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Abstract: In this study, the problem of axisymmetric deformation of peripherally fixed and uniformly
laterally loaded circular membranes with arbitrary initial stress is solved analytically. This problem
could be called the generalized Foppl-Hencky membrane problem as the case where the initial stress
in the membrane is equal to zero is the well-known Foppl-Hencky membrane problem. The problem
can be mathematically modeled only in terms of radial coordinate owing to its axial symmetry, and in
the present work, it is reformulated by considering an arbitrary initial stress (tensile, compressive,
or zero) and by simultaneously improving the out-of-plane equilibrium equation and geometric
equation, while the formulation was previously considered to fail to improve the geometric equation.
The power-series method is used to solve the reformulated boundary value problem, and a new and
more refined analytic solution of the problem is presented. This solution is actually observed to be able
to regress into the well-known Hencky solution of zero initial stress, allowing the considered initial
stress to be zero. Moreover, the numerical example conducted shows that the obtained power-series
solutions for stress and deflection converge very well, and have higher computational accuracy in
comparison with the existing solutions.

Keywords: initial stress; circular membrane; large deflection; power-series method; closed-form solution

1. Introduction

Thin films as structural components or structures are essential in many applications [1-4].
The so-called circular membrane problem usually refers to the problem of axially symmetric deformation
of an initially flat, peripherally fixed, laterally uniformly loaded, linearly elastic, circular isotropic
membrane with or without tensile or compressive initial stress. It is actually the mechanical model
abstract from practical structural problems. This problem could be called the generalized Foppl-Hencky
membrane problem as the case where the initial stress in the membrane is equal to zero is the well-known
Foppl-Hencky membrane problem [5]. The term “membrane” here should be understood as the
so-called fully stretched plate in mechanics whose upper and lower surfaces, regardless of its thickness,
are simultaneously stretched under lateral loads owing to being “peripherally fixed”. The so-called
initial stress refers to the stress before uniformly laterally loading, which is produced by stretching
or compressing the initially flat circular elastic membrane in the direction of the plane in which the
initially flat circular elastic membrane locates. Obviously, the initial stress before uniformly laterally
loading will have an influence on the mechanical behaviour of the circular membrane under uniform
lateral loads, and in comparison with the stress resultant under laterally loading, the greater the initial
stress, the greater the influence.

Symmetry 2020, 12, 1343; doi:10.3390/sym12081343 www.mdpi.com/journal/symmetry


http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-4356-7173
https://orcid.org/0000-0002-8880-3961
http://dx.doi.org/10.3390/sym12081343
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/8/1343?type=check_update&version=2

Symmetry 2020, 12, 1343 2 of 20

The initial stress can very easily be present in practical issues. For instance, the residual stress
is the stress in the film/substrate systems or thin film devices after fabrication, which can be either
tensile or compressive, and is usually an important parameter affecting the reliability or performance
of film/substrate systems or thin film devices [6-11]. Therefore, the residual stress will be the so-called
initial stress if the film in the film/substrate systems or thin film devices is further subjected to lateral
loads. The initially flat circular elastic membrane attached to a stiff ring at its perimeter is often used
to make diaphragm devices [4,12], while the membrane could be so inappropriately stressed that
the stress in the attached initially flat circular membrane deviates from that expected, resulting in
the so-called residual stress. In fact, the change in temperature or humidity could relax or tighten
the initially flat circular membrane attached to the stiff ring, as long as the temperature or humidity
at this time is different from that at attaching [13]. Such a relaxing or tightening is actually also a
residual stress. The residual stress in thin film devices, as an initial stress of the thin film working
under lateral loading, will result in the deviation of the performance of devices from that expected.
Moreover, the variations in the processing conditions such as method of etching, humidity, temperature,
or the order of fabrication procedures could give rise to a compressive or tensile residual stress in
the film/substrate systems fabricated [7,9,11]. Such a residual stress could result in the delamination
between a substrate and its coating [10], thus losing the reliability of film/substrate systems. To increase
the reliability and ensure expected performance, the measurement of the residual stress in film/substrate
systems and thin film devices is often found to be necessary after fabrication. To this end, a variety of
ways have been developed to measure the residual stress, such as the peeling method [14], diffraction
technique [15,16], diffraction topography technique [17], two beam laser reflection technique [18],
and vibrational technique [19,20]. Among these ways, the so-called pressurized blister or bulge test
technique [21-27] could be modelled as a circular membrane problem with or without initial tensile or
compressive stress. There would be no need for an advanced experimental setup to simultaneously
monitor the change in pressure and in blister dimension, if the analytical solution of the circular
membrane problem, that is, the relation between pressure and blister dimension, can be available.
Therefore, the analytical solutions of the circular membrane problems often play an important role in
the design of thin film devices and the characterization of mechanical properties such as the residual
stress, Poisson’s ratio, modulus of elasticity, and adhesion strength for film/substrate systems or thin
film devices [28].

Hencky, the recognized German scientist, originally dealt with the circular membrane problems
without arbitrary initial stress, and a power-series solution of the problem was presented with the
bending related terms in the Foppl-von Karman equations of large deflection of thin plates ignored [5].
Chien [29] and Alekseev [30] corrected a computational error in [5]. This problem is the so-called
Foppl-Hencky membrane problem (well-known Hencky problem for short), and its solution is usually
referred to as the well-known Hencky solution, which is often cited in some studies of related
issues [31-37]. Sun et al. reformulated the well-known Hencky problem by giving up the so-called
small rotation angle assumption of membranes and by improving the out-of-plane equilibrium
equation, and presented a new closed-form solution of the problem [38]. Further, Sun et al. [39]
reformulated the well-known Hencky problem with the out-of-plane equilibrium equation, geometric
equation simultaneously improved, and presented a new refined closed-form solution. As for the
case of circular membranes with initial compressive or tensile stress, based on the modification of
elastic equations, Ku [40] presented an analysis of large deflection of circular elastic membranes with
initial tension under uniformly distributed loads, and He et al. [41] presented an analytic solution of
axisymmetrical deformation of prestressed circular membranes under uniformly laterally loading.
However, Sun et al. pointed out that it is unreasonable to modify the elastic equations because the
initial stress before uniformly laterally loading should not give rise to a change in the constitutive
relationship of membrane materials. Therefore, Sun et al. resolved the problem with initial stress
under uniformly laterally loading and presented a new power-series solution of the problem, that is,
the so-called extended Hencky solution [42]. The closed-form solution that is presented in [42] can be
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regressed to the well-known Hencky solution, allowing the initial stress to be zero, while the solutions
presented in [40,41] cannot. Moreover, the closed-form solution without the initial stress and small
rotation angle assumption, which is presented in [38], was extended further to suit the more general
cases with initial tensile or compressive stress, achieving the synchronous characterization for the
interface and surface of film/substrate systems with residual stress [43]. Owing to improving the
out-of-plane equilibrium equation and considering the initial tensile or compressive stress, this solution
should be the prestressed solution with the best computational accuracy at present, and it has been
incorporated into the study on the contact problem between Féppl-Hencky membranes and rigid
surfaces [44].

