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Abstract: Coronavirus disease (COVID-19) pandemic caused by the coronavirus SARS-CoV-2 rep-
resents an enormous challenge to global public health, with thousands of infections and deaths in 
over 200 countries worldwide. The purpose of this study was to identify SARS-CoV-2 epitopes with 
potential to interact in silico with the alleles of the human leukocyte antigen class I (HLA I) and class 
II (HLA II) commonly found in the Colombian population to promote both CD4 and CD8 immune 
responses against this virus. The generation and evaluation of the peptides in terms of HLA I and 
HLA II binding, immune response, toxicity and allergenicity were performed by using computer-
aided tools, such as NetMHCpan 4.1, NetMHCIIpan 4.0, VaxiJem, ToxinPred and AllerTop. Fur-
thermore, the interaction between the predicted epitopes with HLA I and HLA II proteins frequently 
found in the Colombian population was studied through molecular docking simulations in Auto-
Dock Vina and interaction analysis in LigPlot+. One of the promising peptides proposed in this 
study is the HLA I epitope YQPYRVVVL, which displayed an estimated coverage of over 82% and 
96% for the Colombian and worldwide population, respectively. These findings could be useful for 
the design of new epitope-vaccines that include Colombia among their population target. 

Keywords: Severe Acute Respiratory Syndrome; immuno-informatics; HLA; vaccine design; T-cell 
epitope; peptide; interaction; immunogenicity 
 

1. Introduction 
Coronavirus disease (COVID-19), was declared a global pandemic by the World 

Health Organization on 11 March 2020. This infection has affected more than 200 coun-
tries [1], with over 183 million cases and 3971,687 deaths worldwide by 6th July, 2021 [2]. 
At this time, the Region of Americas continues to account for around 50% of all deaths 
and 40% of all cases worldwide [2], Colombia being the 11th country with the highest 
number of cumulative cases and deaths [3]. This disease caused by the coronavirus SARS-
CoV-2 exhibits a wide range of manifestations from non-symptomatic and mild illness 
(mainly associated with cough, fever, fatigue, sore throat, headache and muscle pain) to 
pneumonia and acute respiratory distress syndrome [4]. This is characterized by lung col-
lapse, the requirement of ventilatory assistance and oxygen support, and has been related 
to multi-organ collapse and hyperinflammatory states in extremely severe cases [5,6]. The 
latter is mediated by a cytokine storm, which could be induced by the nucleocapsid pro-
tein (N), and to a lesser extent by the spike protein (S) of SARS-CoV-2 [7]. 

The long-term immunity of the vaccines and their effectiveness against reinfections 
of SARS-CoV-2 is still uncertain [8]. Some authors suggested that the virus is likely to 
continue present in the population [9]. Therefore, the improvement of vaccine develop-
ment and production capacities in several countries and continents is essential. Especially 
in Latin America, which is one of the most affected areas by COVID-19 pandemics. 
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SARS-CoV-2 belongs to the beta genus of the Coronaviridae family, a group of single 
stranded positive sense RNA viruses able to affect humans and animals [10]. The name of 
this type of viruses comes from the Latin word “corona” that means crown, given due to 
the appearance of the lipid envelope of the virions, which presents distinctive club-shaped 
projections [11]. Its viral genome ranges approximately from 27 to 32 kilobases in size, and 
encodes: the spike (S), membrane (M), envelope (E) and nucleocapsid (N) proteins [12], 
which are the structural proteins of the virus, as well as 16 non-structural proteins (NSP1 
to NSP16), accessory protein chains [5], the main protease (also known as 3C-like protein-
ase; 3CLpro), and the papain-like protease (PLpro) [13].  

