appear
with larger time-steps, see [30].

3.2. Second Example: Linear/Nonlinear SDE with Potential Function

We deal with a test-example based on root- or irrational functions, see also [29].
The function is given as:

dX(t) = (2X1/2 + 1)dt + 2X1/2dWt, t ∈ ×[0, 1], (31)

X(0) = 1. (32)

The analytical solution can be derived by the Ito-Taylor expansion, see [29] and we obtain:

X(t) = (X(0) + t + W(t))2 ,

where W(t) = Wt −W0 =
√

t ξ and ξ obeys the Gaussian normal distribution N(0, 1) with E(ξ) = 0
and E(ξ2) = Var(ξ) = 1.

where W(t) ≈
√

tN(0, 1) and N(0, 1) indicates a standard normal random variable.
We deal with the following numerical methods. Further, we apply the time-intervals ∆t = 1

N with
N = 29, 210, 211, 212, 213.

• Euler-Maruyama-Scheme

X(ti+1) = X(ti) +
(

2X1/2(ti) + 1
)

∆t + 2X1/2(ti) ∆Wt,

where ∆t = ti+1 − ti, ∆Wt = Wti+1 −Wti =
√

∆t ξ and ξ obeys the Gaussian normal distribution
N(0, 1) with E(ξ) = 0 and E(ξ2) = Var(ξ) = 1.

We have i = 0, . . . , N − 1 with X(t0) = 1.0.
• Milstein-Scheme

X(ti+1) = X(ti) +
(

2X1/2(ti) + 1
)

∆t + 2X1/2(ti) ∆Wt +
1
2
((∆Wt)

2 − ∆t),

where ∆t = ti+1 − ti, ∆Wt = Wti+1 −Wti =
√

∆t ξ and ξ obeys the Gaussian normal distribution
N(0, 1) with E(ξ) = 0 and E(ξ2) = Var(ξ) = 1.

We have i = 0, . . . , N − 1 with X(t0) = 1.0.
• AB-splitting approach:

We initialize ti with i = 0, . . . , N − 1, while tN = T and we have X(0) is the initial condition.

We deal with the 2 steps:

1. A-step:

X̃(ti+1) = X(ti) +
(

2X1/2(ti) + 1
)

∆t,
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2. B-part:

X(ti+1) = X̃(ti+1) + 2X̃1/2(ti+1) ∆Wt +
1
2
((∆Wt)

2 − ∆t),

where we have the solution X(ti+1) and we go to the next time-step till i = N − 1.

• ABA-splitting approach:

We initialize ti with i = 0, . . . , N − 1, while tN = T and we have X(0) is the initial condition.

We deal with the 2 steps:

1. A-step (∆t/2):

X̃(ti+1) = X(ti) +
(

2X1/2(ti) + 1
)

∆t/2,

2. B-part (∆t):

X̂(ti+1) = X̃(ti+1) + 2X̃1/2(ti+1) ∆Wt + 2((∆Wt)
2 − ∆t),

3. A-step (∆t/2):

X(ti+1) = X̂(ti+1) +
(

2X̂1/2(ti+1) + 1
)

∆t/2,

where we have the solution X(ti+1) and we go to the next time-step till i = N − 1.

• Iterative Picard approach:

dX(t) = (2X1/2 + 1)dt + 2X1/2dWt, t ∈ ×[0, 1],

X(0) = 1,

we apply an Picard-Iteration

dXi(t) = (2X1/2
i−1 + 1)dt + 2X1/2

i−1dWt, t ∈ ×[0, 1],

X(0) = 1,

where X0(t) = x(0), while we apply the implicit method for the drift term and the explicit method
for the diffusion term.

The algorithm is given as:

We initialize tn with n = 0, . . . , N − 1, while tN = T and we have X(0) is the initial condition.

We deal with the 2 loops (loop 1 is the computation over the full time-domain and loop 2 is the
computation with i = 1, 2, . . .):

1. n = 0, . . . , N − 1:
2. i = 1, . . . , I:
3. Computation

Xi(tn+1) = X(tn) + (2Xi−1(tn+1)1/2 + 1)∆t

+2X1/2(tn) ∆Wt +
1
2
((∆Wt)

2 − ∆t), t ∈ ×[0, 1],

X(0) = 1,
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where ∆t = tn+1 − tn, ∆Wt = Wtn+1 −Wtn =
√

∆t ξ and ξ obeys the Gaussian normal
distribution N(0, 1) with E(ξ) = 0 and E(ξ2) = Var(ξ) = 1.

