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Abstract: A remarkably large of number of polynomials have been presented and studied.
Among several important polynomials, Legendre polynomials, Gould-Hopper polynomials,
and Sheffer polynomials have been intensively investigated. In this paper, we aim to incorporate
the above-referred three polynomials to introduce the Legendre-Gould Hopper-based Sheffer
polynomials by modifying the classical generating function of the Sheffer polynomials. In addition,
we investigate diverse properties and formulas for these newly introduced polynomials.
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1. Introduction and Preliminaries

Various special polynomials have found diverse and vital applications in a number of fields
such as mathematics, applied mathematics, mathematical physics, and engineering. According to
the necessity of solving certain specific problems in diverse fields or pure mathematical interests,
recently, a remarkably large number of new polynomials and numbers as well as a variety of
generalizations (or extensions) and variants of some known polynomials have been established
and investigated. In this regard, the Gould-Hopper polynomials incorporated with the Legendre
polynomials were extended to be named as the Legendre-Gould Hopper polynomials by using
operational methods. Also, certain Sheffer polynomials based on some known polynomials have been
presented and investigated (see, e.g., [1–4]). In this paper, we aim to introduce the Legendre-Gould
Hopper-based Sheffer polynomials by modifying the classical generating function (2) of the Sheffer
polynomials. Since these newly introduced polynomials are found to be Sheffer type polynomials,
we show that several properties and identities of the Sheffer polynomials are employed to give the
corresponding results to these new polynomials. Moreover, other properties and formulas for these
new polynomials such as quasi-monomials, other operational and certain integral representations
are presented. We conclude that this method is pointed out to be easily applicable to other known
polynomials, which are quasi-monomials with respect to some multiplicative and derivative operators,
to yield certain Sheffer polynomials based on the known polynomials. In addition to this conclusion,
the Legendre-Gould Hopper-based Sheffer polynomials generated by other generating functions with

Symmetry 2020, 12, 2051; doi:10.3390/sym12122051 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-7240-7737
http://dx.doi.org/10.3390/sym12122051
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/12/2051?type=check_update&version=2


Symmetry 2020, 12, 2051 2 of 17

investigating their properties and formulas are poised as problems which are left to the interested
researcher and the authors for future investigation.

For our purpose, some notations with modified ones and certain known facts are recalled and
introduced. In what follows, let P denote the algebra of formal power series in the variable t over the
field C of characteristic zero, say, C the field of complex numbers. If f (t) and g(t) in P satisfy

f (t) =
∞

∑
k=0

aktk (a0 = 0, a1 6= 0) and g(t) =
∞

∑
k=0

bktk (b0 6= 0) ,

then f (t) and g(t) are said to be a delta series and an invertible series, respectively. With each pair of
a delta series f (t) and an invertible series g(t), there exists a unique sequence sn(x) of polynomials
gratifying the orthogonality conditions (see [5], p. 17, Theorem 2.3.1)〈

g(t) f (t)k
∣∣∣ sn(x)

〉
= n! δn,k (n, k ∈ N0) , (1)

where δn,k is the Kronecker delta function defined by δn,k = 1 (n = k) and δn,k = 0 (n 6= k).
The operator 〈· | ·〉 remains the same as in (see [5], Chapter 2). Here and elsewhere, let N be the
set of positive integers and, also let N0 := N ∪ {0}. The sequence sn(x) satisfying (1) is called
the Sheffer sequence for (g(t), f (t)), or sn(x) is Sheffer for (g(t), f (t)), which is usually denoted as
sn(x) ∼ (g(t), f (t)). In particular, if sn(x) ∼ (1, f (t)), then sn(x) is called the associated sequence
for f (t), or sn(x) is associated with f (t); if sn(x) ∼ (g(t), t), then sn(x) is called the Appell sequence
for g(t), or sn(x) is Appell for g(t) (see ([5], p. 17); see also [6,7]). Among diverse characterizations
of Sheffer sequences, we recall the generating function (see, e.g., ([5], Theorem 2.3.4)): The sequence

[g, f ] sn(x) is Sheffer for (g(t), f (t)) if and only if

1
g
(

f̄ (t)
) ex f̄ (t) =

∞

∑
k=0

[g, f ] sk(x)

k!
tk (2)

for all x in C, where f̄ (t) = f−1(t) is the compositional inverse of f (t). Here and elsewhere,
the ordered-pair notation [g, f ] implies that the first element g is an invertible series and the second
one f is a delta series.

A sequence un(x) (deg un(x) = n) of polynomials is called Sheffer A-type zero if it has a
generating function of the form (see, e.g., ([8], p. 222, Theorem 72); see also ([5], p. 19)).