In this study, the computational accuracy of the solution was further improved by simultaneously
improving the geometric equation, out-of-plane equilibrium equation, and by considering an arbitrary
initial stress. In the following section, the problem of axisymmetric deformation of the circular elastic
membrane with an arbitrary initial stress is reformulated, the resulting boundary value problem is
solved using the power-series method, and a new refined closed-form power-series solution is finally
presented. In Section 3, on the basis of the numerical examples conducted, some important issues are
discussed, such as the regression, convergence, effectiveness of the improved solution, and the effect of
the initial stress on the obtained solution. Concluding remarks are presented in Section 4.

2. Membrane Equations and Closed-Form Solution

2.1. Reformulation of the Generalized Foppl-Hencky Membrane Problem

Suppose that, an initially flat, rotationally symmetric, linearly elastic unstretched circular
membrane with Poisson’s ratio v, Young’s modulus of elasticity E, radius 4, and thickness # is
extended or shrunk a radial plane displacement 1 at the periphery of radius 4, and is then fixed at the
radius a. A structure of the circular elastic membrane with an initial tensile or compressive stress is thus
modelled. A uniformly-distributed transverse load g is applied quasi-statically onto the membrane
surface, as depicted in Figure 1, where r and w denote the radial and transverse coordinates in the
cylindrical coordinate system (r, ¢, w) (w also denotes the transverse displacement of the deflected
membrane), and the polar coordinate plane (r, ¢) is arranged in the plane in which the geometric
middle plane of the initially flat circular elastic membrane is located.

| a |

[ o

Figure 1. Geometry of the deformed circular membrane along a diameter 2a under load 4.

Take a free body with radius 0 < r < a from the central portion of the deformed circular membrane,
in order to study the static equilibrium problem of this free body under the joint actions of the
uniformly-distributed loads g within r and the total force 2ntroh, which is produced by the membrane
force o,h acting on the boundary 7, as depicted in Figure 2, where ¢, is the radial stress and 0 is the
slope angle of the deformed circular membrane.
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Figure 2. The free body diagram of the deformed circular membrane with radius 0 < r < a.

Obviously, there are two forces in the vertical direction, that is, nrzq (the total force of the
uniformly-distributed loads q) and 2nro,h sin O (the total vertical membrane force which is produced
by the membrane force o,h). So, the so-called out-of-plane equation of equilibrium [31,36,38,42] is

2nrohsin O = anq, @

where

sin@zl/\/l—i—l/taan:1/\/1+1/(—dw/dr)2. )

Substituting Equation (2) into Equation (1), one has

%rq\/l +1/(dw/dr)? = o,h. )

There are also two forces in the horizontal direction, the circumferential membrane force o4 and the
horizontal component of the membrane force 0,41, where o; is the circumferential stress. So, the so-called
in-plane equation of equilibrium may be written as

d

a(mrh) —oth =0. 4)
Equation (4) can be found in any general theory of plates and shells, so it is not necessary to discuss its
detailed derivation here. Suppose that the radial strain is denoted as ¢,, the circumferential strain is
denoted as ¢;, the radial displacement is denoted as u(r), and the transversal displacement is denoted
as w(r), then the so-called geometric equations [39] are

2 2 1/2
o=10+ 5+ (] 6
and u
et = ; (6)

Moreover, the stress and strain are still assumed to satisfy the linear elasticity relationship, so the
so-called physical equations are

oy = (er +ver) @)

1-12

and

ot = (et + ver). 8

1-12
Eliminating e, and e; from Equations (5)—(8) yields

E du ? dw u
Ur:m{[(l-i—a) + (=) | —1+v;} 9)
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and 12
E u du 2 dw ?
ot = 1_1/2{; +V[(1+a) +(E) ] —U}. (10)
From Equations (4), (9) and (10), one has
u 1 d
P E(Gt —voy) = E[a(rgr) — 0oy ). (11)

After eliminating u from Equations (9) and (11), the usual so-called consistency equation can be written

as
2
(0= 201 +1) = [z (o) = 5= (1) +1] (S
The boundary conditions to solve Equations (3), (4) and (12) can be determined based on the following
solution to the plane stretching or compressing problem of the initially flat circular elastic membrane. In
the problem of plane stretching or compressing (i.e., the initially flat circular elastic membrane is extended
or shrunk to a radial plane displacement uy at r = a), dw/dr = 0. So, from Equations (5) and (6),

one has

2 2
d dw ) =0. (12)

du
- 1
er ar (13)
and "
= = 14
et . ( )
Eliminating e, and e; from Equations (7), (8), (13) and (14) yields
E ,du U
=1y T (15)
and £ d
u u
ot = 1_v2(;+’05)' (16)
From Equations (4), (15) and (16), one has
d’u  du
2— _— =
r 32 +r P u=20. (17)
The boundary conditions to solve Equation (17) are
u=0atr=20 (18)
and
u=ugatr=a. (19)

So, under the conditions of Equations (18) and (19), the solution of Equation (17) can be written as

u(r
¥ - % (20)
From Equations (13)-(16) and (20), it is found that
er = =eg == (21)
and o E w
r= t—Go—l_va/ (22)

in which g denotes the so-called initial stress and ey denotes the initial strain. Equations (21) and (22)
indicate that, for the problem of plane stretching or compressing, both stress and strain are two-axis
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equal at every point on the flat circular membrane. This result is in accord with the fact that the residual
stress is always uniform in film/substrate systems [9]. Therefore, the boundary conditions to solve
Equations (3), (4) and (12) can finally be written as

