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Abstract: In this study, the problem of axisymmetric deformation of peripherally fixed and uniformly
laterally loaded circular membranes with arbitrary initial stress is solved analytically. This problem
could be called the generalized Föppl–Hencky membrane problem as the case where the initial stress
in the membrane is equal to zero is the well-known Föppl–Hencky membrane problem. The problem
can be mathematically modeled only in terms of radial coordinate owing to its axial symmetry, and in
the present work, it is reformulated by considering an arbitrary initial stress (tensile, compressive,
or zero) and by simultaneously improving the out-of-plane equilibrium equation and geometric
equation, while the formulation was previously considered to fail to improve the geometric equation.
The power-series method is used to solve the reformulated boundary value problem, and a new and
more refined analytic solution of the problem is presented. This solution is actually observed to be able
to regress into the well-known Hencky solution of zero initial stress, allowing the considered initial
stress to be zero. Moreover, the numerical example conducted shows that the obtained power-series
solutions for stress and deflection converge very well, and have higher computational accuracy in
comparison with the existing solutions.

Keywords: initial stress; circular membrane; large deflection; power-series method; closed-form solution

1. Introduction

Thin films as structural components or structures are essential in many applications [1–4].
The so-called circular membrane problem usually refers to the problem of axially symmetric deformation
of an initially flat, peripherally fixed, laterally uniformly loaded, linearly elastic, circular isotropic
membrane with or without tensile or compressive initial stress. It is actually the mechanical model
abstract from practical structural problems. This problem could be called the generalized Föppl–Hencky
membrane problem as the case where the initial stress in the membrane is equal to zero is the well-known
Föppl–Hencky membrane problem [5]. The term “membrane” here should be understood as the
so-called fully stretched plate in mechanics whose upper and lower surfaces, regardless of its thickness,
are simultaneously stretched under lateral loads owing to being “peripherally fixed”. The so-called
initial stress refers to the stress before uniformly laterally loading, which is produced by stretching
or compressing the initially flat circular elastic membrane in the direction of the plane in which the
initially flat circular elastic membrane locates. Obviously, the initial stress before uniformly laterally
loading will have an influence on the mechanical behaviour of the circular membrane under uniform
lateral loads, and in comparison with the stress resultant under laterally loading, the greater the initial
stress, the greater the influence.
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The initial stress can very easily be present in practical issues. For instance, the residual stress
is the stress in the film/substrate systems or thin film devices after fabrication, which can be either
tensile or compressive, and is usually an important parameter affecting the reliability or performance
of film/substrate systems or thin film devices [6–11]. Therefore, the residual stress will be the so-called
initial stress if the film in the film/substrate systems or thin film devices is further subjected to lateral
loads. The initially flat circular elastic membrane attached to a stiff ring at its perimeter is often used
to make diaphragm devices [4,12], while the membrane could be so inappropriately stressed that
the stress in the attached initially flat circular membrane deviates from that expected, resulting in
the so-called residual stress. In fact, the change in temperature or humidity could relax or tighten
the initially flat circular membrane attached to the stiff ring, as long as the temperature or humidity
at this time is different from that at attaching [13]. Such a relaxing or tightening is actually also a
residual stress. The residual stress in thin film devices, as an initial stress of the thin film working
under lateral loading, will result in the deviation of the performance of devices from that expected.
Moreover, the variations in the processing conditions such as method of etching, humidity, temperature,
or the order of fabrication procedures could give rise to a compressive or tensile residual stress in
the film/substrate systems fabricated [7,9,11]. Such a residual stress could result in the delamination
between a substrate and its coating [10], thus losing the reliability of film/substrate systems. To increase
the reliability and ensure expected performance, the measurement of the residual stress in film/substrate
systems and thin film devices is often found to be necessary after fabrication. To this end, a variety of
ways have been developed to measure the residual stress, such as the peeling method [14], diffraction
technique [15,16], diffraction topography technique [17], two beam laser reflection technique [18],
and vibrational technique [19,20]. Among these ways, the so-called pressurized blister or bulge test
technique [21–27] could be modelled as a circular membrane problem with or without initial tensile or
compressive stress. There would be no need for an advanced experimental setup to simultaneously
monitor the change in pressure and in blister dimension, if the analytical solution of the circular
membrane problem, that is, the relation between pressure and blister dimension, can be available.
Therefore, the analytical solutions of the circular membrane problems often play an important role in
the design of thin film devices and the characterization of mechanical properties such as the residual
stress, Poisson’s ratio, modulus of elasticity, and adhesion strength for film/substrate systems or thin
film devices [28].

Hencky, the recognized German scientist, originally dealt with the circular membrane problems
without arbitrary initial stress, and a power-series solution of the problem was presented with the
bending related terms in the Föppl–von Kármán equations of large deflection of thin plates ignored [5].
Chien [29] and Alekseev [30] corrected a computational error in [5]. This problem is the so-called
Föppl–Hencky membrane problem (well-known Hencky problem for short), and its solution is usually
referred to as the well-known Hencky solution, which is often cited in some studies of related
issues [31–37]. Sun et al. reformulated the well-known Hencky problem by giving up the so-called
small rotation angle assumption of membranes and by improving the out-of-plane equilibrium
equation, and presented a new closed-form solution of the problem [38]. Further, Sun et al. [39]
reformulated the well-known Hencky problem with the out-of-plane equilibrium equation, geometric
equation simultaneously improved, and presented a new refined closed-form solution. As for the
case of circular membranes with initial compressive or tensile stress, based on the modification of
elastic equations, Ku [40] presented an analysis of large deflection of circular elastic membranes with
initial tension under uniformly distributed loads, and He et al. [41] presented an analytic solution of
axisymmetrical deformation of prestressed circular membranes under uniformly laterally loading.
However, Sun et al. pointed out that it is unreasonable to modify the elastic equations because the
initial stress before uniformly laterally loading should not give rise to a change in the constitutive
relationship of membrane materials. Therefore, Sun et al. resolved the problem with initial stress
under uniformly laterally loading and presented a new power-series solution of the problem, that is,
the so-called extended Hencky solution [42]. The closed-form solution that is presented in [42] can be
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regressed to the well-known Hencky solution, allowing the initial stress to be zero, while the solutions
presented in [40,41] cannot. Moreover, the closed-form solution without the initial stress and small
rotation angle assumption, which is presented in [38], was extended further to suit the more general
cases with initial tensile or compressive stress, achieving the synchronous characterization for the
interface and surface of film/substrate systems with residual stress [43]. Owing to improving the
out-of-plane equilibrium equation and considering the initial tensile or compressive stress, this solution
should be the prestressed solution with the best computational accuracy at present, and it has been
incorporated into the study on the contact problem between Föppl–Hencky membranes and rigid
surfaces [44].

In this study, the computational accuracy of the solution was further improved by simultaneously
improving the geometric equation, out-of-plane equilibrium equation, and by considering an arbitrary
initial stress. In the following section, the problem of axisymmetric deformation of the circular elastic
membrane with an arbitrary initial stress is reformulated, the resulting boundary value problem is
solved using the power-series method, and a new refined closed-form power-series solution is finally
presented. In Section 3, on the basis of the numerical examples conducted, some important issues are
discussed, such as the regression, convergence, effectiveness of the improved solution, and the effect of
the initial stress on the obtained solution. Concluding remarks are presented in Section 4.