A(t) exp (xH(t)) =
∞

∑
n=0

un(x) tn, (3)

where A(t) and H(t) are an invertible series and a delta series, respectively. Thus, sn(x) is a Sheffer
sequence if and only if sn(x)/n! is a sequence of Sheffer A-type zero. It is noted that sequences of
Sheffer A-type zero were suggested to be named as poweroids by Steffensen ([9], p. 335), from which
the concept of monomiality arose (see also ([5], p. 19)). The quasi-monomial treatment of special
polynomials has been proved to be a powerful tool for the investigation of the properties of a wide
class of polynomials such as Sheffer polynomials (see, e.g., [9–12]). A sequence of polynomials pn(x)
(n ∈ N0, x ∈ C) of degree n is said to be quasi-monomials with respect to operators M̂ and P̂ (called,
respectively, multiplicative and derivative operators) acting on polynomials if they do exist and satisfy

M̂ {pn(x)} = pn+1(x) and P̂ {pn(x)} = n pn−1(x). (4)

It is easily found from (4) that
M̂ P̂ {pn(x)} = n pn(x) (5)
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and
P̂ M̂ {pn(x)} = (n + 1) pn(x). (6)

The algebra of P̂, M̂, the identity operator 1̂ and the zero operator 0̂ are seen to satisfy the
commutation relations

[P̂, M̂] := P̂M̂− M̂P̂ = 1̂, [P̂, 1̂] = [M̂, 1̂] = 0̂. (7)

The algebra (7) is called the Heisenberg-Weyl algebra. The polynomials pn(x) are derived via the
action of M̂n on p0(x):

pn(x) = M̂n {p0(x)} . (8)

For p0(x) = 1, pn(x) = M̂n {1} and the exponential generating function of pn(x) is

F (x, t) = etM̂ {1} =
∞

∑
n=0

tn

n!
M̂n {1} =

∞

∑
n=0

pn(x)
tn

n!
. (9)

The simplest ones of (4) are the multiplication M̂ = X and derivative P̂ = D = d
dx operators acting on

the space of polynomials. They act on monomials as follows:

Xxn = xn+1 and Dxn = nxn−1, (10)

which lead to [D, X] = 1 and, in view of linearity, are utilized to act on polynomials and formal
power series.

For more details and applications of operational methods and quasi-monomials, one may be
referred, for example, to [1–3,5,9–21].

We recall the Gould-Hopper polynomials (see ([22], Equation (6.2))) (also called sometimes as
higher-order Hermite or Kampé de Fériet polynomials) H(s)

n (x, y) defined by

H(s)
n (x, y) = n!

[ n
s ]

∑
k=0

ykxn−sk

k! (n− sk)!
. (11)

A generating function of H(s)
n (x, y) is given by (see, e.g., ([22], Equation (6.3)))

exp(xt + yts) =
∞

∑
n=0

H(s)
n (x, y)

tn

n!
. (12)

They appear as the solution of the generalized heat equation (see, e.g., [13]; see also ([23], p. 96))

∂

∂y
f (x, y) =

∂s

∂xs f (x, y), f (x, 0) = xn. (13)

Under the operational formalism (or a formal solution of (13) when it is considered to be a first-order
differential equation with respect to the variable y with the initial condition), they are defined as

H(s)
n (x, y) = exp

(
y

∂s

∂xs

)
{xn}. (14)

These polynomials are quasi-monomial under the action of the operators (see [13])

M̂H := x + sy
∂s−1

∂xs−1 ,

P̂H :=
∂

∂x
.

(15)
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We recall the Legendre polynomials Sn(x, y) and Rn(x,y)
n! which are defined by the generating

functions (see, e.g., [24]):

exp(yt)C0(−xt2) =
∞

∑
n=0

Sn(x, y)
tn

n!
(16)

and

C0(xt)C0(−yt) =
∞

∑
n=0

Rn(x, y)
n!

tn

n!
, (17)

respectively, where C0(x) denotes the 0th-order Bessel-Tricomi function. The nth order Bessel-Tricomi
function Cn(x) is defined by the following series (see, e.g., ([11], p. 150)):

Cn(x) = x−
n
2 Jn(2

√
x) =

∞

∑
k=0

(−1)k xk

k! (n + k)!
(n ∈ N0) , (18)

where Jn(x) is the ordinary cylindrical Bessel function of the first kind (see, e.g., [23]). The operational
definition of the 0th-order Bessel-Tricomi function C0(x) is given by (see, e.g., ([25], p. 86))

C0(αx) = exp
(
−αD−1

x

)
{1}, (19)

where D−1
x denotes the inverse of the derivative operator Dx := ∂

∂x and is defined by means of the
Riemann-Liouville fractional integral (see, e.g., ([26], p. 69))

D−α
x { f } :=

1
Γ(α)

∫ x

0
(x− η)α−1 f (η)dη (x > 0; <(α) > 0). (20)

It is easy to see that (
D−1

x

)n
{1} := D−n

x {1} =
xn

n!
(n ∈ N). (21)

Yasmin [25] introduced and studied the Legendre-Gould Hopper polynomials (LeGHP)

S H(r)
n (x, y, z) and R H(r)

n (x,y,z)
n! , which are defined, respectively, by the following generating functions:

C0(−xt2) exp(yt + ztr) =
∞

∑
n=0

SH(r)
n (x, y, z)

tn

n!
(22)

and

C0(xt)C0(−yt) exp(ztr) =
∞

∑
n=0

RH(r)
n (x, y, z)

n!
tn

n!
. (23)

