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Abstract: Accurate segmentation of retinal blood vessels is a key step in the diagnosis of fundus
diseases, among which cataracts, glaucoma, and diabetic retinopathy (DR) are the main diseases
that cause blindness. Most segmentation methods based on deep convolutional neural networks can
effectively extract features. However, convolution and pooling operations also filter out some useful
information, and the final segmented retinal vessels have problems such as low classification accuracy.
In this paper, we propose a multi-scale residual attention network called MRA-UNet. Multi-scale
inputs enable the network to learn features at different scales, which increases the robustness of the
network. In the encoding phase, we reduce the negative influence of the background and eliminate
noise by using the residual attention module. We use the bottom reconstruction module to aggregate
the feature information under different receptive fields, so that the model can extract the information
of different thicknesses of blood vessels. Finally, the spatial activation module is used to process the
up-sampled image to further increase the difference between blood vessels and background, which
promotes the recovery of small blood vessels at the edges. Our method was verified on the DRIVE,
CHASE, and STARE datasets. Respectively, the segmentation accuracy rates reached 96.98%, 97.58%,
and 97.63%; the specificity reached 98.28%, 98.54%, and 98.73%; and the F-measure scores reached
82.93%, 81.27%, and 84.22%. We compared the experimental results with some state-of-art methods,
such as U-Net, R2U-Net, and AG-UNet in terms of accuracy, sensitivity, specificity, F-measure, and
AUCROC. Particularly, MRA-UNet outperformed U-Net by 1.51%, 3.44%, and 0.49% on DRIVE,
CHASE, and STARE datasets, respectively.

Keywords: deep convolutional neural work; multi-scale; retinal vessel segmentation; attention
mechanism; skip connection

1. Introduction

Recently, retinal image segmentation technology has been used in the diagnosis of
cardiovascular and ophthalmic diseases [1], among which cataracts, glaucoma, and diabetic
retinopathy (DR) are the main diseases that cause blindness [2]. Accurate segmentation of
retinal images is an important prerequisite for doctors to perform professional diagnosis
and prediction of related diseases. In recent years, many domestic and foreign researchers
have used computers to automatically segment medical images. The existing methods of
segmenting retinal vessels are mainly divided into two categories: unsupervised methods
and supervised methods [1].

The unsupervised methods learn based on the inherent properties of blood vessels, so
do not need to refer to manually annotated samples. In [3], a unique method combining
blood vessel center-line detection technology and morphological plane slice technology
was proposed to extract blood vessel trees from retinal images. In [4], B-COSFIRE filter was
used to automatically segment blood vessels. In [5], a new multi-scale vessel enhancement
method based on complex continuous wavelet transform (CCWT) was proposed, which
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uses histogram-based adaptive thresholding method and appropriate length filtering
method to segment vessels. In [6], on the basis of changing the length of the basic line
detector, linear detectors at different scales were realized, and the final segmentation was
produced for each retinal image. The work in [7] proposed an entropy filtering algorithm
based on curvature evaluation and texture mapping to segment color fundus blood vessel
images. In [8], they used an improved multi-scale detector to combine all responses on
different scales to perform blood vessel segmentation by setting different weights for
each scale. In [9], a hybrid method for retinal vessel segmentation was proposed. This
method uses normalized Gabor filtering to reduce background brightness changes and
alleviate the false positive problem caused by light changes. In [10], they used mathematical
morphology to smooth the retinal image, and then used the k-means clustering algorithm to
segment the enhanced image. The work in [11] used the area growth method of automatic
seed point selection to extract blood vessels from the image background. In [12], gray
conversion based on principal component analysis (PCA) and contrast-limited adaptive
histogram equalization (CLAHE) was used for retinal image enhancement, and a new
matched filter was designed to segment the blood vessels.