2. Membrane Equations and Closed-Form Solution

2.1. Reformulation of the Generalized Föppl–Hencky Membrane Problem

Suppose that, an initially flat, rotationally symmetric, linearly elastic unstretched circular
membrane with Poisson’s ratio v, Young’s modulus of elasticity E, radius a, and thickness h is
extended or shrunk a radial plane displacement u0 at the periphery of radius a, and is then fixed at the
radius a. A structure of the circular elastic membrane with an initial tensile or compressive stress is thus
modelled. A uniformly-distributed transverse load q is applied quasi-statically onto the membrane
surface, as depicted in Figure 1, where r and w denote the radial and transverse coordinates in the
cylindrical coordinate system (r,ϕ, w) (w also denotes the transverse displacement of the deflected
membrane), and the polar coordinate plane (r,ϕ) is arranged in the plane in which the geometric
middle plane of the initially flat circular elastic membrane is located.
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Figure 1. Geometry of the deformed circular membrane along a diameter 2a under load q.

Take a free body with radius 0 ≤ r ≤ a from the central portion of the deformed circular membrane,
in order to study the static equilibrium problem of this free body under the joint actions of the
uniformly-distributed loads q within r and the total force 2πrσrh, which is produced by the membrane
force σrh acting on the boundary r, as depicted in Figure 2, where σr is the radial stress and θ is the
slope angle of the deformed circular membrane.
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Figure 2. The free body diagram of the deformed circular membrane with radius 0 < r ≤ a.

Obviously, there are two forces in the vertical direction, that is, πr2q (the total force of the
uniformly-distributed loads q) and 2πrσrh sinθ (the total vertical membrane force which is produced
by the membrane force σrh). So, the so-called out-of-plane equation of equilibrium [31,36,38,42] is

2πrσrh sinθ = πr2q, (1)

where

sinθ = 1/
√

1 + 1/ tan2 θ = 1/
√

1 + 1/(−dw/dr)2. (2)

Substituting Equation (2) into Equation (1), one has

1
2

rq
√

1 + 1/(dw/dr)2 = σrh. (3)

There are also two forces in the horizontal direction, the circumferential membrane force σth and the
horizontal component of the membrane force σrh, where σt is the circumferential stress. So, the so-called
in-plane equation of equilibrium may be written as

d
dr

(rσrh) − σth = 0. (4)

Equation (4) can be found in any general theory of plates and shells, so it is not necessary to discuss its
detailed derivation here. Suppose that the radial strain is denoted as er, the circumferential strain is
denoted as et, the radial displacement is denoted as u(r), and the transversal displacement is denoted
as w(r), then the so-called geometric equations [39] are

er = [(1 +
du
dr

)
2
+ (

dw
dr

)
2
]

1/2

− 1 (5)

and
et =

u
r

. (6)

Moreover, the stress and strain are still assumed to satisfy the linear elasticity relationship, so the
so-called physical equations are

σr =
E

1− ν2 (er + νet) (7)

and
σt =

E
1− ν2 (et + νer). (8)

Eliminating er and et from Equations (5)–(8) yields

σr =
E

1− ν2 {[(1 +
du
dr

)
2
+ (

dw
dr

)
2
]

1/2

− 1 + ν
u
r
} (9)
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and

σt =
E

1− ν2 {
u
r
+ ν[(1 +

du
dr

)
2
+ (

dw
dr

)
2
]

1/2

− v}. (10)

From Equations (4), (9) and (10), one has

u
r
=

1
E
(σt − νσr) =

1
E
[

d
dr

(rσr) − vσr]. (11)

After eliminating u from Equations (9) and (11), the usual so-called consistency equation can be written
as

(
1
E
σr −

v
E
σt + 1)

2
− [

1
E

d
dr

(rσt) −
v
E

d
dr

(rσr) + 1]
2
− (

dw
dr

)
2
= 0. (12)

The boundary conditions to solve Equations (3), (4) and (12) can be determined based on the following
solution to the plane stretching or compressing problem of the initially flat circular elastic membrane. In
the problem of plane stretching or compressing (i.e., the initially flat circular elastic membrane is extended
or shrunk to a radial plane displacement u0 at r = a), dw/dr = 0. So, from Equations (5) and (6),
one has

er =
du
dr

(13)

and
et =

u
r

. (14)

Eliminating er and et from Equations (7), (8), (13) and (14) yields

σr =
E

1− ν2 (
du
dr

+ v
u
r
) (15)

and
σt =

E
1− ν2 (

u
r
+ v

du
dr

). (16)

From Equations (4), (15) and (16), one has

r2 d2u
dr2 + r

du
dr
− u = 0. (17)

The boundary conditions to solve Equation (17) are

u = 0 at r = 0 (18)

and
u = u0 at r = a. (19)

So, under the conditions of Equations (18) and (19), the solution of Equation (17) can be written as

u(r)
r

=
u0

a
. (20)

From Equations (13)–(16) and (20), it is found that

er = et = e0 =
u0

a
(21)

and
σr = σt = σ0 =

E
1− v

u0

a
, (22)

in which σ0 denotes the so-called initial stress and e0 denotes the initial strain. Equations (21) and (22)
indicate that, for the problem of plane stretching or compressing, both stress and strain are two-axis
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equal at every point on the flat circular membrane. This result is in accord with the fact that the residual
stress is always uniform in film/substrate systems [9]. Therefore, the boundary conditions to solve
Equations (3), (4) and (12) can finally be written as

dw
dr

= 0 at r = 0; (23)

u
r
=

1
E
(σt − vσr) =

1
E
[

d
dr

(rσr) − vσr] =
u0

a
=

1− v
E

σ0 at r = a (24)

and
w = 0 at r = a. (25)

2.2. Power Series Solution

The following dimensionless variables are used

Q =
aq
hE

, W =
w
a

, Sr =
σr

E
, St =

σt

E
, S0 =

σ0

E
, x =

r
a

. (26)

Transform Equations (3), (4), (12), (23)–(25) into

(4S2
r − x2Q2)(

dW
dx

)
2
− x2Q2 = 0, (27)

d
dx

(xSr) − St = 0, (28)

(Sr − vSt + 1)2
− [

d
dx

(xSt) − v
d

dx
(xSr) + 1]

2
− (

dW
dx

)
2
= 0, (29)

dW
dx

= 0 at x = 0, (30)

u
r
= St − vSr =

d
dx

(xSr) − vSr = S0(1− v) at x = 1 (31)

and
W = 0 at x = 1. (32)

Eliminating dW/dx and St from Equations (27)–(29), a nonlinear differential equation containing only
variable Sr can be obtained

(4S2
r − x2Q2){Sr

2 + 2Sr − 2(vSr + 1) d
dx (xSr) − (1− 2v)[ d

dx (xSr)]
2

−2x d2

dx2 (xSr) − 2(1− v)x d
dx (xSr)

d2

dx2 (xSr) − x2[ d2

dx2 (xSr)]
2
} − x2Q2 = 0

. (33)

Given that the value of stress is finite at x = 0, then Sr(x) can be expanded into the power-series of the x

Sr(x) =
∞∑

i=0

bixi. (34)

After plugging Equation (34) into Equation (33), we obtain bi ≡ 0 (i = 1, 3, 5, . . . ), and bi (i = 2, 4, 6, . . . )
can be expressed in the polynomial about the undetermined constant b0 (see Appendix A). While b0

can be determined by the boundary condition at x = 1. From Equations (28) and (34), the condition of
Equation (31) gives