90 _atr=0; 23)
dr
1 1.d up 1-vo
- E(Ot UGr) = E[d—(i’(iy) —UCTr] = 7 = TCTO atr=a (24)
and
w=0atr=a. (25)
2.2. Power Series Solution
The following dimensionless variables are used
a9 W _0r g 9t g 90 T
Q hE W_a/SY_E/St_E/SO E/x ﬂ' (26)
Transform Equations (3), (4), (12), (23)—(25) into
dw 2
(457 - Q) () - *¥*Q* =0, (27)
4 xs) -5 =0 (28)
dx r t — Y,
,d 2 dw.?
(S —vSi+1)" - [ —(xS1) —o=(x8) +1] — () =0, (29)
dw
E—OatX—O, (30)
g -us —i(xS)—vS =Sy(1-v)atx=1 (31)
p = ot r— dx r r — 20 =
and
W=0atx=1. (32)

Eliminating dW/dx and S; from Equations (27)—(29), a nonlinear differential equation containing only
variable S, can be obtained

(45%—x2Q2){572+257 2(0S, + 1) & (xS,) - (1 - 20)[0%(x5r)]2

2 . (33)
2x§7(x57) —2(1-v)xL (xS, )dxl( xSy) —x [dx2 (xS, )] —x2Q% =0

Given that the value of stress is finite at x = 0, then S, (x) can be expanded into the power-series of the x

(o)

Sr(x) = Z bix'. (34)

After plugging Equation (34) into Equation (33), we obtainb; =0(i=1,3,5,... ),and b; i=2,4,6,...)
can be expressed in the polynomial about the undetermined constant by (see Appendix A). While by
can be determined by the boundary condition at x = 1. From Equations (28) and (34), the condition of
Equation (31) gives

(o0

zzb+ 1- vi (35)

i=1 i=0
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After substituting all expressions of b; into Equation (35), an equation containing only by can be obtained.
So by can be determined by solving this single variable equation, and the expression of S, can thus be
determined. As for S;, with the known expression of S;, it can easily be obtained from Equation (28),
so it is not necessary to derive it here. Moreover, W(x) can be expanded into the power-series of the x

W(x) = Z i, (36)
i=0
Hence, after plugging Equations (34) and (36) into Equation (27), it is found thatc; =0 (=1, 3,5, ... ),
andc; (i=2,4,6,...)canbe expressed into the polynomial about b; (see Appendix B). The first coefficient
co is another undetermined constant, which can be determined by Equation (32). From Equation (36),
Equation (32) gives

(9]

cop = —Z Cj. (37)

After substituting all expressions of ¢; into Equation (37), the undetermined constant ¢y can be
determined and, consequently, the expression of W can also be determined.

3. Results and Discussions

So far, the boundary condition Equation (23) or (30) has not been used yet. The following is
the proof of whether the closed-form solution presented in Section 2 meets this boundary condition.
The dimensional form of the deflection can be written as, from Equations (26) and (36),

Ci

w(r) = Z ﬂri. (38)
The first derivative of Equation (38) is
dw _ Y Sy, (39)
1

So, dw/dr = ¢; at r = 0. Meanwhile, from the derivation in Section 2, it is already known that
c; = 0. Thus, dw/dr = 0 at r = 0 because ¢; = 0. This indicates that the boundary condition
Equation (23) or (30) can be satisfied automatically, or in other words, the closed-form solution
presented in Section 2 agrees with the physical characteristic of axially symmetric deformation of the
circular membrane.

3.1. Regression of the Solution Presented in Second Section

The following is the proof of whether the analytic solution presented in Section 2 is able to be
regressed to the well-known Hencky solution.

From Equation (26), it can be seen that when o is equal to zero, Sy is also equal to zero. Hence,
Equation (26) in [39] can easily be obtained by allowing Sy in Equation (35) to be zero. This means
that the analytic solution presented in Section 2, which applies to the case with initial stress, can be
regressed to the solution presented in [39], which applies to the case without initial stress, because all
the expressions for displacements and stresses obtained here have the same forms as those obtained
in [39].

On the other hand, if the improved geometry equation (Equation (5) in [39] and this paper) is
replaced by the classic geometric equation (Equation (5) in [38]), then the solution presented in [39] can
be regressed to the solution presented in [38], which gives up the small rotation angle assumption and
uses the classic geometric equation, but considers no initial stress.
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Furthermore, if the small rotation angle assumption of membrane is still adopted, that is, replace
Equation (2) in [38] by Equation (2) in [36], then the solution in [38] can be regressed into the well-known
Hencky solution (which can be found in [5] or [36]).

Therefore, the analytic solution presented in Section 2 is able to be regressed into the well-known
Hencky solution [5,36].

3.2. Comparison with Existing Solutions

For showing the difference between the existing solutions and the solution presented here,
a numerical example was conducted, where four solutions were used, that is, the well-known Hencky
solution that considers zero initial stress [5,36] and three solutions considering initial stress: the solution
presented in this paper, the solution in [43], and the so-called extended Hencky solution in [42]. Suppose
that a circular rubber thin film with Poisson’s ratio v = 0.47, Young’s modulus of elasticity E = 7.84 MPa,
initial stress op = 0.1 MPa, and thickness /1 = 0.2 mm is fixed at radius 4 = 20 mm, and is then subjected
to the transversely uniformly-distributed loads g = 0.0001 MPa, 0.003 MPa, and 0.01 MPa, respectively.
Figure 3 shows the variations of the deflection w with the radial coordinate r and Figure 4 shows
the variations of the radial stress o, with the radial coordinate r, where the solid lines represent
the results calculated by the solution presented in this paper, which is denoted here as Solution 1;
the dotted lines represent the results calculated by the solution in [43], which is denoted as Solution 2;
the dotted-dashed lines represent the results calculated by the extended Hencky solution [42], which
is denoted as Solution 3; and the dashed lines represent the results calculated by the well-known
Hencky solution [5,36], which is denoted as Solution 4. The values of the maximum deflection w;, and
maximum stress o, at 7 = 0 are listed in Table 1.