The polynomials SH(r)
n (x, y, z) and R H(r)

n (x,y,z)
n! are quasi-monomials under the action of the

multiplicative and derivative operators (see ([25], Equations (2.18a,b) and (2.19a,b)))
M̂SH := y + 2D−1

x
∂

∂y + rz ∂r−1

∂yr−1 ,

P̂SH = ∂
∂y

(24)

and 
M̂RH := −D−1

x + D−1
y + rz ∂r−1

∂yr−1 ,

P̂RH = − ∂
∂x x ∂

∂x ,

(25)

respectively.
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2. Legendre-Gould Hopper Based Sheffer Polynomials

In this section, Legendre-Gould Hopper-based Sheffer polynomials are introduced, and their
quasi-monomial properties and differential equations are established.

Definition 1. The Legendre-Gould Hopper-based Sheffer polynomials
S LeGH(r) sn(x, y, z)[g, f ] for the functions

g and f are defined by the following generating function

F[g, f ](x, y, z : t) : =
1

g
(

f−1(t)
)C0

(
−x
(

f−1(t)
)2
)

exp
(

y f−1(t) + z
(

f−1(t)
)r
)

=
∞

∑
n=0

S LeGH(r) sn(x, y, z)[g, f ]
tn

n!
,

(26)

where f (t) and g(t) are a delta series and an invertible series, respectively.

Remark 1. The Sheffer-type polynomials in Definition 1 are well-defined in the following sense: We find
from (24) that

F[g, f ](x, y, z : t) =
1

g
(

f−1(t)
) exp

(
M̂SH f−1(t)

)
=

∞

∑
n=0

S LeGH(r) sn(x, y, z)[g, f ]
tn

n!
. (27)

Furthermore, in view of (2), we can write

F[g, f ](x, y, z : t) =
1

g
(

f−1(t)
) exp

(
M̂SH f−1(t)

)
=

∞

∑
n=0

[g, f ] sn(M̂SH)
tn

n!
. (28)

Equating the last series in (27) and (28) and comparing the coefficients of tn on both sides of the resulting
identity gives

S LeGH(r) sn(x, y, z)[g, f ] = [g, f ] sn(M̂SH) = [g, f ] sn

(
y + 2D−1

x
∂

∂y
+ rz

∂r−1

∂yr−1

)
. (29)

Also, in view of (22), we have

∞

∑
n=0

S LeGH(r) sn(x, y, z)[g, f ]
tn

n!
=

1
g
(

f−1(t)
) ∞

∑
n=0

SH(r)
n (x, y, z)

(
f−1(t)

)n

n!
. (30)

Definition 2. The Legendre-Gould Hopper-based Sheffer polynomials R LeGH(r) sn(x,y,z)[g, f ]

n! for the functions g
and f are defined by the following generating function

H[g, f ](x, y, z : t) : =
1

g
(

f−1(t)
)C0

(
x f−1(t)

)
C0(−y f−1(t)) exp

(
z
(

f−1(t)
)r
)

=
∞

∑
n=0

R LeGH(r) sn(x, y, z)[g, f ]
tn

(n!)2 ,
(31)

where f (t) and g(t) are a delta series and an invertible series, respectively.

Remark 2. As in Remark 1, the Sheffer-type polynomials in Definition 2 are also well-defined in the following
sense: Indeed, it follows from (25) that

H[g, f ](x, y, z : t) =
1

g
(

f−1(t)
) exp

(
M̂RH f−1(t)

)
. (32)
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Moreover, in terms of (2), we get

H[g, f ](x, y, z : t) =
1

g
(

f−1(t)
) exp

(
M̂RH f−1(t)

)
=

∞

∑
n=0

[g, f ] sn(M̂RH)
tn

n!
. (33)

Identifying the last series in (31) and (33) and equating the coefficients of tn on both sides of the resultant
identity yields

R LeGH(r) sn(x, y, z)[g, f ]

n!
=

[g, f ] sn(M̂RH) = [g, f ] sn

(
− D−1

x + D−1
y + rz

∂r−1

∂yr−1

)
. (34)

Also, in view of (23), we find

∞

∑
n=0

R LeGH(r) sn(x, y, z)[g, f ]
tn

(n!)2 =
1

g
(

f−1(t)
) ∞

∑
n=0

RH(r)
n (x, y, z)

n!

(
f−1(t)

)n

n!
. (35)

The next two theorems show that the two polynomials introduced in Definitions 1 and 2 are quasi
monomials for some derived multiplicative and derivative operators.

Theorem 1. The Legendre-Gould Hopper-based Sheffer polynomials
S LeGH(r) sn(x, y, z)[g, f ] for the functions g

and f are quasi-monomial under the action of the following multiplicative and derivative operators:

S M̂LeGH[g, f ]
:=

(
y + 2D−1

x
∂

∂y
+ rz

∂r−1

∂yr−1 −
g′
(
∂y
)

g
(
∂y
) ) 1

f ′
(
∂y
) (36)

and
S P̂LeGH[g, f ]

:= f
(
∂y
)

, (37)

respectively. Here and elsewhere ∂y := ∂
∂y .