∞∑
i=1

ibi + (1− ν)
∞∑

i=0

bi = S0(1− ν). (35)
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After substituting all expressions of bi into Equation (35), an equation containing only b0 can be obtained.
So b0 can be determined by solving this single variable equation, and the expression of Sr can thus be
determined. As for St, with the known expression of Sr, it can easily be obtained from Equation (28),
so it is not necessary to derive it here. Moreover, W(x) can be expanded into the power-series of the x

W(x) =
∞∑

i=0

cixi. (36)

Hence, after plugging Equations (34) and (36) into Equation (27), it is found that ci ≡ 0 (i = 1, 3, 5, . . . ),
and ci (i = 2, 4, 6, . . . ) can be expressed into the polynomial about bi (see Appendix B). The first coefficient
c0 is another undetermined constant, which can be determined by Equation (32). From Equation (36),
Equation (32) gives

c0 = −
∞∑

i=1

ci. (37)

After substituting all expressions of ci into Equation (37), the undetermined constant c0 can be
determined and, consequently, the expression of W can also be determined.

3. Results and Discussions

So far, the boundary condition Equation (23) or (30) has not been used yet. The following is
the proof of whether the closed-form solution presented in Section 2 meets this boundary condition.
The dimensional form of the deflection can be written as, from Equations (26) and (36),

w(r) =
∞∑

i=0

ci

ai−1
ri. (38)

The first derivative of Equation (38) is

dw
dr

=
∞∑

i=1

i
ci

ai−1
ri−1. (39)

So, dw/dr = c1 at r = 0. Meanwhile, from the derivation in Section 2, it is already known that
c1 ≡ 0. Thus, dw/dr ≡ 0 at r = 0 because c1 ≡ 0. This indicates that the boundary condition
Equation (23) or (30) can be satisfied automatically, or in other words, the closed-form solution
presented in Section 2 agrees with the physical characteristic of axially symmetric deformation of the
circular membrane.

3.1. Regression of the Solution Presented in Second Section

The following is the proof of whether the analytic solution presented in Section 2 is able to be
regressed to the well-known Hencky solution.

From Equation (26), it can be seen that when σ0 is equal to zero, S0 is also equal to zero. Hence,
Equation (26) in [39] can easily be obtained by allowing S0 in Equation (35) to be zero. This means
that the analytic solution presented in Section 2, which applies to the case with initial stress, can be
regressed to the solution presented in [39], which applies to the case without initial stress, because all
the expressions for displacements and stresses obtained here have the same forms as those obtained
in [39].

On the other hand, if the improved geometry equation (Equation (5) in [39] and this paper) is
replaced by the classic geometric equation (Equation (5) in [38]), then the solution presented in [39] can
be regressed to the solution presented in [38], which gives up the small rotation angle assumption and
uses the classic geometric equation, but considers no initial stress.
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Furthermore, if the small rotation angle assumption of membrane is still adopted, that is, replace
Equation (2) in [38] by Equation (2) in [36], then the solution in [38] can be regressed into the well-known
Hencky solution (which can be found in [5] or [36]).

Therefore, the analytic solution presented in Section 2 is able to be regressed into the well-known
Hencky solution [5,36].

3.2. Comparison with Existing Solutions

For showing the difference between the existing solutions and the solution presented here,
a numerical example was conducted, where four solutions were used, that is, the well-known Hencky
solution that considers zero initial stress [5,36] and three solutions considering initial stress: the solution
presented in this paper, the solution in [43], and the so-called extended Hencky solution in [42]. Suppose
that a circular rubber thin film with Poisson’s ratio v = 0.47, Young’s modulus of elasticity E = 7.84 MPa,
initial stress σ0 = 0.1 MPa, and thickness h = 0.2 mm is fixed at radius a = 20 mm, and is then subjected
to the transversely uniformly-distributed loads q = 0.0001 MPa, 0.003 MPa, and 0.01 MPa, respectively.
Figure 3 shows the variations of the deflection w with the radial coordinate r and Figure 4 shows
the variations of the radial stress σr with the radial coordinate r, where the solid lines represent
the results calculated by the solution presented in this paper, which is denoted here as Solution 1;
the dotted lines represent the results calculated by the solution in [43], which is denoted as Solution 2;
the dotted-dashed lines represent the results calculated by the extended Hencky solution [42], which
is denoted as Solution 3; and the dashed lines represent the results calculated by the well-known
Hencky solution [5,36], which is denoted as Solution 4. The values of the maximum deflection wm and
maximum stress σm at r = 0 are listed in Table 1.
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Figure 3. Variations of deflection w with r when σ0 takes 0.1 MPa.

Table 1. The concrete values of wm and σm when σ0 takes 0.1 MPa.

Loads q [MPa] Solution 1 Solution 2 Solution 3 Solution 4

wm [mm]
0.0001 0.47756 0.47743 0.47718 1.31183
0.003 3.69050 3.43552 3.34403 4.07615
0.01 5.94663 5.49420 5.27261 6.05366

σm [MPa]
0.0001 0.10536 0.10534 0.10534 0.04202
0.003 0.44479 0.39752 0.36977 0.33981
0.01 0.99162 0.86134 0.80763 0.78009
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From Figures 3 and 4, it can be seen that the three solutions of considering initial stress
(i.e., Solution 3, Solution 2, and Solution 1) agree quite closely for the loads q = 0.0001 MPa and
diverge slowly as the loads intensify. This means that the improvements implemented in this paper
have had an impact on the calculating precision of the solution, because Solution 3 is obtained using
the classic geometric equation and classic out-of-plane equilibrium equation, Solution 2 is obtained
using the classic geometric equation and improved out-of-plane equilibrium equation, while Solution
1 (i.e., the improved solution in this paper) is obtained using the improved geometric equation and
improved out-of-plane equilibrium equation. The establishment of the classic out-of-plane equilibrium
equation and geometric equation is based on the small rotation angle assumption of membrane, while
the so-called “improved” here actually refers to giving up the small rotation angle assumption, resulting
in a better adaptability of the solution to the rotation angle of membrane. From Figure 3, it can clearly
be seen that, when the load q = 0.0001 MPa, the deflection calculated by Solution 4 (i.e., the well-known
Hencky solution of considering zero initial stress) is far greater than the deflections calculated by
Solution 3, Solution 2, and Solution 1, and when the load q = 0.003 MPa and 0.01 MPa, the deflection
curve by Solution 4 slowly approaches the one by Solution 1 (the improved solution in this paper),
and at the same time, it also slowly moves a little closer to the ones by Solution 3 and Solution 2, which
may be seen from the data of Table 1. This is because the initial stress σ0 = 0.1 MPa is considered by
Solution 3, Solution 2, and Solution 1, while the initial stress σ0 = 0 MPa is considered by Solution 4.
Therefore, when the load q = 0.0001 MPa, the deflection calculated by Solution 4 is far greater than that
by the three solutions considering σ0 = 0.1 MPa, in other words, when the load q is relatively small,
the initial stress of σ0 = 0.1 MPa plays a main role in the deflection calculations by Solution 3, Solution
2, and Solution 1. Meanwhile, when the load q = 0.003 MPa and 0.01 MPa, the small rotation angle
assumption, which is adopted in the classic out-of-plane equilibrium equation and geometric equation
of the Solution 4, has relatively great influence on the deflection calculation by Solution 4, and the
greater the load, the greater the influence. During the establishments of the out-of-plane equilibrium
equation and geometric equation of the Solution 1, however, the small rotation angle assumption has
been given up and thus has no influence on the deflection calculation by Solution 1. In other words,
when the load q = 0.003 MPa and 0.01 MPa, the influence of the small rotation angle assumption on the
deflection calculation by Solution 4 (the well-known Hencky solution) is far greater than the influence
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of the initial stress of σ0 = 0.1 MPa on the deflection calculation by Solution 1 (the improved solution
in this paper).