0

-~
-~ — -
J -
1 g=0.000IMPq o -
I R
I\ S B e 3
o"" 7ZRE
SR,
3 = :‘."/’ - - 47
W(mm) _.----'""/’/ '/.:.0’
4 ] = 'll’o“
.003MPa sy
—/‘“‘
5 ”‘," * 7
N -_--—- .t 7
s / Solution 1
6 % ....... Solution 2 |
0IMPa | | || Solution 3
= = =Solution 4
7 | |
20 16 12 8 4 0 4 8 12 16 20
r(mm)
Figure 3. Variations of deflection w with » when g takes 0.1 MPa.
Table 1. The concrete values of w;,;, and ¢, when o takes 0.1 MPa.
Loads g [MPa] Solution1  Solution 2 Solution 3 Solution 4
0.0001 0.47756 0.47743 0.47718 1.31183
Wy [Mm] 0.003 3.69050 3.43552 3.34403 4.07615
0.01 5.94663 5.49420 5.27261 6.05366
0.0001 0.10536 0.10534 0.10534 0.04202
om [MPa] 0.003 0.44479 0.39752 0.36977 0.33981
0.01 0.99162 0.86134 0.80763 0.78009
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q=0.003MPp
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6 —
.\.: ~ - _ 4 a”_,
08 ..... U :.'.:.-—___: - :-:-:-:-: o - =, ____“_“—' -------------
\\‘ /'/ :
1.0 Solution 1 ]
q= 0.0IMPa| || seeeems Solution 2
=-===Solution 3
= = =Solution 4
1.2 .
20 16 12 8 4 0 4 8 12 16 20

r(mm)

Figure 4. Variations of radial stress o, with r when oy takes 0.1 MPa.

From Figures 3 and 4, it can be seen that the three solutions of considering initial stress
(i.e., Solution 3, Solution 2, and Solution 1) agree quite closely for the loads g = 0.0001 MPa and
diverge slowly as the loads intensify. This means that the improvements implemented in this paper
have had an impact on the calculating precision of the solution, because Solution 3 is obtained using
the classic geometric equation and classic out-of-plane equilibrium equation, Solution 2 is obtained
using the classic geometric equation and improved out-of-plane equilibrium equation, while Solution
1 (i.e., the improved solution in this paper) is obtained using the improved geometric equation and
improved out-of-plane equilibrium equation. The establishment of the classic out-of-plane equilibrium
equation and geometric equation is based on the small rotation angle assumption of membrane, while
the so-called “improved” here actually refers to giving up the small rotation angle assumption, resulting
in a better adaptability of the solution to the rotation angle of membrane. From Figure 3, it can clearly
be seen that, when the load q = 0.0001 MPa, the deflection calculated by Solution 4 (i.e., the well-known
Hencky solution of considering zero initial stress) is far greater than the deflections calculated by
Solution 3, Solution 2, and Solution 1, and when the load q = 0.003 MPa and 0.01 MPa, the deflection
curve by Solution 4 slowly approaches the one by Solution 1 (the improved solution in this paper),
and at the same time, it also slowly moves a little closer to the ones by Solution 3 and Solution 2, which
may be seen from the data of Table 1. This is because the initial stress o9 = 0.1 MPa is considered by
Solution 3, Solution 2, and Solution 1, while the initial stress oy = 0 MPa is considered by Solution 4.
Therefore, when the load q = 0.0001 MPa, the deflection calculated by Solution 4 is far greater than that
by the three solutions considering o9 = 0.1 MPa, in other words, when the load g is relatively small,
the initial stress of 0y = 0.1 MPa plays a main role in the deflection calculations by Solution 3, Solution
2, and Solution 1. Meanwhile, when the load q = 0.003 MPa and 0.01 MPa, the small rotation angle
assumption, which is adopted in the classic out-of-plane equilibrium equation and geometric equation
of the Solution 4, has relatively great influence on the deflection calculation by Solution 4, and the
greater the load, the greater the influence. During the establishments of the out-of-plane equilibrium
equation and geometric equation of the Solution 1, however, the small rotation angle assumption has
been given up and thus has no influence on the deflection calculation by Solution 1. In other words,
when the load q = 0.003 MPa and 0.01 MPa, the influence of the small rotation angle assumption on the
deflection calculation by Solution 4 (the well-known Hencky solution) is far greater than the influence
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of the initial stress of 0yp = 0.1 MPa on the deflection calculation by Solution 1 (the improved solution
in this paper).

On the other hand, Figures 3 and 4 also show that the applicable conditions or preconditions subject
to compliance must be understood before using the solutions, or the used solution would not perform
as well as expected, which could cause an unacceptable calculation error. For instance, from Table 1,
it can be calculated that, when g takes 0.01 MPa and in comparison with Solution 1 (i.e., the improved
solution in this paper), the error of the maximum deflection is about 7.61% for Solution 2 and about
11.34% for Solution 3, while the error of the maximum stress is about 13.14% for Solution 2 and
about 18.56% for Solution 3. Such a large relative error is usually unacceptable in many practical
technical problems, especially in the field of precision measurements such as the characterization
of the mechanical properties of thin film/substrate systems [6—11]. Note that the allowable error for
the precision measurement is usually less than 1%, for the instrument design is usually less than 3%,
and for the civil engineering is usually less than 15%. In addition, it is conceivable that the relative
error between the solution presented in this paper and the existing solutions will increase with the
increase of the membrane deflection or applied loads. Therefore, in this sense, the improvement effect
of this study on the analytical solution of the so-called generalized Foppl-Hencky membrane problem
is obvious.

3.3. Convergence of the Power Series Solution Obtained in Second Section

The following is the proof of whether the power series solutions for S,(x) and W(x) presented in
Section 2 are convergent. However, only the special solutions for S,(x) and W(x), rather than their
general solutions, can be discussed, owing to the fact that the expressions of the coefficients b; and c;
(i=2,4,6,... ), which are expressed as the polynomial about the undetermined constants by and cy
(see Appendices A and B), are so intractable that the expressions of the remained terms of power-series
solutions S,(x) and W(x) cannot be obtained. It is already known, from the derivation in Section 2,
that-the general solutions for S,(x) and W(x) are the power-series of x (see Equations (34) and (36)),
where 0 < x < 1;bjand c; (1 =2, 4,6, ... ) are expressed as the polynomial about the coefficients
bp and cp; and fori =1,3,5,..., b; = 0 and ¢; = 0. It seems as if the special solutions for S,(x) and
W(x) can easily be obtained as long as the undetermined constants by and cy can be determined
by Equations (35) and (37). However, when solving a specific problem, only the partial sum of
former n terms of Equations (34) and (36), rather than Equations (34) and (36), is substituted into
Equations (31) and (32); otherwise, the resulting Equations (35) and (37) would contain two infinite
series and are thus difficult to solve. Therefore, it may be seen that the determined values of by and cy
by Equations (35) and (37) depend on the value of terms 7, and a different value of n will determine
different values of by and ¢g. Hence, from this, it may be known that the special solution for S,(x) and
W(x) can be proved to be convergent by examining the variation of b; and c; with i for every value of
terms n, especially examining the variation of by and ¢y with terms #.