4. i = i + 1, if i = I + 1 then we are done, else we go to Step (c)
5. n = n + 1, if n + 1 = N + 1 then we are done, else we go to Step (b)

• Iterative Picard-splitting with Doléans-Dade exponential approach:

dX(t) = (2X1/2 + 1)dt + 2X1/2dWt, t ∈ ×[0, 1],

X(0) = 1,

we apply the following splitting approach:

A(X(t)) = 2X1/2 + 1,

A1(X(t)) = 2X1/2, A2(X(t)) = 1,

where a1(X(t)) = 2X−1/2(t).

We apply an Picard with Doléans-Dade exponential approach and right hand side

dXi(t) = (2X−1/2
i−1 )Xidt + 2X−1/2

i−1 XidWt + 1 dt, t ∈ ×[0, 1],

X(0) = 1,

where X0(t) = x(0), while we apply the implicit method in the drift term and the explicit method
in the diffusion term.

The algorithm is given as: We initialize tn with n = 0, . . . , N − 1, while tN = T and we have X(0)
is the initial condition.

We deal with the 2 loops (loop 1 is the computation over the full time-domain and loop 2 is the
computation with i = 1, 2, . . .):

1. n = 0, . . . , N − 1:
2. i = 1, . . . , I:
3. Computation (we apply Version 1 or Version 2)

4. Computation (we apply the full exp and integration of the RHS)

X(tn+1)
i = X(tn) exp

(
∆t

(
2X−1/2(tn+1)

i−1 + 2X−1/2(tn)
)

2

−∆t
(
X−1(tn+1)

i−1 + X−1(tn)
)

2

+ 2 X−1/2(tn)∆Wt +
1
2

X−1(tn)((∆Wt)
2 − ∆t)

)
+ ∆t. (33)

5. i = i + 1, if i = I + 1 then we are done, else we go to Step (c)
6. n = n + 1, if n + 1 = N + 1 then we are done, else we go to Step (b)

We obtain a critical CFL condition, given as following:

∆t ≤ X
4 ξ2 , (34)
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where ξ is N(0, 1) distributed. If the criterion is done all is fine and we go on. If we reach such a value,
we reduce the time-step ∆t for the recent time step to ∆t = X

4 ξ2 . For the next time-step, we could use
the old time step and so on.

Remark 3. In the mixed example with additional right hand side, we could reduce the computational
time, while we decompose into symmetric operators. We have applied an exp-operator and via Taylor- or
Pade-approximation and additional a convolution operator with the right-hand side, see also [12]. We saw the
stable behaviour of such a splitting and could additionally accelerate the computation of 2–3 times, such that we
are in the same region as the ABA-splitting approach, see the remarks in Appendix A.2.

In the following Figure 5, we present the mean value, which is computed with the Equation (28)
with different time-steps and for all the numerical methods.
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Figure 5. Results of the mean values, which are computed with Equation (28) and they are presented
for the different methods with the number of time steps N = 512, 1024, 2048, 4096.

In the following Figure 6, we present the mean square error, which is computed with the
Equation (30) with different time-steps and for all the numerical methods.
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Figure 6. Results of mean square errors, which are computed with Equation (30) and they are presented
for the different methods with the number of time steps N = 512, 1024, 2048, 4096.

In the following Figure 7, we present the performance of the schemes.
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Figure 7. Performance of the different schemes, where we compute the mean error values of
the different methods at t = 1.0 with J = 100 samples and different number of time-steps with
N = 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000.

Remark 4. In the second example, which is a mixed linear and nonlinear stochastic differential equation, we also
see the benefit and the efficiency of the iterative splitting approaches with Doléans-Dade exponential approach.
Based on the local Lipschitzian of the coefficients, we could also apply larger timesteps for the exponential
method with an iterative method. Such a Picard iterations solve the nonlinear parts of the operators and we
could stabilize the nonlinear growth-parts with the exponential exponential approach. This allows to neglect
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the blow-ups in the exponential growth with sufficient large time-steps, see [10,16]. Further the benefit in
splitting into symmetric parts of nonlinear and linear parts allows to accelerate the solver processes, see [31].
The benefit of larger time-steps for the iterative Picard-splitting with Doléans-Dade exponential approach can
also applied to increasing volatilities in the SDEs. Here, we have to consider the implicit character of the iterative
Picard-splitting approaches, see [30]. Such a behaviour can smear or smoothen out the solution of increasing
volatility, like increasing diffusion, such that it might be necessary to apply multiscale methods with much more
finer time-steps or an restriction of the time-step around the CFL-condition, see [30,32].