On the other hand, Figures 3 and 4 also show that the applicable conditions or preconditions subject
to compliance must be understood before using the solutions, or the used solution would not perform
as well as expected, which could cause an unacceptable calculation error. For instance, from Table 1,
it can be calculated that, when q takes 0.01 MPa and in comparison with Solution 1 (i.e., the improved
solution in this paper), the error of the maximum deflection is about 7.61% for Solution 2 and about
11.34% for Solution 3, while the error of the maximum stress is about 13.14% for Solution 2 and
about 18.56% for Solution 3. Such a large relative error is usually unacceptable in many practical
technical problems, especially in the field of precision measurements such as the characterization
of the mechanical properties of thin film/substrate systems [6–11]. Note that the allowable error for
the precision measurement is usually less than 1%, for the instrument design is usually less than 3%,
and for the civil engineering is usually less than 15%. In addition, it is conceivable that the relative
error between the solution presented in this paper and the existing solutions will increase with the
increase of the membrane deflection or applied loads. Therefore, in this sense, the improvement effect
of this study on the analytical solution of the so-called generalized Föppl–Hencky membrane problem
is obvious.

3.3. Convergence of the Power Series Solution Obtained in Second Section

The following is the proof of whether the power series solutions for Sr(x) and W(x) presented in
Section 2 are convergent. However, only the special solutions for Sr(x) and W(x), rather than their
general solutions, can be discussed, owing to the fact that the expressions of the coefficients bi and ci
(i = 2, 4, 6, . . . ), which are expressed as the polynomial about the undetermined constants b0 and c0

(see Appendices A and B), are so intractable that the expressions of the remained terms of power-series
solutions Sr(x) and W(x) cannot be obtained. It is already known, from the derivation in Section 2,
that·the general solutions for Sr(x) and W(x) are the power-series of x (see Equations (34) and (36)),
where 0 ≤ x ≤ 1; bi and ci (i = 2, 4, 6, . . . ) are expressed as the polynomial about the coefficients
b0 and c0; and for i = 1,3,5, . . . , bi ≡ 0 and ci ≡ 0. It seems as if the special solutions for Sr(x) and
W(x) can easily be obtained as long as the undetermined constants b0 and c0 can be determined
by Equations (35) and (37). However, when solving a specific problem, only the partial sum of
former n terms of Equations (34) and (36), rather than Equations (34) and (36), is substituted into
Equations (31) and (32); otherwise, the resulting Equations (35) and (37) would contain two infinite
series and are thus difficult to solve. Therefore, it may be seen that the determined values of b0 and c0

by Equations (35) and (37) depend on the value of terms n, and a different value of n will determine
different values of b0 and c0. Hence, from this, it may be known that the special solution for Sr(x) and
W(x) can be proved to be convergent by examining the variation of bi and ci with i for every value of
terms n, especially examining the variation of b0 and c0 with terms n.

To this end, the numerical computations of b0 and c0 were started from n = 4, that is, started from
the partial sum of former four terms for Equations (34) and (36), and the case of q = 0.01 MPa of the
numerical example above was recalculated. Table 2 shows the obtained different numerical values of b0

and bi and the obtained values of c0 and ci are listed in Table 3. The variation of b0 and c0 with terms n is
plotted in Figures 5 and 6, respectively, and the variation of bi and ci with i is, only for n = 26, shown in
Figures 7 and 8, respectively. From Tables 2 and 3 or Figures 5 and 6, it is seen that the undetermined
constants b0 and c0 converge reasonably well. From Tables 2 and 3 or Figures 7 and 8, it is seen that
the coefficients bi and ci also converge reasonably well. Because 0 ≤ x ≤ 1, it may thus be concluded
that the special solutions for Sr(x) and W(x) are convergent. Furthermore, from Figures 5 and 6, it is
also seen that, when n = 20, the undetermined constants b0 and c0 are already very close to their exact
values. So, only the coefficients bi and ci (i = 2,4,6, . . . ,20), which are expressed as the polynomial about
b0 and c0, are shown in Appendices A and B, respectively.
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Table 2. Values of b0–b6, b8–b14, b16–b22, and b24–b26.

n b0 b2 b4 b6

4 1.20311 × 10−1
−1.65094 × 10−2

−3.36329 × 10−3 —
6 1.23788 × 10−1

−1.55680 × 10−2
−2.95482 × 10−3

−9.30349 × 10−4

8 1.25201 × 10−1
−1.52080 × 10−2

−2.80646 × 10−3
−8.58923 × 10−4

10 1.25861 × 10−1
−1.50439 × 10−2

−2.74022 × 10−3
−8.27699 × 10−4

12 1.26198 × 10−1
−1.49612 × 10−2

−2.70718 × 10−3
−8.12280 × 10−4

14 1.26380 × 10−1
−1.49168 × 10−2

−2.68953 × 10−3
−8.04083 × 10−4

16 1.26483 × 10−1
−1.48918 × 10−2

−2.67964 × 10−3
−7.99504 × 10−4

18 1.26541 × 10−1
−1.48776 × 10−2

−2.67400 × 10−3
−7.96896 × 10−4

20 1.26579 × 10−1
−1.48686 × 10−2

−2.67044 × 10−3
−7.95252 × 10−4

22 1.26600 × 10−1
−1.48635 × 10−2

−2.66844 × 10−3
−7.94329 × 10−4

24 1.26607 × 10−1
−1.48616 × 10−2

−2.66770 × 10−3
−7.93987 × 10−4

26 1.26609 × 10−1
−1.48612 × 10−2

−2.66754 × 10−3
−7.93915 × 10−4

n b8 b10 b12 b14

8 −3.27991 × 10−4 — — —
10 −3.11944 × 10−4

−1.33536 × 10−4 — —
12 −3.04098 × 10−4

−1.29313 × 10−4
−5.98144 × 10−5 —

14 −2.99948 × 10−4
−1.27091 × 10−4

−5.85763 × 10−5
−2.86800 × 10−5

16 −2.97637 × 10−4
−1.25857 × 10−4

−5.78906 × 10−5
−2.82872 × 10−5

18 −2.96323 × 10−4
−1.25157 × 10−4

−5.75019 × 10−5
−2.80649 × 10−5

20 −2.95495 × 10−4
−1.24716 × 10−4

−5.72576 × 10−5
−2.79253 × 10−5

22 −2.95030 × 10−4
−1.24469 × 10−4

−5.71206 × 10−5
−2.78471 × 10−5

24 −2.94858 × 10−4
−1.24377 × 10−4

−5.70698 × 10−5
−2.78181 × 10−5

26 −2.94822 × 10−4
−1.24358 × 10−4

−5.70592 × 10−5
−2.78121 × 10−5

n b16 b18 b20 b22

16 −1.44729 × 10−5 — — —
18 −1.43427 × 10−5

−7.60266 × 10−6 — —
20 −1.42610 × 10−5

−7.55386 × 10−6
−4.12285 × 10−6 —

22 −1.42152 × 10−5
−7.52654 × 10−6

−4.10626 × 10−6
−2.29738 × 10−6

24 −1.41983 × 10−5
−7.51642 × 10−6

−4.10013 × 10−6
−2.29360 × 10−6

26 −1.41947 × 10−5
−7.51431 × 10−6

−4.09884 × 10−6
−2.29281 × 10−6

n b24 b26

24 −1.31103 × 10−6 — — —
26 −1.31054 × 10−6

−7.63614 × 10−7 — —
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Table 3. Values of c0–c6, c8–c14, c16–c22, and c24–c26.