To this end, the numerical computations of by and ¢y were started from n = 4, that is, started from
the partial sum of former four terms for Equations (34) and (36), and the case of g = 0.01 MPa of the
numerical example above was recalculated. Table 2 shows the obtained different numerical values of b
and b; and the obtained values of ¢y and ¢; are listed in Table 3. The variation of by and ¢y with terms 7 is
plotted in Figures 5 and 6, respectively, and the variation of b; and c; with i is, only for n = 26, shown in
Figures 7 and 8, respectively. From Tables 2 and 3 or Figures 5 and 6, it is seen that the undetermined
constants by and cy converge reasonably well. From Tables 2 and 3 or Figures 7 and 8, it is seen that
the coefficients b; and c; also converge reasonably well. Because 0 < x < 1, it may thus be concluded
that the special solutions for S,(x) and W(x) are convergent. Furthermore, from Figures 5 and 6, it is
also seen that, when n = 20, the undetermined constants by and cj are already very close to their exact
values. So, only the coefficients b; and ¢; (i =2,4,6, . .. ,20), which are expressed as the polynomial about
bo and cg, are shown in Appendices A and B, respectively.
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Table 2. Values of bO_bér bg—b14, b16_b22/ and b24_b26'

11 0f 20

n bo by by be
4 1.20311 x 1071 —-1.65094 x 1072 -3.36329 x 1073 —
6 1.23788 x 1071 —-1.55680 x 1072 —2.95482 x 1073 -9.30349 x 1074
8 1.25201 x 1071 —-1.52080 x 1072 —2.80646 x 1073 —-8.58923 x 1074
10 1.25861 x 1071 —-1.50439 x 1072 —2.74022 x 1073 —8.27699 x 1074
12 1.26198 x 1071 ~1.49612 x 1072 —2.70718 x 1073 —8.12280 x 1074
14 1.26380 x 1071 -1.49168 x 1072 —2.68953 x 103 -8.04083 x 104
16 1.26483 x 1071 —-1.48918 x 1072 —2.67964 x 1073 —7.99504 x 1074
18 1.26541 x 1071 —1.48776 x 1072 —2.67400 x 1073 —~7.96896 x 1074
20 1.26579 x 1071 —1.48686 x 1072 —2.67044 x 1073 —7.95252 x 1074
22 1.26600 x 1071 —1.48635 x 1072 —2.66844 x 1073 —7.94329 x 1074
24 1.26607 x 1071 —1.48616 x 1072 —2.66770 x 1073 —-7.93987 x 1074
26 1.26609 x 1071 —1.48612 x 1072 —2.66754 x 1073 —7.93915 x 1074
n bg b1o b12 b1
—3.27991 x 1074 — — _

10 —3.11944 x 104 -1.33536 x 1074 — —
12 —-3.04098 x 104 -1.29313 x 1074 —5.98144 x 107> —
14 —2.99948 x 104 -1.27091 x 1074 —5.85763 x 107> —-2.86800 x 107>
16 —2.97637 x 1074 —-1.25857 x 1074 —5.78906 x 107> —-2.82872 x 107>
18 —2.96323 x 1074 —-1.25157 x 1074 —5.75019 x 107> —-2.80649 x 107>
20 —2.95495 x 1074 —1.24716 x 1074 —5.72576 x 107> —2.79253 x 107
22 —2.95030 x 1074 —1.24469 x 1074 —5.71206 x 107> —2.78471 x 107>
24 —2.94858 x 1074 —1.24377 x 1074 —5.70698 x 107> —2.78181 x 107°
26 —2.94822 x 1074 —-1.24358 x 1074 —5.70592 x 1075 —2.78121 x 107°
n b16 b13 bz() b22
16 -1.44729 x 107> — — —
18 -1.43427 x 107> ~7.60266 x 107° — —
20 -1.42610 x 107° ~7.55386 x 107° —4.12285 x 107° —
22 -1.42152 x 107° ~7.52654 x 1076 -4.10626 x 107° —2.29738 x 107°
24 -1.41983 x 1075 —7.51642 x 107° —4.10013 x 107 —2.29360 x 1076
26 —1.41947 x 107> —7.51431 x 107 —4.09884 x 107® —2.29281 x 10~
n bag bae
24 -1.31103 x 107° — — —
26 -1.31054 x 107° ~7.63614 x 1077 — —

Ol:t_ T T T T T T T T T T T T

0126 | L bt .

0125 t .
bo 0.124 - p R

0123 | .

012 -

0.121 (- -

.
01:0 1 1 1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20 22 24 26

Figure 5. The variation of by with n.



Symmetry 2020, 12, 1343 12 of 20

Table 3. Values of cy—cg, cg—C14, C16—C22, and cp4—Cog.