The S protein mediates the viral entry through its interaction with the human angio-
tensin-converting enzyme 2 (ACE 2), which is its functional receptor [14]. The E protein is 
involved in virus pathogenicity, it has been found to participate the release of the viruses 
and the activation of the inflammasome [15]. The N protein has been related to multiple 
processes, including the packaging of the viral genome, the viral RNA-protein (vRNP) 
assembly through its interaction with the M protein, as well as the promotion of RNA 
template switching and the recruit of host factors to promote RNA synthesis [16]. The M 
protein cooperates with the other structural proteins of SARS-CoV-2. It has been found to 
stabilize the N protein during the vRNP assembly and to support the S protein in the 
attachment to the host cells and viral entry [17]. 

Several authors have reported epitope-based vaccine candidates by using 
inmmunoinformatic approaches [18]. These have predicted peptides with potential to in-
teract with Human Leukocyte Antigen class I (HLA I) and class II (HLA II), and exhibited 
immunogenic responses, non-toxicity and non-allergenicity [19]. These are based on the 
identification of T-cell or B-Cell epitopes in the SARS-CoV-2 proteome, especially focused 
on the S protein [20] or the structural proteins (S, E, M, and N) of this virus [21]. Some of 
them, such as the S [22], and N [23,24] proteins have been shown to be immunogenic [25]. 
Adaptive immunity, mediated by lymphocytes, could be generated by most of the vac-
cines. In order to neutralize the virus, B lymphocytes produce antibodies through the par-
ticipation of CD4 T cells, also called helper T cells. Similarly, infected cells could be di-
rectly destroyed by CD8 T cells, known as cytotoxic T cells [26]. The activation of CD8 T 
cells and CD4 T cells is mediated by the HLA I and HLA II, respectively. These HLAs are 
involved in antigen presentation to T cells. The rationale of epitope-based vaccines is to 
identify peptides able to bind strongly to HLAs and elicit immunogenicity through the 
activation of T cells [27] by preparing the body to fight against SARS-CoV-2 infection [19].  

In summary, T-cells epitopes may elicit cytotoxic or/and immunogenic responses 
against SARS-CoV-2 through the activation of CD4 T-cell receptor (TCR) and CD8 TCR, 
which are mediated by the peptide binding to HLA I and HLA II, respectively. Therefore, 
the aim of this research was to identify epitopes in structural proteins of SARS-CoV-2 
based on HLA I and HLA II commonly present in the Colombian population. The prom-
ising epitopes may have applications in the design of peptide-based vaccines and the de-
velopment of diagnostic tests. In addition, a systematic review was performed to find 
HLA I and HLA II alleles commonly found in the Colombian population, which helped 
to determine the estimated coverage of the promising peptides in the country and com-
plement the repositories of HLAs reported for Latin America [21], with the inclusion of 
more datasets from scientific articles. 

2. Materials and Methods 
2.1. Materials 

All in silico predictions and data analysis were carried out using a Dell Precision 3630 
Tower (Dell, Beijing, China) workstation equipped with Intel Core i7-9700K CPU at 3.60 
GHz (8 cores), 64 GB RAM, and GPU (NVIDIA Quadro P620 with 2 GB memory). The 
operating system utilized were Windows 7 Professional and Ubuntu 18.04.5 LTS (Linux), 
running on Oracle Virtual Machine.  
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2.2. Literature Search of HLAs Frequencies 
In order to identify HLAs (HLA I and HLA II) commonly found in the Colombian 

population, a literature search was performed on PubMed (https://pub-
med.ncbi.nlm.nih.gov/, accessed on 24 February 2021), Web of Science 
(http://www.webofknowledge.com/, accessed on 24 February 2021), and Science Direct 
(https://www.sciencedirect.com/, accessed on 24 February 2021). A single query was uti-
lized to search for articles reporting HLA I frequencies in the Colombian population (Ta-
ble 1). On the other hand, HLA II genes reported in the IPD-IMGT/HLA database 
(http://www.ebi.ac.uk/ipd/imgt/hla/, accessed on 07 February 2021) were considered for 
the identification HLA II allelic frequencies in Colombia. The name of each gene was used 
to perform a preliminary search on PubMed, by using the generic query: “Name of the 
HLA Class II gene” AND “Colombia” (Eg. “DRA” and Colombia”). Accordingly, the 
genes: DRA, DQA2, DPA2, DPB2, DMA, DMB, DOA, DOB, DRB2, DRB6, DRB7, DRB8 
and DRB9 did not present any results about their frequency in the Colombian population. 
Therefore, these were not included in the final queries to select articles reporting the fre-
quencies of HLA II alleles. The literature search for this type of alleles were divided in 
three queries as the maximum number of Boolean connectors (AND/OR) allowed in Sci-
ence Direct was eight (Table 1).  