Differently from unsupervised methods, supervised methods need to refer to manu-
ally annotated samples to build models. Supervised methods can be further divided into
two categories, shallow learning methods and deep learning methods. (1). The methods
based on shallow learning use handcrafted features for segmentation. In [13], they used
a discriminatively trained, fully connected conditional random field model to segment
retinal vessels. In [14], based on multi-scale enhancement filtering and Gabor filtering,
blood vessels were extracted on multiple scales and in multiple directions. In [15], an Ad-
aBoost classifier was constructed through iterative training for retinal vessel segmentation.
The work in [16] proposed a new supervised retinal vessel segmentation method. A group
of very robust features from different algorithms was merged into a mixed feature vector for
pixel feature description, and then the mixed feature vector was used to train the random
forest classifier. (2). Compared with methods based on shallow learning, methods based
on deep learning train a large number of data samples to extract features for segmentation.
In [17], a method of blood vessel segmentation based on a neural network was proposed.
In [18], the samples were enhanced by global contrast normalization, zero phase whitening,
geometric transformation, and gamma correction. A deep neural network was used to
segment the blood vessels. In [19], a neural network based on the convolutional neural
network structure was developed. In [20], the deep convolutional neural network was
used to automatically segment the blood vessels in the OCT-A image, and each pixel was
divided into blood vessel type or non-vessel type. In [21], they developed and trained a
convolutional neural network that simultaneously segmented the optic disc, fovea, and
blood vessels. The work in [22] proposed a transfer learning supervision method based on
a pre-trained fully convolutional network. In [23], better preprocessing technology and
multi-layer/multi-scale deep supervision layers were used to appropriately segment retinal
blood vessels. In [24], a deep convolutional neural network (CNN) for segmentation of
retinal blood vessels was proposed. This method improved the quality of the segmentation
of tiny blood vessels. In [25], they improved the U-Net network, which contained densely
connected convolutional networks and a new attention gate model for automatic segmenta-
tion of retinal blood vessels. In [26], an attention-guided network (AG-Net) was proposed
to save structural information, eliminate noise, and segment blood vessels, optic discs,
and optic cups. In [27], a residual connection was added to the convolutional neural
network, and a deep learning architecture for fully automatic blood vessel segmentation
was proposed. Deep learning has also been applied in other areas. In [28], the author
constructed a deep genetic cascade integration method based on different support vector
machine (SVM) classifiers for credit scoring. In [29], a deep genetic hierarchical network for
credit scoring was proposed. In [30], two end-to-end deep neural network (DNN) models
for ECG-based authentication were proposed. The two models were a convolutional neural
network (CNN) and a residual convolutional neural network (ResNet) with an attention
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mechanism called ResNet-Attention. In [31], a novel ResNet-based signal recognition
method was presented.

Among these methods, the traditional methods require prior knowledge and addi-
tional preprocessing to extract the manually annotated feature information, cannot obtain
deeper feature information, and are susceptible to low-quality images and pathological
areas. In the deep learning methods which have been proposed, the following problems
usually exist: (1) Deep learning methods often require a large number of samples for
learning, and there are few fundus images annotated by doctors. (2) The single input
size of the model cannot obtain the features of the multi-scale image, leading to the low
robustness of the model. (3) When using convolutional neural networks to learn fundus
image features, convolution and pooling operations also filter out some useful information.
This results in the loss of feature information of a large number of tiny blood vessels in the
retinal image, which cannot be restored during the up-sampling process. (4) Up-sampling
of the model makes it difficult to restore low-level detailed feature information, resulting
in lower accuracy and more background noise.

To solve the above problems, this paper proposes a retinal vessel segmentation model
based on convolutional neural network. Our work mainly includes:

• We propose a multi-scale residual attention network (MRA-UNet) model to automati-
cally segment retinal vessels. We add multi-scale inputs to the network, and use the
residual attention module in the down-sampling part of the network to improve the
feature extraction ability of the network structure. This improves the robustness of
the model and reduces the excessive loss of micro-vascular feature information.

• In MRA-UNet, we propose a bottom reconstruction module, which combines the
output of the residual attention module in the down-sampling and aggregates the
output information of the down-sampling to further enrich the contextual semantic
information. It eases the problem of information loss in model’s down-sampling
process.

• The spatial activation module is added to the output part of the up-sampling. This
module can further activate the small blood vessels in the fundus image, while
restoring the image. It also effectively highlights the end of the blood vessel and the
boundary information of the small blood vessels.

The remainder of this paper is organized as follows. Section 2 describes the proposed
method in detail, including the network backbone structure, residual attention module,
bottom reconstruction module, and spatial activation module. Section 3 introduces the
image datasets, experimental parameters, and evaluation indicators. In Section 4, we
discuss and compared our experimental results. Finally, a conclusion is drawn in Section 5.

2. Methodology

In this paper, the traditional U-Net [32] is improved, and the residual attention module
is added to the encoder part of U-Net. The advantages of the skip connection and attention
mechanism are used to extract the features of the fundus image. The input to the traditional
U-Net is a single-scale input. In order to allow the network to express the characteristics
of images at different scales, the input of the network is changed to multi-scale inputs.
The multi-scale inputs are divided into four branches. The number of channels for each
branch is 3. The image sizes of the branches are 48 × 48, 24 × 24, 12 × 12, and 6 × 6 pixels.
The network structure of this paper is shown in Figure 1.

As shown in Figure 1, the basic backbone of this network structure is U-Net. The net-
work structure is mainly composed of two parts. The first part is the encoder–feature
extraction part (the left half of Figure 1), and the second part is the decoder–upper sam-
pling part (the right half of Figure 1).
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Figure 1. The MRA-UNet architecture.

2.1. Residual Attention Module

The residual attention module was inspired by FFA-Net [33]. We embed the proposed
residual attention module into the encoder. The residual attention module can highlight
important areas in fundus images, filter noise from the background, and solve the problem
of information loss caused by down-sampling. At the same time, it can alleviate the
problems of gradient explosion and gradient disappearance. It can filter the background
noise of low-resolution feature maps and highlight important areas in the fundus image.
One module is a local residual learning one; there is also a channel attention module and a
pixel attention module. Local residual learning allows the network to ignore less important
information, such as background or low-frequency regions, and bypass noise regions,
making the network pay attention to effective information. The residual attention module
first extracts primary semantic information through two 3 × 3 convolutional layers and
skip connections, and then sequentially generates attention maps through channel attention
and pixel attention. Finally, the input feature maps and attention maps are multiplied to
obtain the weighted attention feature map. Figure 2 illustrates the details of the residual
attention module.