Proof. We find

∂y

{
exp

(
y f−1(t) + z

(
f−1(t)

)r
)}

= f−1(t) exp
(

y f−1(t) + z
(

f−1(t)
)r
)

. (38)

Since f−1 denotes the compositional inverse of the function f and f (t) has a series expansion in t,
we have

f
(
∂y
) {

exp
(

y f−1(t) + z
(

f−1(t)
)r
)}

= f
(

f−1(t)
)

exp
(

y f−1(t) + z
(

f−1(t)
)r
)

= t exp
(

y f−1(t) + z
(

f−1(t)
)r
)

.
(39)

Differentiating both sides of the second equality in (27) with respect to t affords(
s M̂SH −

g′
(

f−1(t)
)

g ( f−1(t))

)
1

f ′( f−1(t))
F[g, f ](x, y, z : t)

=
∞

∑
n=0

S LeGH(r) sn+1(x, y, z)[g, f ]
tn

n!
.

(40)

Since f (t) is a delta series in t, f ′(t) becomes an invertible series in t. Therefore 1
f ′( f−1(t)) can be a

series expansion of f−1(t). Since g(t) is an invertible series in t, 1
g( f−1(t)) can be a series expansion of

f−1(t). It is found from (26) that F[g, f ](x, y, z : t) is a product of 1
g( f−1(t)) and another function which
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can be expanded in powers of f−1(t). So we observe that F[g, f ](x, y, z : t) can be a series expansion in

powers of f−1(t).
Considering this observation and using (38), it follows from (40) that(

s M̂SH −
g′
(
∂y
)

g
(
∂y
) ) 1

f ′(∂y)
F[g, f ](x, y, z : t)

=
∞

∑
n=0

S LeGH(r) sn+1(x, y, z)[g, f ]
tn

n!
.

(41)

Using (26) and (36) in (41), we obtain

S M̂LeGH[g, f ]

{
S LeGH(r) sn(x, y, z)[g, f ]

}
=

S LeGH(r) sn+1(x, y, z)[g, f ] (n ∈ N0) . (42)

Thus, Equation (42) satisfies the first identity of (4) for quasi monomials.

Using (39), we get
f
(
∂y
) {

F[g, f ](x, y, z : t)
}
= t F[g, f ](x, y, z : t). (43)

Employing the series definition of (26) in Equation (43) provides

∞

∑
n=0

f
(
∂y
) {

S LeGH(r) sn(x, y, z)[g, f ]

} tn

n!
=

∞

∑
n=1

S LeGH(r) sn−1(x, y, z)[g, f ]
tn

(n− 1)!
,

both sides of which, upon equating the coefficients of tn, gives

f
(
∂y
) {

S LeGH(r) sn(x, y, z)[g, f ]

}
= n

S LeGH(r) sn−1(x, y, z)[g, f ] (n ∈ N0) . (44)

Therefore Equation (44) fulfills the second identity of (4) for quasi monomials.

Theorem 2. The Legendre-Gould Hopper-based Sheffer polynomials R LeGH(r) sn(x,y,z)[g, f ]

n! for the functions g and
f are quasi-monomials under the action of the following multiplicative and derivative operators

R M̂LeGH :=

(
−D−1

x + D−1
y + rz

∂r−1

∂yr−1 −
g′
(
∂y
)

g
(
∂y
) ) 1

f ′
(
∂y
) (45)

and

R P̂LeGH := f
(
−∂

∂x
x

∂

∂y

)
, (46)

respectively. Here and elsewhere ∂x := ∂
∂x .

Proof. The proof would run parallel with that of Theorem 1. The involved details are omitted.

3. Results Derivable from the Previous Section

We begin with the following remark which depicts some simple properties about invertible and
delta series.

Remark 3. Let f (t) and g(t) be delta and invertible series, respectively, whose power series forms are

f (t) = t +
∞

∑
k=2

ak tk (47)
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and

g(t) = 1 +
∞

∑
k=1

bk tk, (48)

where {ak}k≥2 and {bk}k∈N are sequences of constants in C. Then the following properties are satisfied:

(i) f (0) = 0, f ′(0) = 1 and g(0) = 1;
(ii) The compositional inverse f−1(t) of f (t) exists (for any delta series) and is of the same form as in (47);

(iii) The function 1
g(t) is defined (for any invertible series) and is of the same form as in (48).

The following theorems contain some properties which are easily derivable from those quasi
monomials of those series given in Definitions 1 and 2.

Theorem 3. Let f (t) and g(t) be delta and invertible series, respectively, whose power series forms are the same
as in (47) and (48). Also let n ∈ N0. Then we find

(a)
S LeGH(r) s0(x, y, z)[g, f ] = 1 and so

S M̂LeGH[g, f ]

n{1} =
S LeGH(r) sn(x, y, z)[g, f ];

(b) A generating function is

exp
(

S M̂LeGH[g, f ]
t
)
{1} =

∞

∑
k=0

S LeGH(r) sk(x, y, z)[g, f ]
tk

k!
;

(c) A differential equation is(
y + 2D−1

x
∂

∂y
+ rz

∂r−1

∂yr−1 −
g′
(
∂y
)

g
(
∂y
) ) f

(
∂y
)

f ′
(
∂y
)

S LeGH(r) sn(x, y, z)[g, f ]

= n
S LeGH(r) sn(x, y, z)[g, f ].