n co c C4 Ce
4 3.01849 x 1071 —-2.65045 x 1071 —3.68042 x 1072 —
6 3.00567 x 107! —2.575995 x 1071 —-3.32919 x 1072 -9.97580 x 1073
8 2.99505 x 107! —2.546935 x 107! —3.19904 x 1072 —9.31291 x 1073
10 2.98554 x 1071 —2.53357 x 1071 —3.14045 x 1072 —-9.02080 x 1073
12 2.97949 x 1071 —2.52681 x 1071 —3.11111 x 1072 -8.87599 x 1073
14 2.97569 x 1071 —-2.52317 x 1071 —3.09540 x 1072 —8.79885 x 1073
16 297332 x 107! —2.52112 x 1071 —3.08659 x 1072 —-8.75572 x 1073
18 2.97207 x 107! —2.51995 x 1071 —3.08156 x 1072 -8.73114 x 1073
20 297173 x 107! —2.51921 x 1071 —3.07839 x 1072 —-8.71564 x 1073
22 297171 x 107! -2.51879 x 1071 -3.07661 x 1072 —-8.70693 x 1073
24 297171 x 107! -2.51864 x 1071 —-3.07594 x 1072 —-8.70370 x 1073
26 2.97171 x 1071 —2.51861 x 107! —3.07581 x 1072 -8.70303 x 1073
n cg Cc10 Cc12 C14
-3.47991 x 1073 — — —
10 -3.35337 x 1073 -1.41877 x 1073 — —
12 -3.27724 x 1073 -1.37720 x 1073 —6.26249 x 1074 —
14 -3.23690 x 1073 -1.35529 x 1073 —6.14040 x 1074 -2.93518 x 1074
16 —3.21441 x 1073 —-1.34310 x 1073 —6.07272 x 1074 —2.89687 x 1074
18 —-3.20161 x 1073 -1.33618 x 1073 —6.03433 x 1074 -2.87518 x 1074
20 —-3.19355 x 1073 -1.33183 x 1073 —6.01020 x 1074 —2.86156 x 1074
22 —-3.18902 x 1073 -1.32938 x 1073 —5.99666 x 1074 —-2.85392 x 1074
24 —3.18734 x 1073 —-1.32848 x 1073 —-5.99164 x 1074 —-2.85109 x 104
26 —-3.18699 x 1073 -1.32829 x 1073 —-5.99059 x 104 —2.85050 x 104
n C16 Cc18 €20 C22
16 —-1.43691 x 1074 — — —
18 —1.42448 x 1074 —-7.27170 x 107> — —
20 —1.41668 x 1074 —7.22652 x 107> —-3.77500 x 107> —
22 -1.41231x 1074 —7.20122 x 1072 —3.76022 x 107> —2.00212 x 107>
24 —-1.41069 x 104 -7.19185 x 107> —3.75475 x 107> —~1.99890 x 107>
26 —~1.41035 x 1074 —7.18989 x 10> —-3.75361 x 107> -1.99822 x 10>
n C24 C26
24 —-1.08172 x 107> — — —
26 —-1.08132 x 107> —5.93435 x 107° — —
0.302
N\
\\
0.301 \\
0.300 e
c, 0.299 .
0.298 = -
0.297 B bt ettt et
0.296
0 2 4 6 8 10 12 14 16 18 20 22 24 26
n

Figure 6. The variation of ¢y with 7.
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Figure 8. Distribution of ¢; with i whenn =26: (a)i = 0,2,4,6,...,26 and (b) i = 2,4,6,...,26.

4. Concluding Remarks

In this study, the well-known Hencky problem is generalized to include the case of an arbitrary
initial compressive or tensile stress, where the classic geometric equation and out-of-plane equilibrium
equation are simultaneously improved. The following conclusions can, from this study, be drawn.

In comparison with the existing solutions, which consider initial stress, the closed-form solution
presented in this paper has a higher computational accuracy. The use of existing solutions does not
bring too much computational error for the case of relatively small deflection of membranes, but for
the relatively large deflection, the closed-form solution presented in this paper should be given priority.
Otherwise, an unacceptable calculation error could be caused, which has, in the conducted numerical
example, been shown to be 11.34% deflection error and 18.56% stress error. Meanwhile, the allowable
error for the precision measurement, instrument design, and civil engineering is usually less than 1%,
3%, and 15%, respectively.

The proof of convergence of the power series solutions for S,(x) and W(x) must be conducted,
but only to their special solutions, rather than their general solutions, owing to the somewhat intractable
forms of expression of the coefficients b; and ¢; (i = 2,4,6, ... ), that is, the polynomial functions with
regard to the undetermined constants by and cy(see Appendices A and B). Therefore, for the convergence
proof of the special solutions for S,(x) and W(x), the following two aspects should be given full
attention. First, the numerical computation of the undetermined constants by and ¢y has to be started
from a smallest partial sum of the former # terms of the power series, usually 7 = 3 or 4. Then, with the
help of a scatter plot, the saturation degree for the computed obtained numerical values of by and
co can be examined. The saturation degree for the coefficients b; and ¢; is not examined until a
satisfactory saturation degree for the computed obtained numerical values of by and ¢y has been
observed. A demonstrated example and the detailed operating steps may be found in Section 3.

The large deflection phenomenon of the membrane with initial compressive or tensile stress appears
very easily, especially in the mechanical properties’ characterization using the thin-film/substrate
delamination by pressurized blister or bulge tests, where the maximum deflection of the blistering

thin-film could reach half the radius of the circular blistering thin film, or even larger. The solutions
in the existing literature are not suitable for such a large deflection owing to the approximations
adopted in the classic out-of-plane equilibrium equation and geometric equation, while the solution
presented in this paper has given up these approximations and can thus be used to calculate such
a large deflection. Therefore, in this sense, the work presented in this paper should have a positive
significance for these technical application fields.
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Nomenclature

Radius of the circular membrane

Thickness of the circular membrane

Young’s modulus of elasticity

Poisson’s ratio

Uniformly distributed transverse loads

Radial coordinate

Circumferential coordinate

Transverse coordinate and transverse displacement of the deflected membrane

=T 89 TS < m =R

Radial displacement of the deflected membrane
1y  Radial plane displacement

oy Radial stress

ot  Circumferential stress

ey Radial strain

et Circumferential strain

o9 Initial stress

¢p Initial strain

0  Slope angle of the deflected membrane

7t Pi(ratio of circumference to diameter)

Q  Dimensionless loads (ag/hE)

W Dimensionless transverse displacement (w/a)
S, Dimensionless radial stress (o,/E)

S¢  Dimensionless circumferential stress (o¢/E)
So  Dimensionless initial stress (o¢/E)

x  Dimensionless radial coordinate (r/a)

b; Coefficients of the power-series for S,

c;  Coefficients of the power-series for W
Appendix A
2
by = Q p
64b02(vb0 - bo - 1)
4
b Q (1607bo® — 320by® — 320by? 4 16by> — 5vbg + 32by? + 23bg + 2),

=
12288by5 (vby — by — 1)°

N o 4y 6 _ 35,6 — 3pn5 256 _ 3p4 21, 5 _ 6
be = T (vb()ib07l)5(7681; bo® — 30720°by°® — 30720°by° + 4608v°by° — 448v°bg* + 92160v°by> — 30720bg

+617602by* — 9216vby> + 768by® + 112002by> — 11008vbg* + 3072b,5 + 89v2by2 — 5760vby> + 5280by* — 1176vby2 -
+4640by® — 600by + 2107b? + 316bg + 13)

_ Q8 67,9 _ 51,9 _ 51 8 419 _ 51 7
by = S ooy (737280%h0” — 4423680°hy - 4423680°by + 11059200°by” ~ 622080°bq