3×3 Conv Layer Element-wise Sum Element-wise Product

Conv Layer
Average Pooling

ReLu Layer

Sigmoid

Channel Attention Pixel Attention

Figure 2. The detailed structure of the residual attention module.
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The input of this module is a feature map x processed by a 3 × 3 convolutional
layer, a normalization layer, Relu, and a 2 × 2 pooling layer. x is then passed through
two 3 × 3 convolutional layers to treated as the input of channel attention. The attention
matrix and the feature map x are multiplied to obtain the weighted attention feature map.
The calculation formula of FR A is defined as follows:

FRA(x) = PA(CA(Conv(x)))⊗ x (1)

where PA(x) represents the output of the pixel attention module, CA(x) represents the
output of the channel attention module, ⊗ represents element-wise multiplication, and
Conv represents x processed by a 3 × 3 convolutional layer, a normalization layer, Relu,
and a 2 × 2 pooling layer.

2.1.1. Channel Attention Module

In order to allow the network to pay attention to the information of each channel,
we improved a channel attention module. This module uses DCP [34] to calculate the
weighting information of each channel. First, we use the global average pool to represent
the channel’s global spatial information. The calculation formula for the channel’s global
spatial information is defined as follows:

In fc =
1

H ×W

H

∑
i=1

W

∑
j=1

xc(i, j) (2)

where xc(i, j) represents the value x of the c-th channel at position (i, j), and Gp is the global
pooling function. The size of the feature map is changed from C × H ×W to C × 1× 1.
In order to obtain the weights of different channels, we obtain the channel attention matrix
CAc through two convolutional layers of the channel’s global spatial information we have
obtained. The first convolutional layer is activated by the Relu function, and the activation
function of the second convolutional layer is sigmoid. Finally, we multiply the input of the
module and the channel attention matrix CAc by corresponding elements.The calculation
formula of CAc is shown in Formula (3).

CAc = δ( f (ϕ( f (In fc)))) (3)

where δ is the sigmoid function, ϕ is the ReLu function, and f represents the convolu-
tion calculation.

2.1.2. Pixel Attention Module

Taking into account the uneven distribution of pixels in different fundus blood vessel
images, we propose a pixel attention module to make the network pay more attention to
information features. We directly use the output of the channel attention module as the
input of the pixel attention module. The pixel attention module in turn contains two 3 × 3
convolutional layers with ReLu and sigmoid activation functions. The size of the feature
map is changed from C× H ×W to 1× H ×W. Finally, we use element multiplication to
multiply the input x of the residual attention module and the output of the pixel attention
module. F′ is the output of the residual attention module, as illustrated in (4), where PA
represents the pixel attention module.

F′ = x⊗ PA (4)

2.2. Bottom Reconstruction Module

Figure 3 details the design of the bottom reconstruction module. Since the image will
lose some semantic information during the down-sampling process, in order to obtain
more semantic information, we use the bottom reconstruction module at the bottom of
U-Net to aggregate three different scales’ feature maps. The module contains three inputs,
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D1, D2, and D3, which are the outputs of the three residual attention modules during
the down-sampling process. D1 is 48 × 48; the number of channels is 64. D2 is 24 × 24;
the number of channels 128. D3 is 12 × 12 in size, and the number of channels is 256.

First, D1 is processed by two 7× 7 convolutional layers with stride of 2, and it becomes
feature map FD1 with size of 12× 12× 64. FD1 and D2 are aggregated to obtain FD2. FD2 is
processed by a 7 × 7 convolutional layer with stride of 2 to become a feature map FD3 with
size of 12× 12× 192. The output of the bottom reconstruction module is FBR—the result of
aggregation between FD3 and D3. Finally, the result of channel addition is added element
by element with the output of the residual attention module at the bottom of U-Net. FBR
can be written as (5).

FBR = FD3 + D3 (5)

where + represents that feature maps are added by channel dimension.

Conv 7×7D1

D2

D3

Conv 7×7

48×48×64

24×24×128

12×12×256

FD1

FD2

FD3

FBR

Figure 3. The detailed structure of bottom reconstruction module.