n c0 c2 c4 c6

4 3.01849 × 10−1
−2.65045 × 10−1

−3.68042 × 10−2 —
6 3.00567 × 10−1

−2.575995 × 10−1
−3.32919 × 10−2

−9.97580 × 10−3

8 2.99505 × 10−1
−2.546935 × 10−1

−3.19904 × 10−2
−9.31291 × 10−3

10 2.98554 × 10−1
−2.53357 × 10−1

−3.14045 × 10−2
−9.02080 × 10−3

12 2.97949 × 10−1
−2.52681 × 10−1

−3.11111 × 10−2
−8.87599 × 10−3

14 2.97569 × 10−1
−2.52317 × 10−1

−3.09540 × 10−2
−8.79885 × 10−3

16 2.97332 × 10−1
−2.52112 × 10−1

−3.08659 × 10−2
−8.75572 × 10−3

18 2.97207 × 10−1
−2.51995 × 10−1

−3.08156 × 10−2
−8.73114 × 10−3

20 2.97173 × 10−1
−2.51921 × 10−1

−3.07839 × 10−2
−8.71564 × 10−3

22 2.97171 × 10−1
−2.51879 × 10−1

−3.07661 × 10−2
−8.70693 × 10−3

24 2.97171 × 10−1
−2.51864 × 10−1

−3.07594 × 10−2
−8.70370 × 10−3

26 2.97171 × 10−1
−2.51861 × 10−1

−3.07581 × 10−2
−8.70303 × 10−3

n c8 c10 c12 c14

8 −3.47991 × 10−3 — — —
10 −3.35337 × 10−3

−1.41877 × 10−3 — —
12 −3.27724 × 10−3

−1.37720 × 10−3
−6.26249 × 10−4 —

14 −3.23690 × 10−3
−1.35529 × 10−3

−6.14040 × 10−4
−2.93518 × 10−4

16 −3.21441 × 10−3
−1.34310 × 10−3

−6.07272 × 10−4
−2.89687 × 10−4

18 −3.20161 × 10−3
−1.33618 × 10−3

−6.03433 × 10−4
−2.87518 × 10−4

20 −3.19355 × 10−3
−1.33183 × 10−3

−6.01020 × 10−4
−2.86156 × 10−4

22 −3.18902 × 10−3
−1.32938 × 10−3

−5.99666 × 10−4
−2.85392 × 10−4

24 −3.18734 × 10−3
−1.32848 × 10−3

−5.99164 × 10−4
−2.85109 × 10−4

26 −3.18699 × 10−3
−1.32829 × 10−3

−5.99059 × 10−4
−2.85050 × 10−4

n c16 c18 c20 c22

16 −1.43691 × 10−4 — — —
18 −1.42448 × 10−4

−7.27170 × 10−5 — —
20 −1.41668 × 10−4

−7.22652 × 10−5
−3.77500 × 10−5 —

22 −1.41231 × 10−4
−7.20122 × 10−5

−3.76022 × 10−5
−2.00212 × 10−5

24 −1.41069 × 10−4
−7.19185 × 10−5

−3.75475 × 10−5
−1.99890 × 10−5

26 −1.41035 × 10−4
−7.18989 × 10−5

−3.75361 × 10−5
−1.99822 × 10−5

n c24 c26

24 −1.08172 × 10−5 — — —
26 −1.08132 × 10−5

−5.93435 × 10−6 — —
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4. Concluding Remarks

In this study, the well-known Hencky problem is generalized to include the case of an arbitrary
initial compressive or tensile stress, where the classic geometric equation and out-of-plane equilibrium
equation are simultaneously improved. The following conclusions can, from this study, be drawn.

In comparison with the existing solutions, which consider initial stress, the closed-form solution
presented in this paper has a higher computational accuracy. The use of existing solutions does not
bring too much computational error for the case of relatively small deflection of membranes, but for
the relatively large deflection, the closed-form solution presented in this paper should be given priority.
Otherwise, an unacceptable calculation error could be caused, which has, in the conducted numerical
example, been shown to be 11.34% deflection error and 18.56% stress error. Meanwhile, the allowable
error for the precision measurement, instrument design, and civil engineering is usually less than 1%,
3%, and 15%, respectively.

The proof of convergence of the power series solutions for Sr(x) and W(x) must be conducted,
but only to their special solutions, rather than their general solutions, owing to the somewhat intractable
forms of expression of the coefficients bi and ci (i = 2,4,6, . . . ), that is, the polynomial functions with
regard to the undetermined constants b0 and c0(see Appendices A and B). Therefore, for the convergence
proof of the special solutions for Sr(x) and W(x), the following two aspects should be given full
attention. First, the numerical computation of the undetermined constants b0 and c0 has to be started
from a smallest partial sum of the former n terms of the power series, usually n = 3 or 4. Then, with the
help of a scatter plot, the saturation degree for the computed obtained numerical values of b0 and
c0 can be examined. The saturation degree for the coefficients bi and ci is not examined until a
satisfactory saturation degree for the computed obtained numerical values of b0 and c0 has been
observed. A demonstrated example and the detailed operating steps may be found in Section 3.

The large deflection phenomenon of the membrane with initial compressive or tensile stress appears
very easily, especially in the mechanical properties’ characterization using the thin-film/substrate
delamination by pressurized blister or bulge tests, where the maximum deflection of the blistering
thin-film could reach half the radius of the circular blistering thin film, or even larger. The solutions
in the existing literature are not suitable for such a large deflection owing to the approximations
adopted in the classic out-of-plane equilibrium equation and geometric equation, while the solution
presented in this paper has given up these approximations and can thus be used to calculate such
a large deflection. Therefore, in this sense, the work presented in this paper should have a positive
significance for these technical application fields.
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Nomenclature

a Radius of the circular membrane
h Thickness of the circular membrane
E Young’s modulus of elasticity
ν Poisson’s ratio
q Uniformly distributed transverse loads
r Radial coordinate
ϕ Circumferential coordinate
w Transverse coordinate and transverse displacement of the deflected membrane
u Radial displacement of the deflected membrane
u0 Radial plane displacement
σr Radial stress
σt Circumferential stress
er Radial strain
et Circumferential strain
σ0 Initial stress
e0 Initial strain
θ Slope angle of the deflected membrane
π Pi (ratio of circumference to diameter)
Q Dimensionless loads (aq/hE)
W Dimensionless transverse displacement (w/a)
Sr Dimensionless radial stress (σr/E)
St Dimensionless circumferential stress (σt/E)
S0 Dimensionless initial stress (σ0/E)
x Dimensionless radial coordinate (r/a)
bi Coefficients of the power-series for Sr

ci Coefficients of the power-series for W

Appendix A

b2 =
Q2

64b02(vb0 − b0 − 1)
,

b4 =
Q4

12288b05(vb0 − b0 − 1)3 (16v2b0
3
− 32vb0

3
− 32vb0

2 + 16b0
3
− 5vb0 + 32b0

2 + 23b0 + 2),

b6 = Q6

4718592b0
8(vb0−b0− 1) 5 (768v4b0

6
− 3072v3b0

6
− 3072v3b0

5 + 4608v2b0
6
− 448v3b0

4 + 9216v2b0
5
− 3072vb0

6

+6176v2b0
4
− 9216vb0

5 + 768b0
6 + 1120v2b0

3
− 11008vb0

4 + 3072b0
5 + 89v2b0

2
− 5760vb0

3 + 5280b0
4
− 1176vb0

2

+4640b0
3
− 60vb0 + 2107b0

2 + 316b0 + 13)