Proof. The assertions here follow immediately from the results in Theorem 1 by using (5), (8),
and (9).

Theorem 4. Let f (t) and g(t) be delta and invertible series, respectively, whose power series forms are the same
as in (47) and (48). Also let n ∈ N0. Then we find

(a)
R LeGH(r) s0(x, y, z)[g, f ] = 1 and so

R M̂LeGH[g, f ]

n{1} = R LeGH(r) sn(x, y, z)[g, f ]

n!
;

(b) A generating function is

exp
(

R M̂LeGH[g, f ]
t
)
{1} =

∞

∑
k=0

R LeGH(r) sk(x, y, z)[g, f ]

k!
tk

k!
;

(c) A differential equation is

(
−D−1

x + D−1
y + rz

∂r−1

∂yr−1 −
g′
(
∂y
)

g
(
∂y
) ) f

(
−∂
∂x x ∂

∂y

)
f ′
(
∂y
)

R LeGH(r) sn(x, y, z)[g, f ]

= n
R LeGH(r) sn(x, y, z)[g, f ].
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Proof. The assertions here follow immediately from the results in Theorem 2 by using (5), (8),
and (9).

For further assertions in the next sections, here is a suitable position to give some observations in
the following remark.

Remark 4.

(a) The operator 〈 ·| ·〉 in (1) can be expressed as follows:〈
g(t) f (t)k

∣∣∣ sn(x)
〉
= g(∂x) f (∂x)

k {sn(x)} (n, k ∈ N0) .

More generally, for f (t) ∈P and p(x) being a series in the variable x, we find

〈 f (t)| p(x)〉 = f (∂x) {p(x)} .

(b) In view of ([5] p. 20, Theorem 2.3.7), the identity (44) implies that the sequence
S LeGH(r) sn−1(x, y, z)[g, f ]

is Sheffer for (g(t), f (t)), when the sequence is looked upon as a function of the variable y.

4. Sheffer Sequences

In this section and in the sequel, unless otherwise stated, we consider the sequence

S LeGH(r) sn(x, y, z)[g, f ] as a function of the variable y and its associated sequence is

S LeGH(r) sn(x, y, z)[1, f ] (n ∈ N0) . (49)

Then, in view of Remark 4, the assertions of the theorems in this section can be verified by the
corresponding theorems in ([5], pp. 17–24). In this regard, proofs are omitted.

Theorem 5. The following identity holds.

g(∂y) f (∂y)
k
{

S LeGH(r) sn(x, y, z)[g, f ]

}
= n! δn,k (n, k ∈ N0) . (50)

Theorem 6. For any h(t) ∈P ,

h(t) =
∞

∑
k=0

h
(
∂y
) {

S LeGH(r) sk(x, y, z)[g, f ]

} g(t) f (t)k

k!
. (51)

Theorem 7. For any polynomial p(y),

p(y) = ∑
k≥0

g
(
∂y
)

f
(
∂y
)k {p(y)} S LeGH(r) sk(x, y, z)[g, f ]

k!
. (52)

Theorem 8. The following expansion holds.

S LeGH(r) sn(x, y, z)[g, f ] =
n

∑
k=0

(
g
(

f−1 (∂y
))−1 (

f−1 (∂y
))k
)
{yn} yk

k!
. (53)

The Equation (53) follows from the modified Equation (2.3.4) in ([5], p. 19) which should be

corrected with replacing f (t)k by
(

f−1(t)
)k.
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Theorem 9. For any h(t) ∈P ,

h
(
∂y
) {

S LeGH(r) sn(x, y, z)[g, f ]

}
=

n

∑
k=0

(
n
k

)
h
(
∂y
) {

S LeGH(r) sk(x, y, z)[g, f ]

}
S LeGH(r) sn−k(x, y, z)[1, f ].

(54)

Theorem 10. The Sheffer identity is

S LeGH(r) sn(x, y + u, z)[g, f ]

=
n

∑
k=0

(
n
k

)
S LeGH(r) sk(x, u, z)[1, f ] S LeGH(r) sn−k(x, y, z)[g, f ]

(55)

for all u ∈ C.

Theorem 11. For any h(t) and l(t) in P ,(
h
(
∂y
)

l
(
∂y
)) {

S LeGH(r) sn(x, y, z)[g, f ]

}
=

n

∑
k=0

(
n
k

) (
h
(
∂y
) {

S LeGH(r) sk(x, y, z)[g, f ]

}) (
l
(
∂y
) {

S LeGH(r) sn−k(x, y, z)[1, f ]

})
.