2.3. Spatial Activation Module

In order to highlight the small blood vessels, we added a spatial activation module
to the last convolutional layer of down-sampling, as illustrated in the Figure 4. The input
of this module is 48 × 48 × 64. Then, through four 3 × 3 convolutional layers, a feature
map of size 48 × 48 × 64 is obtained. The feature map of size 48 × 48 × 64 is used as
the input of the spatial activation module to obtain a weighted attention map of 48 ×
48 × 64. We first obtain the global information of each channel through global average
pooling, and get a 1 × 1 × C tensor, which is actually the attention weight coefficient of
each channel. The sum of C channel coefficients is 1. β is obtained by inputting the result
of global average pooling into sigmoid. The channel coefficient and the corresponding
channel are multiplied to obtain the attention map after the channel weighting. Here,
in order to speed up the network convergence and facilitate network training, we also use
skip connections. The small blood vessels in the feature map after the spatial activation
module are more obvious, and the difference between the foreground and the background
is greater. The output result of our channel attention module is illustrated in (6):

y = x • β + x (6)
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Input x
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Figure 4. The detailed structure of spatial activation module.

3. Datasets and Evaluation
3.1. Datasets

The proposed method was validated on three public retinal fundus blood vessel image
datasets (DRIVE, CHASE, and STARE). The DRIVE database was obtained from the Dutch
diabetic retinopathy screening project. From 400 diabetic subjects between 25 and 90 years
old, a total of 40 people were selected. Among them, 33 cases showed no signs of diabetic
retinopathy, and 7 cases showed signs. It consists of 40 retinal fundus vascular images,
corresponding ground truth images, and corresponding mask images. Fundus images with
serial numbers 21–40 are the training set, and images with serial numbers 1–20 are the test
set. The size of each picture is 565 × 584. (http://www.isi.uu.nl/Research/Databases/
DRIVE/).

CHASE consists of 28 retinal fundus blood vessel images, corresponding ground truth
images, and corresponding masks images. Each image has a size of 1280 × 960 pixels,
collected from the left and right eyes of 14 children. For CHASE, this study used the
division method proposed by Zhuang et al. [35] to train on the first 20 images, and test and
evaluate the remaining 8 images. (https://blogs.kingston.ac.uk/retinal/chasedb1/).

STARE database is composed of 20 retinal fundus blood vessel images, corresponding
ground truth images, and corresponding masks images. The training set and test set were
generated using the leave-one-out method. Each image was made a test set, and then the
evaluation indicators were summed. The final evaluation result was obtained by averaging,
and the size of each image is 700 × 605 pixels. The STARE database contains two groups
of manual segmentation results by two experts. (http://www.ces.clemson.edu/ahoover/
stare/).

3.2. Experimental Environment and Parameter Settings

Our framework was based on the deep learning open source package Pytorch, imple-
mented on a server with Quadro RTX 6000, with Ubuntu64 as the operating system. During
training, the random patch method of Jiang et al. [36] used in this study randomly extracted
patches from the training set and input them into the network. The patch size was 48 × 48.
The number of epochs of the model was 100, the batch size was 256, and the number of
patches per image was 156. The initial learning rate was 0.001. The optimizer used by the
model was Adam. The momentum is 10−8. The exponential attenuation rate was set to 0.9
by default in the parameters of the Adam optimizer. The learning rate was updated using
the step decay method. The decay factor was 0.01. The weight decay coefficient was 0.0005.
The loss function used a cross-entropy loss function. It is defined as follows:

Lossce(y, ŷ) = −∑ yi log ŷi + (1− yi) log(1− ŷi) (7)

where yi means the real label, and ŷi represents the predicted label.

http://www.isi.uu.nl/Research/Databases/DRIVE/
http://www.isi.uu.nl/Research/Databases/DRIVE/
https://blogs.kingston.ac.uk/retinal/chasedb1/
http://www.ces.clemson.edu/ahoover/stare/
http://www.ces.clemson.edu/ahoover/stare/
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3.3. Performance Evaluation Indicator

In order to evaluate the effect of this method on retinal fundus image segmentation, we
generated a confusion matrix to analyze the performance of evaluation indicators such as
sensitivity, specificity, accuracy, and F-measure. The formula for each evaluation indicator
is as follows.

Accuracy =
TP + TN

TP + FN + TN + FP
(8)

Sensitivity =
TP

TP + FN
(9)

Specificity =
TN

TN + FP
(10)

Precision =
TP

TP + FP
(11)

F−measure =
2× Precision × Sensitivity

Precision + Sensitivity
(12)

Here, TP is the number of blood vessel pixels that are correctly segmented, TN is the
number of background pixels that are correctly segmented, FP is the number of background
pixels that are incorrectly segmented as blood vessel pixels, and FN is the number of blood
vessel pixels that are incorrectly segmented as background pixels.

4. Experiment Results and Analysis
4.1. Comparison of Results before and after Model Improvement

In order to validate the effectiveness of the residual attention module (RA), bottom
reconstruction module (BR), and spatial activation module (SA) proposed in this paper,
experiments were carried out on DRIVE and CHASE datasets. MUNet represents the
U-Net with multi-scale inputs. MUNet+RA represents that the model adds the RA module
to the multi-scale inputs of U-Net. MUNet+SA represents that the model adds the SA
module to the multi-scale inputs of U-Net. MUNet+RA+BR represents that the RA and
BR modules are added to the multi-scale inputs of the U-Net model. MUNet+RA+BR+SA
represents that the three modules of RA, BR, and SA are added to the multi-scale inputs of
the U-Net model.