,

b8 = Q8

3019898880b0
11(vb0−b0−1)7 (73728v6b0

9
− 442368v5b0

9
− 442368v5b0

8 + 1105920v4b0
9
− 62208v5b0

7

+2211840v4b0
8
− 1474560v3b0

9 + 1452288v4b0
7
− 4423680v3b0

8 + 1105920v2b0
9 + 284160v4b0

6
− 5187072v3b0

7

+4423680v2b0
8
− 442368vb0

9 + 22272v4b0
5
− 2752512v3b0

6 + 7469568v2b0
7
− 2211840vb0

8 + 73728b0
9

−633504v3b0
5 + 6552576v2b0

6
− 4876032vb0

7 + 442368b0
8
− 63008v3b0

4 + 3094560v2b0
5
− 5984256vb0

6

+1203456b0
7
− 3405v3b0

3 + 720544v2b0
4
− 4377696vb0

5 + 1900032b0
6 + 81383v2b0

3
− 1855328vb0

4 + 1894368b0
5

+3046v2b0
2
− 412839vb0

3 + 1197792b0
4
− 38112vb0

2 + 454741b0
3
− 1131vb0 + 82802b0

2 + 6521b0 + 170)

,
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b10 = Q10

2899102924800b0
14(vb0−b0−1)9 (11796480v8b0

12
− 94371840v7b0

12
− 94371840v7b0

11 + 330301440v6b0
12

−12976128v7b0
10 + 660602880v6b0

11
− 660602880v5b0

12 + 429146112v6b0
10
− 1981808640v5b0

11 + 825753600v4b0
12

+85868544v6b0
9
− 2302377984v5b0

10 + 3303014400v4b0
11
− 660602880v3b0

12 + 6505728v6b0
8
− 1223884800v5b0

9

+5528862720v4b0
10
− 3303014400v3b0

11 + 330301440v2b0
12
− 291371008v5b0

8 + 4831395840v4b0
9

−7220428800v3b0
10 + 1981808640v2b0

11
− 94371840vb0

12
− 32214016v5b0

7 + 2308777216v4b0
8
− 8804106240v3b0

9

+5347196928v2b0
10
− 660602880vb0

11 + 11796480b0
12
− 1794592v5b0

6 + 583241728v4b0
7
− 6451513344v3b0

8

+8374763520v2b0
9
− 2120712192vb0

10 + 94371840b0
11 + 78875520v4b0

6
− 2845976576v3b0

7 + 8318000896v2b0
8

−4058578944vb0
9 + 351289344b0

10 + 5520032v4b0
5
− 729447296v3b0

6 + 5360619520v2b0
7
− 5098749952vb0

8

+794542080b0
9 + 226595v4b0

4
− 103846016v3b0

5 + 2205793728v2b0
6
− 4355206144vb0

7 + 1208350464b0
8

−8153804v3b0
4 + 546622400v2b0

5
− 2529774688vb0

6 + 1289535488b0
7
− 247276v3b0

3 + 76426626v2b0
4

−962168448vb0
5 + 976347328b0

6 + 5102816v2b0
3
− 221839044vb0

4 + 513872032b0
5 + 121893v2b0

2

−27116356vb0
3 + 177612267b0

4
− 1557948vb0

2 + 35453088b0
3
− 32012vb0 + 3807527b0

2 + 197432b0 + 3700)

,

b12 = Q12

3896394330931200b0
17(vb0−b0−1)11 (2831155200v10b0

15
− 28311552000v9b0

15
− 28311552000v9b0

14

+127401984000v8b0
15
− 3833856000v9b0

13 + 254803968000v8b0
14
− 339738624000v7b0

15 + 164419338240v8b0
13

−1019215872000v7b0
14 + 594542592000v6b0

15 + 33183498240v8b0
12
− 1177335889920v7b0

13

+2378170368000v6b0
14
− 713451110400v5b0

15 + 2441416704v8b0
11
− 625307811840v7b0

12

+3959653662720v6b0
13
− 3567255552000v5b0

14 + 594542592000v4b0
15
− 150842204160v7b0

11

+3448016732160v6b0
12
− 7758285373440v5b0

13 + 3567255552000v4b0
14
− 339738624000v3b0

15

−17213718528v7b0
10 + 1654010339328v6b0

11
− 9414912245760v5b0

12 + 9577090252800v4b0
13

−2378170368000v3b0
14 + 127401984000v2b0

15
− 935561984v7b0

9 + 430454685696v6b0
10
− 6893095084032v5b0

11

+14917238784000v4b0
12
− 7597263421440v3b0

13 + 1019215872000v2b0
14
− 28311552000vb0

15

+61819041536v6b0
9
− 3084866224128v5b0

10 + 14763898306560v4b0
11
− 14452669808640v3b0

12

+3775628574720v2b0
13
− 254803968000vb0

14 + 2831155200b0
15 + 4895263744v6b0

8
− 830821516032v5b0

9

+9569990983680v4b0
10
− 18062091362304v3b0

11 + 8485774295040v2b0
12
− 1073821777920vb0

13

+28311552000b0
14 + 215192016v6b0

7
− 133108374528v5b0

8 + 4054231566080v4b0
9
− 15437915258880v3b0

10

+12823006617600v2b0
11
− 2784346767360vb0

12 + 133748490240b0
13
− 12875099008v5b0

7 + 1095239501824v4b0
8

−9112347265280v3b0
9 + 13647129919488v2b0

10
− 4937554894848vb0

11 + 393023324160b0
12

−706597280v5b0
6 + 184425366224v4b0

7
− 3662062729216v3b0

8 + 10412228738304v2b0
9
− 6298378960896vb0

10

+800226865152b0
11
− 23265835v5b0

5 + 18873314784v4b0
6
− 970308536704v3b0

7 + 5672405965824v2b0
8

−5914599680256vb0
9 + 1190798573568b0

10 + 1149972301v4b0
5
− 162363986880v3b0

6 + 2154848417648v2b0
7

−4103411461120vb0
8 + 1330424677632b0

9 + 29723638v4b0
4
− 16413332062v3b0

5 + 545497494080v2b0
6

−2073388347136vb0
7 + 1126041833472b0

8
− 869453064v3b0

4 + 86826403730v2b0
5
− 736239620256vb0

6

+717083006960b0
7
− 17763561v3b0

3 + 7885361588v2b0
4
− 173225183639vb0

5 + 334939395552b0
6

+360240495v2b0
3
− 24839463000vb0

4 + 109293631105b0
5 + 6241422v2b0

2
− 2013854207vb0

3 + 22985307318b0
4

−82446808vb0
2 + 2956637097b0

3
− 1280564vb0 + 219170970b0

2 + 8330804b0 + 120500)