Table 1. Search queries used to identify allelic frequencies of HLA I and HLA II in the Colombian 
population on PubMed, Web of Science, and Science Direct (date consulted: 24 February 2021). 

Search Query 

HLA Class I 
(“MHC Class I” OR “MHC I” OR “HLA Class I” OR “HLA I” OR 

“HLA-A” OR “HLA-B” OR “HLA-C”) AND “Colombia” 

HLA Class II 

Query #1: (“MHC Class II” OR “MHC II” OR “HLA Class II” OR “HLA 
II”) AND “Colombia” 

Query #2: (“DRB1” OR “DRB3” OR “DRB4” OR “DRB5” OR “DQB1” 
OR “DQA1”) AND “HLA” AND “Colombia” 

Query #3: (“DPA1” OR “DPB1”) AND “HLA” AND “Colombia” 

Research and review articles, as well as short/brief communications in English and 
Spanish were considered. The outcomes for HLA I and HLA II alleles were processed 
separately. The results obtained in PubMed, Web of Science and Science Direct for the 
corresponding queries were downloaded in the reference formats: BibTex (Web of Science 
and Science Direct) and nbib (PubMed). Subsequently, two folders (HLA I, and HLA II) 
were created in the reference manager Mendeley Desktop v 1.19.4, and the reference files 
uploaded accordingly. The tool “Check for duplicates” of this software was used to iden-
tify and delete redundant articles.  

The information contained in the title and abstract was used to perform a first screen-
ing and to remove the articles that did not present data about the prevalence of HLA I and 
HLA II alleles in the Colombian population. In addition, the reports of allelic frequencies 
in groups with associated diseases (Eg. lupus, arthritis, diabetes, hepatitis, autoimmune 
diseases, multiple sclerosis) were not considered for further analysis.  

On the other hand, additional datasets were retrieved from the Allele frequency net 
database (AFND) [28], and included in this study. The HLA searching option used in this 
database was “HLA classical allele freq search” with the following parameters, country: 
Colombia, population standard: gold and silver, sort by: Allele (highest to lowest fre-
quency), and level of resolution: two field. The options: population, source of the dataset, 
ethnic origin, region, type of the study, sample year, sample size, and frequencies were 
configured to show all the possible results.  

The selected articles from PubMed, Web of Science, Science Direct and AFND were 
downloaded in pdf format, carefully reviewed, and used to generate an excel file with 
HLA I and HLA II allelic frequencies reported in Colombia. The cumulative frequency of 
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each dataset was calculated through a customized python script (Python_Script_Cum-
Freq.py, available in the Supplementary Materials), and only articles reporting allelic fre-
quencies whose sum was 100 ± 2% were kept, except for DRB2-DRB5, as these genes are 
not expected to be present in all individuals. Furthermore, alleles with low resolution 
were removed (less than two field resolution). The number of results obtained of all the 
searches were last updated by 24 February 2021, and the process was documented 
through a PRISMA flow diagram. The HLA allelic frequencies obtained through the sys-
tematic search were sorted in descending order.  