The experimental results of the five models on the DRIVE dataset are shown in Table 1.
The bolded number in the table is the highest value of the corresponding indicator in this
paper. In order to validate the effectiveness of introducing residual attention module (RA)
and spatial activation module (SA), we respectively compared the network performance
with RA and SA modules and without RA and SA modules. It can be seen from the
experimental results in Table 1 that the models with the residual attention module and
the spatial activation module added respectively had higher accuracies and F-measures
than the baseline model MUNet. The introduction of RA and SA modules can enable the
network to learn features better. RA allows the network to focus on extracting features
during down-sampling, alleviating the problem of information loss caused by convolution
and pooling operations. The SA module can effectively promote the recovery of small
blood vessels at the edge during up-sampling.

Adding the residual attention module and the bottom reconstruction module to the
MUNet model (MUNet+RA+BR) caused great improvements in accuracy and F-measure
over the baseline model MUNet—in particular, the F-measure was 2.1% higher than
MUNet’s. After adding the three modules to MUNet, the accuracy of the model had a
slight decrease, but the sensitivity, F-measure, and AUCROC were increased by 4.46%,
0.43%, and 0.04% compared with MUNet+RA+BR, respectively.
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Table 1. The experimental results of the five models in the DRIVE database.

Model Accuracy Sensitivity Specificity F-Measure AUCROC

MUNet 0.9678/0.0028 0.7913/0.0546 0.9849/0.0041 0.8106/0.0183 0.9654/0.0050
MUNet+RA 0.9700/0.0036 0.7789/0.0536 0.9885/0.0031 0.8188/0.0156 0.9790/0.0057
MUNet+SA 0.9701/0.0038 0.7730/0.0544 0.9892/0.0029 0.8183/0.0120 0.9797/0.0066

MUNet+RA+BR 0.9704/0.0034 0.7946/0.0527 0.9875/0.0032 0.8201/0.0119 0.9869/0.0033
MUNet+RA+BR+SA 0.9698/0.0029 0.8371/0.0472 0.9828/0.0043 0.8289/0.0147 0.9873/0.0031

Table 2 shows the experimental results of the five models on the CHASE dataset. Like
the experiment on the DRIVE dataset, in order to validate the effectiveness of the RA and
SA modules, we added the RA and SA modules to the MUNet respectively.

From the experimental results in Table 2, we can see all the indicators of the model
after adding the RA and SA modules both improved, especially F-measure. In order
to validate the effectiveness of the BR module, we added RA and BR to MUNet. Com-
pared with the MUNet+RA model, the accuracy and F-measure were increased by 0.11%
and 1.43%, respectively. Finally, we added all three modules to MUNet for experiments.
The experimental results show that although MUNet+BR+RA+SA had less specificity than
MUNet+RA, it had the highest accuracy, sensitivity, F-measure, and AUCROC among the
five models.

Table 2. The experimental results of the five models on the CHASE database.

Model Accuracy Sensitivity Specificity F-Measure AUCROC

MUNet 0.9629/0.0028 0.7965/0.0519 0.9850/0.0023 0.7869/0.0210 0.9810/0.0042
MUNet+RA 0.9735/0.0031 0.8266/0.0475 0.9836/0.0029 0.7960/0.0100 0.9813/0.0037
MUNet+SA 0.9755/0.0041 0.8214/0.0298 0.9860/0.0025 0.8095/0.0185 0.9849/0.0035

MUNet+RA+BR 0.9756/0.0035 0.8255/0.0368 0.9859/0.0020 0.8102/0.0178 0.9897/0.0030
MUNet+BR+RA+SA 0.9758/0.0037 0.8342/0.0365 0.9854/0.0022 0.8129/0.0291 0.9899/0.0031

To further prove the improved performance of the model, we propose a hypothe-
sis: with the addition of RA, SA, and BR modules, the baseline model performs better.
We conducted p value analysis on accuracy with the DRIVE database, and the results are
shown in Table 3. MUNet:MUNet+RA represents the comparison between the MUNet
model and the MUNet+RA model, and MUNet:MUNet+SA represents the comparison
between the MUNet model and the MUNet+SA model. In the table, MUNet:MUNet+RA
has a p value < 0.05 for accuracy, indicating that the MUNet+RA model and the MUNet
model have statistical significance. That is, the MUNet+RA model performs better than the
MUNet model. In the table, MUNet:MUNet+BR+RA+SA has a p value < 0.05 for accuracy,
indicating that the MUNet+BR+RA+SA model performs better in retinal vessel segmen-
tation than the MUNet model. The p value analysis on the CHASE dataset is shown in
Table 4. MUNet:MUNet+BR+RA+SA has a p value < 0.05 for accuracy, indicating that the
MUNet+BR+RA+SA model performs better in the CHASE database than the MUNet model.

Table 3. Comparison of p value analysis results based on accuracy with the DRIVE database.