+22118400%bg8 — 147456003by° + 14522880*by7 — 44236800°ho® + 110592002by° + 28416004 by® — 518707203by”
+442368002by8 — 442368vby° + 222720%bo° — 27525120°by® + 746956802by” — 22118400by® + 73728by°
—6335040°by° + 655257602b,° — 48760320by7 4 442368by® — 630080°by* + 309456002by° — 5984256vb°
+1203456by7 — 340503hy> + 7205440%by* — 43776960by° + 1900032b° + 81383v2by> — 1855328vby* 4 1894368b,°
+304602bg? — 412839vby> + 1197792by* — 381120by? 4 454741by> — 11310bg + 82802by2 + 6521b 4 170)
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_ QY 81 12 _ 71, 12 _ 73 11 67, 12
by = 2899102924500k 1 (obyby—1)° (117964800v°by 943718400 by 943718400v” by 4 3303014400°bg

1297612807 b0 + 6606028800°by1! — 6606028800°hy12 + 4291461120°by10 — 19818086400°hy ! + 8257536000%by12
+858685440°D,° — 2302377984v°by10 + 33030144000%by 1! — 6606028800°hy12 + 6505728005y — 122388480005 h,°
+55288627200%b 10 — 33030144000°by 11 + 3303014400212 — 2913710080°by® + 48313958400%hy°
—72204288000°5y10 + 198180864002by 11 — 943718400by12 — 322140160°by” + 2308777216048 — 88041062400°by°
+534719692802by 10 — 6606028800b 1! 4 11796480by12 — 17945920°h,° + 5832417280 by” — 64515133440°by8
+83747635200%by° — 21207121920by 10 + 94371840bo ! + 788755200%by® — 2845976576v°by” + 8318000896028
—40585789440vby° + 351289344b10 + 55200320%by° — 72944729603by® + 536061952002by7 — 50987499520b,8
+794542080by° + 226595v%by* — 10384601605 + 2205793728v2hy® — 4355206144vby” + 1208350464b,°
—81538040°by* + 54662240002hy°> — 2529774688vbo° + 1289535488by” — 24727603 by + 7642662602by*
—9621684480vb,° + 976347328b,° + 510281602hy> — 2218390440vby* + 513872032 + 121893v2h,2

—27116356vby® + 177612267by* — 15579480vby2 + 35453088by> — 320120bg + 38075272 + 197432by + 3700)

_ Q? 107, 15 _ 91 15 _ 91, 14
by, = 389639433093 120000 (by—bo—1)" (28311552000""bg 283115520000 by 283115520000 by

+1274019840000850 15 — 38338560000°by 13 + 2548039680000 14 — 33973862400007 by'> + 1644193382400, 13
—~10192158720000” by* + 5945425920000°b¢ > + 3318349824008 12 — 11773358899200 by 13
+23781703680000°b914 — 7134511104000°by 1> + 244141670408by 1! — 6253078118400 by 12
+395965366272000by 13 — 35672555520000°by 14 + 5945425920000*by 15 — 15084220416007 by
+344801673216000by 12 — 77582853734400°by 13 + 356725555200004 b0 14 — 3397386240000° by 1>
1721371852807 by 10 + 16540103393280°b 11 — 94149122457600°by 12 + 957709025280004 by 13
—237817036800003by 4 + 12740198400002by 1> — 9355619840 by? + 4304546856960°D,10 — 68930950840320°hy 11
+149172387840000%by 12 — 759726342144003by 13 4 101921587200002by1* — 283115520000by 1%
+618190415360°h° — 3084866224128v°hy10 + 147638983065600* b1 — 1445266980864003by 12
+377562857472002by 13 — 2548039680000by 14 + 2831155200b) 1% + 48952637440°by® — 8308215160320°by”
+95699909836800* by 10 — 18062091362304v3by 1! + 848577429504002by 12 — 10738217779200b, 13 ,
+28311552000004 + 2151920160°hy” — 1331083745280°hy8 + 40542315660800%by° — 154379152588800° by 10
+1282300661760002by 11 — 27843467673600by 12 4 133748490240b013 — 12875099008v°by” + 1095239501824v4 b8
—91123472652800°hy° + 1364712991948802by 10 — 49375548948480vby11 + 393023324160b,12

—7065972800°by® + 184425366224v4hy7 — 36620627292160°3b08 + 1041222873830402by° — 62983789608960by10
+800226865152bp 11 — 232658350°by° + 18873314784v*by® — 97030853670403by” + 567240596582402ho8
—5914599680256vby° + 1190798573568 10 + 11499723010%by° — 1623639868800°b° + 2154848417648y’
—41034114611200b08 + 1330424677632by° + 297236380*by* — 164133320620°by> + 54549749408002h,°
—20733883471360by” + 1126041833472b,® — 8694530640°by* + 8682640373002by° — 7362396202560b)°
+717083006960by” — 177635610°by> + 7885361588v2by* — 173225183639vb,° + 334939395552h,°
+360240495025y3 — 248394630000by* + 109293631105b)° + 624142202by% — 20138542070by> + 22985307318by*
—82446808vby> + 2956637097h¢ — 1280564vby + 219170970by? + 8330804b, -+ 120500)

by = m (21Q%ubgb1y + 56Q%vbybyg + 77Q%vbsbg + 42Q%vbe? — 4800by2by b1y — 576vbg2bybig — 624vbo>bebs
—5400bgby2b1 — 11520bgbobsbg — 5880bgbybe? — 5760bgbs2be — 1800b,°bg — 5400by2bsbg — 1760byby> — 21Q%bob1y
—136Q2byb1g — 253Q%bybg — 150Q%bg? + 936by2babi1n + 1656b92bsbig + 2112b92bgbg + 1196bgb2byg + 3088bbobsbg -
+1692bgbobe? + 1584bgbs2be + 404by3bg + 1316by2bybg + 424byby3 — 21Q%b15 + 176bgbabro + 144bgbybrg + 128bgbsbs
+68b22b1g + 112bybybg 4 52bobg? + 48b4%be)