4. Conclusions

We have discussed a new iterative splitting approach, which is based on Picard iterations and
Doléans-Dade exponential approach. We proof the convergence of such new schemes, which have
embedded the Doléans-Dade exponential approach. Such a combinations allow to circumvent the
global non-Lipschitz problems and therefore consider more stable local Lipschitz problems. Such a local
problem can be solved with reformulations of exponential based operators, which are more stable in the
numerical approach. We could embed such locally Lipschitz problems into a splitting approach which
deals with exponential parts and a nonlinear solver given as Picard’s method. Such a combination
allows to obtain stable and convergent methods. Due to symmetric approaches of the operators,
we could split into more appropriate linear, nonlinear and stochastic operators, which allows faster
computations. The first numerical results are tested with linear and nonlinear stochastic differential
equations with rational functions of the drift and diffusion parts. We present the benefits of the
iterative splitting approach with the Doléans-Dade exponential, while we obtain an implicit method
with stable results. Therefore, we are independent of the CFL conditions and accelerate the solver
process. In future, we will test the splitting approach to more inhomogeneous problems and in the
case of increasing volatility, e.g., real-life problems with stochastic lubrication models.
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Appendix A

Appendix A.1. Additional Proofs

We have the Lemma A1 as following; see also the proof in paper [5].

Lemma A1. We have f m(t) be a sequence of positive functions, which are defined on the interval t ∈ [0, T],
with T > 0, such that we have for some C > 0:

f m+1(t) ≤ C
∫ t

0
gm(s)ds, 0 ≤ f 0 ≤ C, (A1)

then we obtain:

sup
t∈[0,T]

f m+1(t) ≤ Cm tm

m!
sup

t∈[0,T]
f 0(t). (A2)

Proof. The proof is sketch as following, see also [5]: We can bound the function g0 as:

C f := sup
t∈[0,T]

f 0(t) ≤ C.
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We apply:

sup
t∈[0,T]

f m−1(t) ≤ Cm−1 tm−1

(m− 1)!
C f ,

then we can apply the integral an obtain

f m(t) ≤ C
∫ t

0
Cm−1 sm−1

(m− 1)!
C f ds.

By integration, we receive the results, that proves our lemma.

Appendix A.2. Approximated exp-Functions

We can reduce the computational time for the Doléans-Dade exponential approach with the
following reductions:

• Version with reduced exp in Example 1: We replace the Equation (26) with the reduced exponential
function, see:

X(tn+1)
i =

(
X(tn) + ∆t 2

5
(X−2/5(tn+1)

i−1+X−2/5(tn))
2

)
·
(

1 + ∆t 5 (
X−1/5(tn+1)

i−1+X−1/5(tn))
2 − ∆t 1

2
(X−2/5(tn+1)

i−1+X−2/5(tn))
2

+ X−1/5(tn)∆Wt +
1
2 X−2/5(tn)((∆Wt)2 − ∆t)

)
,

(A3)

where we assume to choose and appropriate ∆t > 0 with
(

1 + ∆t 5 (
X−1/5(tn+1)

i−1+X−1/5(tn))
2 −

∆t 1
2
(X−2/5(tn+1)

i−1+X−2/5(tn))
2 + X−1/5(tn)∆Wt +

1
2 X−2/5(tn)((∆Wt)2 − ∆t)

)
≥ 0.

• Version with reduced exp in Example 2: We replace the Equation (33) with the reduced exponential
function and integration of the RHS, see:

X(tn+1)
i = X(tn)

(
1 + ∆t

(
2X−1/2(tn+1)

i−1 + 2X−1/2(tn)
)

2

−∆t
(
1X−1(tn+1)

i−1 + 1X−1(tn)
)

2

+ 2 X−1/2(tn)∆Wt +
1
2

X−1(tn)((∆Wt)
2 − ∆t)

)
+ ∆t. (A4)
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