Accuracy
MUNet:MUNet+RA MUNet:MUNet+SA MUNet:MUNet+RA+BR MUNet:MUNet+BR+RA+SA

p value 0.037 0.036 0.012 0.033

Table 4. Comparison of p value analysis results based on accuracy with the CHASE database.

Accuracy
MUNet:MUNet+RA MUNet:MUNet+SA MUNet:MUNet+RA+BR MUNet:MUNet+BR+RA+SA

p value <0.001 <0.001 <0.001 <0.001
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4.2. Model Parameter Quantity and Computation Time Analysis

The time complexity calculation formula of a convolutional neural network [37] is
as follows:

O

(
d

∑
l=1

nl−1 · s2
l · nl ·m2

l

)
(13)

Here l is the index of a convolutional layer, and d is the depth (number of convolutional
layers). nl is the number of filters in the l-th layer. nl is also known as the number of input
channels of the l-th layer. sl is the spatial size (length) of the filter. ml is the spatial size of
the output feature map.

In order to evaluate the size of our model more accurately, the Python built-in function
summary used in this study calculated the parameter quantity of the model. There are two
reasons: First, there will be errors in the time complexity of manual calculation. Second,
many researchers use model parameter quantities to evaluate model size.

The total number of parameters of the model proposed in this paper is 223.54 MB.
Our model takes 0.8633 s to segment a complete image on DIRVE dataset, 0.9649 s to

segment a complete image on CHASE dataset, and 1.18 s to segment a complete image
on STARE dataset. The comparisons between the calculation time of the proposed model
and those of other models is shown in Tables 5–7. Our model is the fastest in segmenting
fundus images from DRIVE and CHASE except for the SATRE dataset. This makes our
model suitable for real-world clinical applications.

4.3. Evaluation of ROC and Precision Recall (PR) Curves before and after Model Improvement

In Figures 5 and 6, we compare the ROC and PR curves of different models on the
DRIVE and CHASE datasets. It can be seen from Figure 5 that, after the RA module was
added to the baseline model, the ROC and PR of the model (MUNet+RA) increased by
0.0136 and 0.0118, respectively. This was due to the attention mechanism and jump join in
the RA module, which further extracted the semantic information in the down-sampling.
With the addition of SA and BR modules, the model ROC and PR increased, which also
proves the effectiveness of the three modules RA, SA, and BR.

On the CHASE database, the areas under the AUC and PR curves of the best model
MUNet+RA+SA+BR were 0.9899 and 0.8326. Compared with the baseline model MUNet,
the areas under the AUC and PR curves of the best model increased by 0.0089 and 0.0531.
With the addition of the three modules of RA, SA, and BR, the effect of the baseline model
becomes better. Finally, the model containing these three modules has the best results on
the CHASE database.
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Figure 5. Receiver operating characteristic (ROC) curve and precision recall (PR) curve for the five
models on DRIVE dataset.
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Figure 6. Receiver operating characteristic (ROC) curve and precision recall (PR) curve for the five
models on CHASE dataset.

4.4. Visualization Results with Different Methods

We compared the method proposed in this paper with the method proposed by
Aslani [16]. Figures 7 and 8 are the visualization results of the DRIVE and CHASE datasets,
respectively. In Figure 7, column (a) represents the original image; (b) column represents
the ground truth corresponding to the original image; (c) column represents the segmenta-
tion result of Aslani [16] and column (d) represents the segmentation result of the method
proposed in this paper. In Figure 8, column (a) and (b) are the same as Figure 7, column
(c) represents the segmentation result of R2U-Net, and column (d) represents the segmen-
tation result of the method proposed in this paper. The retinal blood vessels segmented
by the method of Aslani [16] contain a lot of noise and the wrong blood vessel branches,
and there are problems such as unclear segmentation of small blood vessels at the edge and
blurred boundaries. Although the retinal blood vessels segmented by the R2U-Net method
contain less noise, there are still problems such as blurred boundaries and unclear small
blood vessels.

(a) (b) (c) (d)

Figure 7. Comparisons of segmentation results on DRIVE database. (a) Image; (b) ground truth;
(c) Aslani [16]; (d) ours.
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(a) (b) (c) (d)

Figure 8. Comparisons of segmentation results on CHASE database (a) Image; (b) ground truth;
(c) R2U-Net; (d) ours.

The method proposed in this paper used the residual attention module for down-
sampling, which reduces the loss of feature information caused by pooling and convolution,
so as to better extract the feature information of small blood vessels on the edge. The exis-
tence of the attention mechanism enables the network to distinguish the foreground and
background regions well, so that the segmentation result contains less noise and is more
accurate, especially for the segmentation of small blood vessels in the red box in the figure.

4.5. Comparison of Segmentation Results with Different Methods

In order to prove the effectiveness of our method for blood vessel segmentation, we
used the previously proposed unsupervised and supervised methods to evaluate our
method on three datasets, mainly using sensitivity, specificity, accuracy, F-measure, and
AUCROC evaluation indicators. Tables 5 and 6 are the results of retinal blood vessel seg-
mentation on the two standard datasets of DRIVE, CHASE. Table 7 shows the segmentation
results of 20 retinal vessels on the STARE database.Table 8 shows the results on the STARE
database trained and tested using the leave-one-out method. From the table, we can see
that the segmentation results of supervised methods are generally better than those of
unsupervised methods, and the AUCROC of supervised methods is higher.