,

b14 = 1
112b0

2(vb0−b0−1) (21Q2vb0b12 + 56Q2vb2b10 + 77Q2vb4b8 + 42Q2vb6
2
− 480vb0

2b2b12 − 576vb0
2b4b10 − 624vb0

2b6b8

−540vb0b2
2b10 − 1152vb0b2b4b8 − 588vb0b2b6

2
− 576vb0b4

2b6 − 180vb2
3b8 − 540vb2

2b4b6 − 176vb2b4
3
− 21Q2b0b12

−136Q2b2b10 − 253Q2b4b8 − 150Q2b6
2 + 936b0

2b2b12 + 1656b0
2b4b10 + 2112b0

2b6b8 + 1196b0b2
2b10 + 3088b0b2b4b8

+1692b0b2b6
2 + 1584b0b4

2b6 + 404b2
3b8 + 1316b2

2b4b6 + 424b2b4
3
− 21Q2b12 + 176b0b2b12 + 144b0b4b10 + 128b0b6b8

+68b2
2b10 + 112b2b4b8 + 52b2b6

2 + 48b4
2b6)

,

b16 = 1
72b0

2(vb0−b0−1) (14Q2vb0b14 + 38Q2vb2b12 + 54Q2vb4b10 + 62Q2vb6b8 − 314vb0
2b2b14 − 384vb0

2b4b12

−426vb0
2b6b10 − 220vb0

2b8
2
− 362vb0b2

2b12 − 788vb0b2b4b10 − 820vb0b2b6b8 − 400vb0b4
2b8 − 402vb0b4b6

2
− 124vb2

3b10
−378vb2

2b4b8 − 190vb2
2b6

2
− 370vb2b4

2b6 − 30vb4
4
− 14Q2b0b14 − 95Q2b2b12 − 189Q2b4b10 − 248Q2b6b8 + 622b0

2b2b14
+1152b0

2b4b12 + 1566b0
2b6b10 + 860b0

2b8
2 + 826b0b2

2b12 + 2244b0b2b4b10 + 2636b0b2b6b8 + 1200b0b4
2b8 + 1242b0b4b6

2

+292b2
3b10 + 1002b2

2b4b8 + 530b2
2b6

2 + 990b2b4
2b6 + 78b4

4
− 14Q2b14 + 116b0b2b14 + 96b0b4b12 + 84b0b6b10 + 40b0b8

2

+46b2
2b12 + 76b2b4b10 + 68b2b6b8 + 32b4

2b8 + 30b4b6)

,

b18 = 1
180b0

2(vb0−b0−1) (36Q2vb0b16 + 99Q2vb2b14 + 144Q2vb4b12 + 171Q2vb6b10 + 90Q2vb8
2
− 796vb0

2b2b16

−988vb0
2b4b14 − 1116vb0

2b6b12 − 1180vb0
2b8b10 − 936vb0b2

2b14 − 2072vb0b2b4b12 − 2192vb0b2b6b10 − 1116vb0b2b8
2

−1068vb0b4
2b10 − 2168vb0b4b6b8 − 360vb0b6

3
− 328vb2

3b12 − 1016vb2
2b4b10 − 1032vb2

2b6b8 − 1004vb2b4
2b8

−1000vb2b4b6
2
− 324vb4

3b6 − 36Q2b0b16 − 253Q2b2b14 − 528Q2b4b12 − 741Q2b6b10 − 410Q2b8
2 + 1596b0

2b2b16
+3060b0

2b4b14 + 4356b0
2b6b12 + 5100b0

2b8b10 + 2184b0b2
2b14 + 6168b0b2b4b12 + 7632b0b2b6b10 + 4092b0b2b8

2

+3420b0b4
2b10 + 7368b0b4b6b8 + 1224b0b6

3 + 800b2
3b12 + 2864b2

2b4b10 + 3192b2
2b6b8 + 2924b2b4

2b8 + 2976b2b4b6
2

+924b4
3b6 − 36Q2b16 + 296b0b2b16 + 248b0b4b14 + 216b0b6b12 + 200b0b8b10 + 120b2

2b14 + 200b2b4b12 + 176b2b6b10
+84b2b8

2 + 84b4
2b10 + 152b4b6b8 + 24b6

3)

,
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b20 = 1
220b0

2(vb0−b0−1) (45Q2vb0b18 + 125Q2vb2b16 + 185Q2vb4b14 + 225Q2vb6b12 + 245Q2vb8b10 − 984vb0
2b2b18

−1236vb0
2b4b16 − 1416vb0

2b6b14 − 1524vb0
2b8b12 − 780vb0

2b10
2
− 1176vb0b2

2b16 − 2640vb0b2b4b14 − 2832vb0b2b6b12
−2928vb0b2b8b10 − 1380vb0b4

2b12 − 2832vb0b4b6b10 − 1428vb0b4b8
2
− 1416vb0b6

2b8 − 420vb2
3b14 − 1320vb2

2b4b12
−1356vb2

2b6b10 − 684vb2
2b8

2
− 1320vb2b4

2b10 − 2640vb2b4b6b8 − 436vb2b6
3
− 428vb4

3b8 − 636vb4
2b6

2
− 45Q2b0b18

−325Q2b2b16 − 703Q2b4b14 − 1035Q2b6b12 − 1225Q2b8b10 + 1992b0
2b2b18 + 3924b0

2b4b16 + 5784b0
2b6b14 + 7092b0

2b8b12
+3780b0

2b10
2 + 2792b0b2

2b16 + 8128b0b2b4b14 + 10464b0b2b6b12 + 11824b0b2b8b10 + 4644b0b4
2b12 + 10368b0b4b6b10

+5396b0b4b8
2 + 5256b0b6

2b8 + 1052b2
3b14 + 3896b2

2b4b12 + 4532b2
2b6b10 + 2388b2

2b8
2 + 4104b2b4

2b10 + 8608b2b4b6b8
+1420b2b6

3 + 1324b4
3b8 + 1980b4

2b6
2
− 45Q2b18 + 368b0b2b18 + 312b0b4b16 + 272b0b6b14 + 248b0b8b12 + 120b0b10

2

+152b2
2b16 + 256b2b4b14 + 224b2b6b12 + 208b2b8b10 + 108b4

2b12 + 192b4b6b10 + 92b4b8
2 + 88b6

2b8)

.