(56)

5. Associated

For the sequence
S LeGH(r) sn(x, y, z)[g, f ] as a function of the variable y and its associated sequence is

S LeGH(r) sn(x, y, z)[1, f ] (n ∈ N0) . (57)

Then, in view of Remark 4, the assertions of the theorems in this section can be validated by the
corresponding theorems in ([5], pp. 25–26). In this regard, proofs are omitted.

Theorem 12. The generating function is

C0

(
−x
(

f−1(t)
)2
)

exp
(

y f−1(t) + z
(

f−1(t)
)r
)
=

∞

∑
n=0

S LeGH(r) sn(x, y, z)[1, f ]
tn

n!
. (58)

Theorem 13. For any h(t) ∈P ,

h(t) =
∞

∑
k=0

h
(
∂y
) {

S LeGH(r) sk(x, y, z)[1, f ]

} f (t)k

k!
. (59)

Theorem 14. For any polynomial p(y),

p(y) = ∑
k≥0

f
(
∂y
)k {p(y)} S LeGH(r) sk(x, y, z)[1, f ]

k!
. (60)

Theorem 15. The conjugate representation is

S LeGH(r) sn(x, y, z)[1, f ] =
n

∑
k=1

f−1 (∂y
)k {yn} yk

k!
. (61)
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Theorem 16. For any h(t) ∈P ,

h (t)
S LeGH(r) sn(x, y, z)[1, f ]

=
n

∑
k=0

(
n
k

)
h
(
∂y
) {

S LeGH(r) sk(x, y, z)[1, f ]

}
S LeGH(r) sn−k(x, y, z)[1, f ].

(62)

Theorem 17. The binomial identity is

S LeGH(r) sn(x, y + u, z)[1, f ]

=
n

∑
k=0

(
n
k

)
S LeGH(r) sk(x, u, z)[1, f ]S LeGH(r) sn−k(x, y, z)[1, f ]

(63)

for all u in C.

6. Appell Sequences

For the sequence
S LeGH(r) sn(x, y, z)[g, f ] as a function of the variable y, its Appell sequence is

S LeGH(r) sn(x, y, z)[g,t] :=
S LeGH(r) sn(x, y, z)[g, f (t)=t] (n ∈ N0) . (64)

Then, in view of Remark 4, the assertions of the theorems in this section can be justified by the
corresponding theorems in ([5], pp. 26–28). In this respect, proofs are omitted.

Theorem 18. The generating function is

1
g
(
t
)C0

(
−xt2

)
exp (yt + ztr) =

∞

∑
n=0

S LeGH(r) sn(x, y, z)[g,t]
tn

n!
. (65)

Theorem 19. For any h(t) ∈P ,

h(t) =
∞

∑
k=0

h
(
∂y
) {

S LeGH(r) sk(x, y, z)[g,t]

}
g(t)

tk

k!
. (66)

Theorem 20. For any polynomial p(y),

p(y) = ∑
k≥0

g
(
∂y
) {

p(k)(y)
}

S LeGH(r) sk(x, y, z)[g,t]

k!
, (67)

where p(k)(y) is the kth derivative of p(y).

Theorem 21. The conjugate representation is

S LeGH(r) sn(x, y, z)[g,t] =
n

∑
k=0

(
n
k

)
g
(
∂y
)−1

{
yn−k

}
yk. (68)

Theorem 22. The Appell sequence satisfies

S LeGH(r) sn(x, y, z)[g,t] = g
(
∂y
)−1 {yn} . (69)

Theorem 23. For any h(t) ∈P ,

h
(
∂y
) {

S LeGH(r) sn(x, y, z)[g,t]

}
=

n

∑
k=0

(
n
k

)
h
(
∂y
) {

S LeGH(r) sk(x, y, z)[g,t]

}
yn−k. (70)
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Theorem 24. The Appell identity is

S LeGH(r) sn(x, y + u, z)[g,t] =
n

∑
k=0

(
n
k

)
S LeGH(r) sk(x, u, z)[g,t] yn−k. (71)

7. Particular Cases

In view of choices of f and g and the variables x, y, and z in Definitions 1 and 2, in fact, there may
be a myriad of particular cases. Here we choose to illustrate several ones which are listed in Examples.

Example 1. Comparing (22) and (23) with (26) and (31), respectively, we find

S LeGH(r) sn(x, y, z)[1,t] = S H(r)
n (x, y, z) (72)

and
R LeGH(r) sn(x, y, z)[1,t]

n!
= RH(r)

n (x, y, z)
n!

, (73)

which are the Legendre-Gould Hopper polynomials (LeGHP) and were investigated intensively
by Yasmin [25]. Yasmin illustrated several special cases of the LeGHP connected with known polynomials
(see ([25], p. 91, Table 2.1)).