Table 5. Comparison of proposed methods with other methods in the DRIVE database.

Type Methods Year Accuracy Sensitivity Specificity F-Measure AUCROC Time

Unsupervised methods
Fathi [5] 2013 0.9516 0.7768 0.9759 - 0.9516 60 s

Karunanayake [11] 2015 0.9490 0.8163 0.9704 - - -
Singh [12] 2016 0.9522 - - - - -

Supervised methods

Cheng [33] 2014 0.9474 0.7252 0.9798 - 0.9648 <60 s
Aslani [16] 2016 0.9513 0.7545 0.9801 - 0.9682 60 s

Mo [17] 2017 0.9521 0.7779 0.9780 - 0.9782 0.40 s
U-Net [34] 2018 0.9531 0.7537 0.9820 0.8142 0.9755 4.00 s

Residual U-Net [38] 2018 0.9553 0.7726 0.9820 0.8149 0.9779 5.00 s
Samuel [23] 2019 0.9609 0.8282 0.9738 - 0.9786 -
Zhang [26] 2019 0.9692 0.8100 0.9848 - 0.9856 -

AG-UNet [39] 2020 0.9558 0.7854 0.9810 0.8216 0.9682 6.00 s
Ours 2020 0.9698 0.8353 0.9828 0.8293 0.9873 0.86 s
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Table 6. Comparison of proposed methods with other methods in the CHASE database.

Type Methods Year Accuracy Sensitivity Specificity F-Measure AUCROC Time

Unsupervised methods Azzopardi [4] 2015 0.9563 0.7716 0.9701 - 0.9497 -

Supervised methods

Jiang [22] 2018 0.9668 0.8640 0.9745 - 0.9810 -
U-Net [38] 2018 0.9578 0.8288 0.9701 0.7783 0.9772 8.10 s

Recurrent U-Net [38] 2018 0.9622 0.7459 0.9836 0.7810 0.9803 7.50 s
R2U-Net [38] 2018 0.9634 0.7756 0.9820 0.7928 0.9815 2.84 s

Zhang [26] 2019 0.9743 0.8186 0.9848 - 0.9863 -
Ours 2020 0.9758 0.8324 0.9854 0.8127 0.9899 0.96 s

For the DRIVE dataset, this method had good results on evaluation indicators, except
the specificity was not as high as that of Zhang [26]. The blood vessels segmented by
Aslani [16] and others contain more noise, and the segmentation of small blood vessel
branches at the edge is blurry. The neglect of the small branch blood vessels at the margins
leads to low sensitivity and high specificity results. Our method used skip connections to
reduce the information loss in the down-sampling process. Local residual learning allows
the network to ignore less important information, such as background or low-frequency
regions, and bypass noise regions. This can make the network pay attention to effective
information. We also use the attention mechanism to increase the contrast between the
background and the blood vessels, so that the network notices the small blood vessel
branches in the fundus. Our method can also have a better recognition effect for the small
edge blood vessel. Our method is 1.4%, 0.77%, and 1.91% higher in accuracy, F-measure,
and AUCROC than the latest method proposed by AG-UNet [39].

Table 7. Comparison of proposed methods with other methods in the STARE database.

Type Methods Year Accuracy Sensitivity Specificity F-Measure AUCROC Time

Unsupervised methods
Azzopardi [4] 2015 0.9563 0.7716 0.9701 - 0.9497 11.00 s

Fathi [5] 2013 0.9591 0.8061 0.9717 - 0.9680 -
Singh [12] 2016 0.9570 - - - - -

Supervised methods

Aslani [16] 2016 0.9605 0.7556 0.9837 - 0.9789 60.00 s
U-Net [38] 2018 0.9690 0.8270 0.9842 0.8373 0.9898 7.80 s

Residual U-Net [38] 2018 0.9700 0.8203 0.9856 0.8388 0.9904 8.66 s
Recurrent U-Net [38] 2018 0.9706 0.8108 0.9871 0.8396 0.9909

Jiang [22] 2018 0.9734 0.8352 0.9846 - 0.9900 -
Samuel [23] 2019 0.9646 0.8979 0.9701 - 0.9892 -
Soomro [24] 2019 0.9680 0.8480 0.9860 - 0.9880 -

Atli [27] 2020 0.9682 0.6574 0.9933 - 0.9748 0.35 s
Ours 2020 0.9763 0.8422 0.9873 0.8422 0.9918 1.18 s

Table 8. Results of the leave-one-out on STARE.