Appendix B

c2 = −
1
4

Q
b0

,

c4 = −
Q

64b3
0

(Q2
− 8b0b2),

c6 = −
Q

1536b5
0

(3Q4
− 48Q2b0b2 − 128b3

0b4 + 128b2
0b2

2),

c8 = −
Q

16384b7
0

(5Q6
− 120Q4b0b2 − 384Q2b3

0b4 + 768Q2b2
0b2

2 − 1024b5
0b6 + 2048b4

0b2b4 − 1024b3
0b3

2),

c10 = − Q
655360b9

0
(35Q8

− 1120Q6b0b2 − 3840Q4b3
0b4 + 11520Q4b2

0b2
2 − 12288Q2b5

0b6 + 49152Q2b4
0b2b4 − 40960Q2b3

0b3
2

−32768b7
0b8 + 65536b6

0b2b6 + 32768b6
0b2

4 − 98304b5
0b2

2b4 + 32768b4
0b4

2)
,

c12 = − Q
6291456b11

0
(63Q10

− 2520Q8b0b2 − 8960Q6b3
0b4 + 35840Q6b2

0b2
2 − 30720Q4b5

0b6 − 215040Q4b3
0b3

2

−98304Q2b7
0b8 + 196608Q2b6

0b4
2 + 393216Q2b6

0b2b6 + 491520Q2b4
0b4

2 − 983040Q2b5
0b2

2b4 + 184320Q2b4
0b2b4

−262144b9
0b10 + 524288b8

0b2b8 + 524288b8
0b4b6 − 786432b7

0b2
2b6 − 786432b7

0b2b2
4 + 1048576b6

0b4
2b4 − 262144b5

0b5
2)

,

c14 = − Q
117440512b13

0
(231Q12

− 11088Q10b0b6 − 40320Q8b3
0b4 + 201600Q8b2

0b2
2 − 143360Q6b5

0b6 + 1146880Q6b4
0b2b4

−1720320Q6b3
0b3

2 − 491520Q4b7
0b8 + 2949120Q4b6

0b2b6 + 1474560Q4b6
0b2

4 − 10321920Q4b5
0b2

2b4 + 6881280Q4b4
0b4

2
−1572864Q2b9

0b10 + 6291456Q2b8
0b2b8 + 6291456Q2b8

0b4b6 − 15728640Q2b7
0b2b2

4 − 15728640Q2b7
0b2

2b6 + 4194304b6
0b6

2
+31457280Q2b6

0b3
2b4 − 11010048Q2b5

0b5
2 + 8388608b10

0 b2b10 + 8388608b10
0 b4b8 − 4194304b11

0 b12 + 4194304b10
0 b2

6
−12582912b9

0b2
2b8 − 4194304b9

0b3
4 − 25165824b9

0b2b4b6 + 25165824b8
0b2

2b2
4 + 16777216b8

0b3
2b6 − 20971520b7

0b4
2b4)

,

c16 = − Q
1073741824b15

0
(429Q14

− 24024Q12b0b2 − 88704Q10b3
0b4 − 322560Q8b5

0b6 + 3225600Q8b4
0b2b4

+9175040Q6b6
0b2b6 − 41287680Q6b5

0b2
2b4 + 34406400Q6b4

0b4
2 − 3932160Q4b9

0b10 + 23592960Q4b8
0b2b8

+23590960Q4b8
0b4b6 − 82575360Q4b7

0b2b2
4 + 220200960Q4b6

0b3
2b4 − 99090432Q4b5

0b5
2 − 12582912Q2b11

0 b12
+50331648Q2b10

0 b2b10 + 50331648Q2b10
0 b4b8 + 25165824Q2b10

0 b− 125829120Q2b9
0b2

2b8 − 251658240Q2b9
0b2b4b6

−41943040Q2b9
0b3

4 + 377487360Q2b8
0b2

2b2
4 + 251658240Q2b8

0b3
2b6 − 440401920Q2b7

0b4
2b4 + 117440512Q2b6

0b6
2

−33554432b13
0 b14 + 67108864b12

0 b2b12 + 67108864b12
0 b4b10 + 67108864b12

0 b6b8 − 100663296b11
0 b2

2b10
−201326592b11

0 b2b4b8 − 100663296b11
0 b2b2

6 − 100663296b11
0 b2

4b6 + 134217728b10
0 b3

2b8 + 402653184b10
0 b2

2b4b6
+134217728b10

0 b2b3
4 − 167772160b9

0b4
2b6 − 335544320b9

0b3
2b2

4 + 201326592b8
0b5

2b4 − 33554432b7
0b7

2)

,
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c18 = − 1
77309411328b0

17 Q(6435Q16
− 411840Q14b0b2 − 1537536Q12b0

3b4 + 10762752Q12b0
2b2

2
− 5677056Q10b0

5b6

+68124672Q10b0
4b2b4 − 147603456Q10b0

3b2
3
− 20643840Q8b0

7b8 + 206438400Q8b0
6b2b6 + 103219200Q8b0

6b4
2

−1135411200Q8b0
5b2

2b4 + 1135411200Q8b0
4b2

4
− 73400320Q6b0

9b10 + 587202560Q6b0
8b2b8 + 587202560Q6b0

8b4b6
−2642411520Q6b0

7b2
2b6 − 2642411520Q6b0

7b2b4
2 + 8808038400Q6b0

6b2
3b4 − 4844421120Q6b0

5b2
5

−251658240Q4b0
11b12 + 1509949440Q4b0

10b2b10 + 1509949440Q4b0
10b4b8 + 754974720Q4b0

10b6
2

−5284823040Q4b0
9b2

2b8 − 10569646080Q4b0
9b2b4b6 − 1761607680Q4b0

9b4
3 + 14092861440Q4b0

8b2
3b6

+21139292160Q4b0
8b2

2b4
2
− 31708938240Q4b0

7b2
4b4 + 10569646080Q4b0

6b2
6
− 805306368Q2b0

13b14
+3221225472Q2b0

12b2b12 + 3221225472Q2b0
12b4b10 + 3221225472Q2b0

12b6b8 − 8053063680Q2b0
11b2

2b10
−16106127360Q2b0

11b2b4b8 − 8053063680Q2b0
11b2b6

2
− 8053063680Q2b0

11b4
2b6 + 16106127360Q2b0

10b2
3b8

+48318382080Q2b0
10b2

2b4b6 + 16106127360Q2b0
10b2b4

3
− 28185722880Q2b0

9b2
4b6 − 56371445760Q2b0

9b2
3b4

2

+45097156608Q2b0
8b2

5b4 − 9663676416Q2b0
7b2

7
− 2147483648b0

15b16 + 4294967296b0
14b2b14

+4294967296b0
14b4b12 + 4294967296b0

14b6b10 + 2147483648b0
14b8

2
− 6442450944b0

13b2
2b12

−12884901888b0
13b2b4b10 − 12884901888b0

13b2b6b8 − 6442450944b0
13b4

2b8 − 6442450944b0
13b4b6

2

+8589934592b0
12b2

3b10 + 25769803776b0
12b2

2b4b8 + 12884901888b0
12b2

2b6
2 + 25769803776b0

12b2b4
2b6

+2147483648b0
12b4

4
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11b2
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11b2
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11b2
2b4

3

+12884901888b0
10b2
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10b2

4b4
2
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9b2
6b4 + 2147483648b0

8b2
8)

,

c20 = − 1
687194767360b0
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− 875160Q16b0b2 − 3294720Q14b0

3b4 + 26357760Q14b0
2b2

2

−12300288Q12b0
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3b2

3
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6b2b6
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6b4

2
− 3542482944Q10b0

5b2
2b4 + 4132896768Q10b0

4b2
4
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9b10
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7b2
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6b2
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5
− 587202560Q6b0
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2
− 21139292160Q6b0

9b2
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9b2b4b6
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9b4
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8b2
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8b2
2b4

2
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7b2
4b4
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6b2
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15b6
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2b4b10
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13b2
4b10 − 343597383680b0

13b2
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13b2
3b6

2
− 515396075520b0

13b2
2b4

2b6
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