Example 2. Continuing to Example 1, here we take one case given in ([25], p. 91, II, Table 2.1). Setting z = 0
in (22) gives the 2-variable Legendre polynomials denoted by 2Ln(x, y) := SH(r)

n (x, y, 0) and generated
by (see also [15])

C0(−xt2) exp(yt) =
∞

∑
n=0

2Ln(x, y)
tn

n!
. (74)

Furthermore, for the choice of z = 0 in Definition 1, the 2-variable Legendre-based Sheffer polynomials

2Legsn(x, y)[g, f ] for the functions g and f are defined by the following generating function

1
g
(

f−1(t)
)C0

(
−x
(

f−1(t)
)2
)

exp
(

y f−1(t)
)
=

∞

∑
n=0

2Legsn(x, y)[g, f ]
tn

n!
, (75)

where f (t) and g(t) are a delta series and an invertible series, respectively. As in Theorem 1, the 2-variable
Legendre-based Sheffer polynomials 2Legsn(x, y)[g, f ] for the functions g and f are quasi-monomial under the
action of the following multiplicative and derivative operators:

M̂2Leg[g, f ]
:=

(
y + 2D−1

x
∂

∂y
−

g′
(
∂y
)

g
(
∂y
) ) 1

f ′
(
∂y
) (76)

and
P̂2Leg[g, f ]

:= f
(
∂y
)

, (77)

respectively.
Also as in Theorem 3, if f (t) and g(t) have the same forms as in (47) and (48) and n ∈ N0, then

(a) 2Legs0(x, y)[g, f ] = 1 and so
M̂n

2Leg[g, f ]
{1} = 2Legsn(x, y)[g, f ];

(b) A generating function is

exp
(

M̂2Leg[g, f ]
t
)
{1} =

∞

∑
k=0

2Legsk(x, y)[g, f ]
tk

k!
;
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(c) A differential equation is(
y + 2D−1

x
∂

∂y
−

g′
(
∂y
)

g
(
∂y
) ) f

(
∂y
)

f ′
(
∂y
)

2Legsn(x, y)[g, f ] = n 2Legsn(x, y)[g, f ].

Example 3. From (26) and (31), we obtain

e−t C0

(
−xt2

)
exp (yt + ztr) =

∞

∑
n=0

S LeGH(r) sn(x, y, z)[et ,t]
tn

n!
(78)

and

e−t C0 (xt)C0(−yt) exp (ztr) =
∞

∑
n=0

R LeGH(r) sn(x, y, z)[et ,t]
tn

(n!)2 . (79)

Using (22) and (23) in (78) and (79), respectively, gives

S LeGH(r) sn(x, y, z)[et ,t] =
n

∑
k=0

(−1)n−k
(

n
k

)
S H(r)

k (x, y, z) (80)

and

R LeGH(r) sn(x, y, z)[et ,t]

n!
=

n

∑
k=0

(−1)n−k
(

n
k

)
RH(r)

k (x, y, z)
k!

. (81)

In addition, the sequence
S LeGH(r) sn(x, y, z)[et ,t] is found to belong to Appell sequence. Therefore the results

in Section 6 may apply to this sequence to yield more involved identities. For example,

S LeGH(r) sn(x, y + u, z)[et ,t] =
n

∑
k=0

(
n
k

)
S LeGH(r) sk(x, u, z)[et ,t] yn−k. (82)

Example 4. Let f (t) = t and define a function g : C→ C by

g(t) :=

{
et−1

t (t 6= 0),
1 (t = 0).

(83)

Then it is easy to see that g is an entire function and an invertible series in P . Now use f (t) = t and g(t) = g(t)
in (26) and set x = z = 0, and replace y by x. We get

∞

∑
n=0

S LeGH(r) sn(0, x, 0)[g,t]
tn

n!
=

t ext

et − 1
=

∞

∑
n=0

Bn(x)
tn

n!
(|t| < 2π). (84)

Hence

S LeGH(r) sn(0, x, 0)[g,t] = Bn(x) (n ∈ N0) , (85)

which are the classical Bernoulli polynomials (see, e.g., ([27]) Section 1.7).
Furthermore, using the Appell identity (71), we obtain

S LeGH(r) sn(0, x + y, 0)[g,t] =
n

∑
k=0

(
n
k

)
S LeGH(r) sk(0, x, 0)[g,t] yn−k. (86)

Or, equivalently,

Bn(x + y) =
n

∑
k=0

(
n
k

)
Bk(x) yn−k (n ∈ N0) , (87)

which is a well known identity (see, e.g., ([27] p. 82, Equation (13))).
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8. Other Operational and Certain Integral Representations

We begin by recalling the Crofton-type identity (see, e.g., ([28], Equation (3.18) and Theorem 3.5);
see also ([25], Equation (2.6)))

f
(

y + mλ
dm−1

dym−1

){
1
}
= exp

(
λ

dm

dym

){
f (y)

}
. (88)

Theorem 25. Let f (t) and g(t) be delta and invertible series, respectively, whose power series forms are the
same as in (47) and (48). Also let n ∈ N0. Then we obtain

S LeGH(r) sn(x, y, z)[g, f ] = exp
(

D−1
x

∂2

∂y2 + z
∂r

∂yr

){
[g, f ] sn(y)

}
(89)

and
R LeGH(r) sn(x, y, z)[g, f ]

n!
= exp

(
−D−1

x
∂

∂y
+ D−1

y
∂

∂y
+ z

∂r

∂yr

){
[g, f ] sn(0)

}
. (90)

Proof. The use of (88) in (29) and (34) yields (89) and (90), respectively.