Image Accuracy Sensitivity Specificity F-Measure AUCROC

0 0.9707 0.8035 0.9852 0.8140 0.9880
1 0.9762 0.8063 0.9883 0.8183 0.9877
2 0.9813 0.8400 0.9902 0.8432 0.9932
3 0.9679 0.6573 0.9927 0.7523 0.9881
4 0.9667 0.8047 0.9828 0.8134 0.9828
5 0.9772 0.8912 0.9836 0.8446 0.9935
6 0.9759 0.9342 0.9795 0.9616 0.9946
7 0.9796 0.8896 0.9869 0.8674 0.9945
8 0.9818 0.9028 0.9885 0.8865 0.9960
9 0.9751 0.8766 0.9838 0.8501 0.9923

10 0.9791 0.8976 0.9853 0.8594 0.9948
11 0.9811 0.9031 0.9876 0.8808 0.9945
12 0.9786 0.8763 0.9886 0.8795 0.9929
13 0.9784 0.8913 0.9870 0.8821 0.9942
14 0.9784 0.8847 0.9873 0.8766 0.9944
15 0.9663 0.7564 0.9902 0.8211 0.9890
16 0.9728 0.7869 0.9911 0.8383 0.9920
17 0.9862 0.8257 0.9947 0.8583 0.9950
18 0.9848 0.8007 0.9931 0.8196 0.9930
19 0.9688 0.8148 0.9799 0.7774 0.9850

Average 0.9763 0.8422 0.9873 0.8422 0.9918
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For the CHASE database, because of the uneven background illumination of the
sample images in the CHASE dataset, it is difficult to distinguish blood vessels from
wider arterioles, which requires the model to have strong feature extraction capabilities.
Compared with R2U-Net [38], our method is 1.24%, 1.99%, and 0.84% higher in accuracy,
F-measure, and AUCROC, respectively. We reduced the loss of feature information by
adding a residual attention module during the down-sampling process, and we used the
bottom reconstruction module to further aggregate the down-sampling feature information.
On this dataset, Jiang [22] had the highest sensitivity, but that method was not as high as
our method in terms of accuracy and AUCROC.

On STARE data, Table 7 shows the experimental results of the STARE dataset. The seg-
mentation result F1 of our method was 84.22%, which is 0.34% higher than residual U-Net.
In terms of sensitivity, the segmentation result of Samuel [23] was higher than our method,
and the specificity of the segmentation result of Atli [27] is higher than that of the method
proposed in this paper. However, our method has the highest F-measure, accuracy, and
AUCROC. Table 5 shows the experimental results of the STARE dataset tested and trained
with the leave-one-out method. The highest accuracy, sensitivity, specificity, F-measure,
and AUCROC are 98.62%, 93.42%, 99.47%, 88.65%, and 99.60%. The average accuracy,
sensitivity, specificity, F-measure, and AUCROC of our method on 20 fundus images are
97.63%, 84.22%, 98.73%, 84.22% and 99.18%.

Our method used skip connections to reduce the information loss caused by pooling
and convolution in the down-sampling process of the network, so that the network can
extract more feature information, and the edge small blood vessels can be segmented more
accurately. The attention mechanism is used to improve U-Net, so that the network can
better distinguish the foreground and the background, and effectively ignore the noise.
The multi-scale inputs we added allow the network to learn feature information at different
scales. The bottom reconstruction module further aggregates the information obtained
after down-sampling to obtain feature information under different receptive fields. Finally,
the spatial activation module used in the up-sampling process promotes the recovery of
peripheral small blood vessels. By analyzing the results of DRIVE, CHASE, and STARE, it
was proven that our method has good performance and robustness for the segmentation of
fundus blood vessels.

5. Conclusions

The segmentation of retinal blood vessels is of great significance to the diagnosis
of ophthalmic diseases. In this paper, we proposed the MRA-UNet model, which can
automatically segment blood vessels in fundus images. This model combines residual
connection and attention mechanisms to improve the original U-Net, by adding three
modules: residual attention module, bottom reconstruction module, and spatial activa-
tion module. The skip connection in the residual attention module can alleviate the loss
of feature information caused by pooling and convolution in down-sampling process.
The attention mechanism can allow the network to effectively ignore noise. The bottom
reconstruction module multiplies the output information of all residual attention mod-
ules. Scale aggregation captures characteristic information under multiple receptive fields.
The spatial activation module promotes the recovery of small blood vessels at the edge
during the up-sampling process, increases the difference between blood vessels and back-
ground, and makes the network more sensitive to blood vessels. Finally, we validated the
method on the DRIVE, CHASE, and STARE datasets. The experimental results show that
our method has better performance in the segmentation of retinal blood vessels, compared
with some of the latest algorithms (such as U-Net, R2U-Net, and AG-UNet [39]).

Multiple experimental results show that our model has good results on all three
datasets, indicating its potential for practical applications in screening and diagnostic
systems. The visualization results show that our proposed method has good performance
on marginal small vessels. However, the drawback of our method is that it requires a
large number of samples for training, but there are few datasets that have been annotated
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and published by medical experts. In this study, our method was validated on 2D images.
In addition, future work will focus on the application of the proposed method to 3D images.
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