b = m (14Q%vbgb14 + 38Q%vbybyy + 54Q%vbysbyg + 62Q%vbgbg — 314vb2babyy — 384vby2byb1n
—426Ub02b6b10 - ZZOvbOZbgz - 3620b0b22b12 - 7880b0b2b4b10 - 8200b0b2b6b8 - 4000b0b42b8 - 4020b0b4b62 - 124Ub23b1()
—3780by2bybg — 1900by2bg? — 3700byby2bg — 300b4* — 14Q%bob1g — 95Q%byb1y — 189Q%bybr — 248Q%bebg + 622092 byb14
+1152b2byb1p + 1566b02bgbig + 860by2bg2 + 826bgbr2b1y + 2244bybabsbg + 2636bgbybebg + 1200bgby2bg + 1242bgbsbe?
+292b,3b1¢ + 1002b52b4bg 4 530022bg2 + 990bybs2bg + 78b4* — 14Q%b14 + 116bgbabyg + 96bgbsbyp + 84bobgbyg + 40bybg?
+46b22b12 + 76bybybyg + 68bybgbg + 32b42b8 + 30b4b6)

big = m (36Q%vbgb1g + 99Q%0byby4 + 144Q%0bybyy + 171Q%0bgb1g + 90Q%vbg? — 796vby2bybig
~9880by2byby14 — 11160bg2beb1o — 11800by2bgbg — 936vbobo by — 20720bgbybabyy — 21920bgbybgb1g — 1116vbybabg?
—1068vbobs2bqg — 2168vbgbabebg — 3600bgbs> — 3280by3 b1 — 10160by2byb1o — 10320by2bgbg — 1004vbybs2bg
—10000bybybe? — 3240b43bg — 36Q%byb1g — 253Q%bobyy — 528Q%bab1y — 741Q2%bgb1g — 410Q%bg? + 1596b02by b1
+3060b92bsb14 + 4356b02bgbiy + 5100bg2bgbig + 2184bgby2b14 + 6168bobybabiy + 7632bgbabgbqg + 4092bgbybg?
+3420b0by2b1 + 7368bgbabebg + 1224bgbe> + 800b23b15 + 2864b22byb1g + 3192by%bgbg + 2924boby2bg + 2976bbybe>
+924b43b6 - 36Q2b16 + 296bgbyb1g + 248bgbabrg + 216bgbgbr + 200bgbgbyg + 120b22h14 + 200byb4b1n + 176bybgbyg
+84bybg? 4 84b42by + 152b4bebg + 24b6°)
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by = mmmzvbgblg + 125Q%vbybyg + 185Q%0byb14 + 225Q%vbgbry + 245Q%vbgbg — 984vby2babrg
—12360by2bsbrg — 14160by2beb1g — 15240bg2bgb1y — 7800bg2b1g2 — 11760bgbo2b1g — 26400bgbybabyy — 28320bbybebin
—2928Ub0b2b8b10 - 13800b0b42b12 - 2832’0bob4b6b10 - 1428’0bob4b82 - 1416vb0b62b8 - 4200b23b14 - 13200b22b4b12
—13560by2bgbqg — 6840by2bg? — 13200b2by2b1 — 26400bybybgbg — 4360b2bg> — 428vb,3bg — 636vb42bs? — 45Q%bobig
—325Q%byby — 703Q%byb14 — 1035Q%bgbyy — 1225Q%bgbg + 1992bg2bybrg + 3924by2bsbrg + 5784bo2bebig + 7092bg2bghy -
+3780b02b1g2 + 2792bobo%b16 + 8128bbybybyy + 10464bgbybebyy + 11824bgbobgbyg + 4644bby>bys + 10368bobabebig
+5396b0babg? + 5256bgbs2bg 4 1052b3b14 + 3896b22byb1y + 4532b5%bgb1g + 2388b,%bg? + 4104byby2b1g + 8608bob4bgbg
+1420b,bg> + 1324b43bg + 1980b42bg2 — 45Q%b1g + 368bobybig + 312bgbybyg + 272bgbebya + 248bgbghin + 120bgb1p2
+152b22b1g + 256b2byb1y + 224bobgb1o + 208babgbig + 108b42b15 + 192b4bgb1g + 92bsbg® + 88b2bg)

Appendix B
a--12
4 = —Eng«f ~ Shoba),
6 = — 1536”3 (3Q* — 48Q%bgby — 128b3by -+ 128b313),
g = —ﬁ (5Q° — 120Q*boby — 384Q%b]bs + 768Qb3b3 — 1024b3bg + 2048b3b2bs — 1024b33 ),

o = —#6%3 (35Q% — 1120Q%bob; — 3840Q*b3by + 11520Q*b3b3 — 12288Qb;bs + 49152Q%bbabs — 40960Q°b3b3

7 6 61,2 51,2 Apd
~32768b]bs + 6553655 babs + 32768653 — 9830453b3b, + 32768b3b3)

’

cp = —m (63Q1% - 2520Q5byb, — 8960Q°b3by + 35840Q°b3b3 — 30720Q*by b — 215040Q* b33

—98304Q2b bs + 196608Q2b5b3 + 393216Q2bSbabg + 491520Q2b3b; — 983040Q2b3b3by + 184320Q%b3byby ,
—262144bb1g + 52428865 babg + 524288b5b,bs — 786432b] b3be — 7864327 byb; + 1048576b5b3by — 2621443b3)

cy = —m(zamn —11088Q"%bgbs — 40320Q857 b4 + 201600Q853b3 — 143360Q°b; bs + 1146880Q°b3byby

—1720320Q6b8hg - 491520Q4b52b8 + 2949120Q*bfbabs + 1474560Q*b5b% — 10321920Q*bb3bs + 6881280Q*b3b3
—1572864Q%b)b1g + 6291456Q* bl babs + 6291456Q2b5bybs — 15728640Q°b] bab? — 15728640Q%b]b5be + 4194304655 +
+31457280Q%b5b3b4 — 11010048Q%b3b3 + 8388608b) babo + 8388608bb4bs — 4194304} by, + 4194304b;°b2

—12582912b)b3bg — 4194304b7 b — 251658243 babybe + 25165824b5b3b5 + 16777216b5b3b6 — 2097152067 b3bs)

Clo = ey (429QM - 24024Q12boby - 88704Q1 0834 — 322560Q%b3bs + 3225600Q°b3babs

+9175040Q°b5b,bs — 41287680Q°b; b3y + 34406400Q083b5 — 3932160Qby b1 + 23592960Q*b3b, bs
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+134217728b; by — 1677721600 b, bs — 33554432060 b5b3 + 20132659265 b5b, — 3355443207b7 )
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