Theorem 26. Let f (t) and g(t) be delta and invertible series, respectively, whose power series forms are the
same as in (47) and (48). Also let n ∈ N0. Then we get

S LeGH(r) sn(x, y, z)[g, f ] = exp
(

z
∂r

∂yr

)
2Legsn(x, y)[g, f ]. (91)

Proof. From (26) we obtain

∂r

∂yr S LeGH(r) sn(x, y, z)[g, f ] =
∂

∂z S LeGH(r) sn(x, y, z)[g, f ]. (92)

Comparing the generating functions (26) and (75), we get

S LeGH(r) sn(x, y, 0)[g, f ] = 2Legsn(x, y)[g, f ]. (93)

Now we can consider (92) as a first-order differential equation of the variable z with the initial
condition (93). Then solving this first-order differential equation gives the solution (91).

Theorem 27. Let f (t) and g(t) be delta and invertible series, respectively, whose power series forms are the
same as in (47) and (48). Also let n ∈ N0. Then the following integral representation holds:

S LeGH(r) sn(x, y, z)[g, f ] =
∫ ∞

0
e−u

S LeGH(r) sn

(
x, y, uD−1

z

)
[g, f ]

du. (94)

Proof. Combining (26) and (22) provides

∞

∑
n=0

S LeGH(r) sn(x, y, z)[g, f ]
tn

n!
=

1
g
(

f−1(t)
) ∞

∑
n=0

SH(r)
n (x, y, z)

(
f−1(t)

)n

n!
. (95)

Using the following integral formula (see ([25], Theorem 3.1))

SH(r)
n (x, y, z) =

∫ ∞

0
e−u

S H(r)
n

(
x, y, uD−1

z

)
du (96)
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in the right-hand side of (95) gives

∞

∑
n=0

S LeGH(r) sn(x, y, z)[g, f ]
tn

n!

=
∞

∑
n=0

∫ ∞

0
e−u

{
1

g
(

f−1(t)
) SH(r)

n

(
x, y, uD−1

z

) ( f−1(t)
)n

n!

}
du.

(97)

Employing (30) in the braces of the right-hand side of (97), we obtain

∞

∑
n=0

S LeGH(r) sn(x, y, z)[g, f ]
tn

n!

=
∞

∑
n=0

{∫ ∞

0
e−u

S LeGH(r) sn

(
x, y, uD−1

z

)
[g, f ]

du
}

tn

n!
,

both sides of which, upon equating the coefficients of tn, yields (94).

Theorem 28. Let f (t) and g(t) be delta and invertible series, respectively, whose power series forms are the
same as in (47) and (48). Also let n ∈ N0. Then the following integral representation holds:

R LeGH(r) sn(x, y, z)[g, f ] =
∫ ∞

0
e−u

R LeGH(r) sn

(
x, y, uD−1

z

)
[g, f ]

du. (98)

Proof. Recalling the following integral formula (see ([25], Theorem 3.2))

RH(r)
n (x, y, z) =

∫ ∞

0
e−u

RH(r)
n

(
x, y, uD−1

z

)
du (99)

and using (35), similarly as in the proof of Theorem 27, we can obtain (98). The details are omitted.

9. Concluding Remarks

Certain symmetries are ubiquitous in a wide range of mathematical properties and formulas
(e.g., (86) or (87) is symmetric with respect to the variables x and y).

In this paper, we introduced the so-called Legendre-Gould Hopper-based Sheffer polynomials
whose generating functions are constructed by substituting the generating functions of the
well-developed Legendre-Gould Hopper polynomials in [25] after t is replaced by f−1(t) for the
exponential part of that of Sheffer polynomials in (2). Then the newly introduced polynomials were
found to be still Sheffer type polynomials and, therefore, many important properties and identities for
these new polynomials were easily established by employing those in the well-developed theory of
Sheffer polynomials (see, e.g., [5]; see also [29]).

The essential part of introducing these new Sheffer polynomials is found that the based
polynomials, here Legendre-Gould Hopper polynomials, are quasi-monomials with respect to a
pair of certain multiplicative and derivative operators. In this point and in a little detail, if some known
polynomials of, say, function of variable x, are quasi-monomials with respect to a pair

(
M̂, P̂

)
of certain

multiplicative and derivative operators which are given by P̂ = ∂
∂x , certain new Sheffer polynomials

based on these known polynomials may be devised in the same method as in this paper.

Posing a Problem

As in (3), instead of the generating functions in Definitions 1 and 2, if we consider the following
type generating functions:

A(t)C0

(
−x
(

H(t)
)2
)

exp
(

yH(t) + z
(

H(t)
)r
)
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and
A(t)C0

(
x f−1(t)

)
C0(−y f−1(t)) exp

(
z
(

H(t)
)r
)

,

where A(t) is an invertible series and H(t) is a delta series, we are believed to be able to establish
corresponding results as those in this paper. This posed problem is left to the interested researcher and
the authors for future investigation.
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