2.3. HLAs Selection for Epitope Prediction 
The dataset of HLA I alleles used for epitope prediction included: (1) HLA-A, HLA-

B and HLA-C alleles that presented the top ten highest frequencies in the Colombian gen-
eral population (Dataset: Colombia-Bogotá). As well as, (2) the HLA-A, HLA-B and HLA-
C alleles that exhibited the highest frequency for each of the eleven Colombian Amerin-
dian groups with HLA I frequencies reported in the AFND [28], which coincided with the 
results of the literature search [29–31]. These Amerindian groups were: Arhuaco, Embera, 
Inga, Kogi, Chimila Norte, Wiwa Norte, Waunana, Wayyu, Zenú, Ticuna Arara, and Ti-
cuna Tarapaca. Weighted allele frequencies (WAFs) were not calculated for HLA I alleles 
in the Colombian population as each dataset came from a single article [32]. Unfortu-
nately, no reports about the frequency of HLA I alleles in African Colombians were found. 

Due to the extensive amount of data, a python script was developed to obtain the 
WAFs by calculating the weighted average of HLA II allele frequencies for the Colombian 
population grouped by ethnicity (Mestizos, African Colombians and Colombian Amerin-
dians); and each of the reported alleles were expressed in two-field format (Py-
thon_Script_WAF.py, available in the Supplementary Materials). These scripts were used 
to generate an excel table containing the WAFs and number of individuals with a specific 
HLA II allele in each of the three ethnic groups considered, as well as the reported fre-
quencies for HLA I alleles. All the HLA II alleles exhibiting more than 5% in at least one 
of the studied ethnic groups were selected for epitope prediction and in silico evaluation. 
These were also used to perform a Venn diagram (http://bioinformatics.psb.ugent.be) in 
order to distinguish HLA II alleles with high frequencies in several ethnic groups. 

2.4. T-cell Epitope Prediction 
The prediction of CD4 and CD8 T-cell epitopes was conducted by using the NCBI 

reference sequence of non-structural proteins SARS-CoV-2 (Table 2). In addition to the 
selected HLA I and HLA II alleles commonly found in the Colombian population. 

Table 2. Sequences of the structural proteins of SARS-CoV-2 used for the analysis. 

Protein Length NCBI Reference Sequence 
Spike protein (S) 1273 aa YP_009724390.1 

Envelope protein (E) 75 aa YP_009724392.1 
Membrane glycoprotein (M) 222 aa YP_009724393.1 

Nucleocapsid phosphoprotein (N) 419 aa YP_009724397.2 

HLA I epitope predictions were performed on NetMHCpan 4.1 [33] by using the fol-
lowing parameters, peptide length: 8–12, threshold for strong binder: 0.5% rank, threshold 
for weak binder: 2% rank, inclusion of theoretical binding affinity (predicted IC50 values). 
Short peptides (8–12 amino acids) were generated and evaluated to identify candidate 
epitopes with high affinity for the alleles HLA-A, HLA-B and HLA-C commonly found in 
the Colombian population in this server. On the other hand, HLA II epitope predictions 
were based on DRB1 alleles highly frequent in the Colombian population and performed 
on a NetMHCIIpan 4.0 server [33]. The parameters employed were peptide length of 15 
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amino acids, threshold for strong binder of 1% rank, threshold for weak binder of 5% rank, 
and inclusion of the binding affinity predictions. 

Data analysis was performed in Python 3 through customized scripts. The function 
of these scripts were to group the epitopes predicted by NetMHCpan 4.1 [33] and 
NetMHCIIpan 4.0 [33] servers as strong or weak binders, and to retrieve the names and 
number of the interacting alleles per peptide. Both NetMHCpan 4.1 [33] and NetMHCII-
pan 4.0 [33] reported if the sequence of each peptide was a strong binder (SB) or a weak 
binder (WB) with each of the HLAs included in the analysis [33]. These data were re-
trieved in a column called “bind level” in the result table generated by these servers. The 
scripts developed in this research used the resultant tables as input files to count the num-
ber of HLAs interacting as SB or WB with each peptide by using the “groupby()” function 
to group the data by both “peptide” and “bind level” at the same time. Subsequently, the 
scripts counted the number of HLAs in each group [HLAs with the same peptide and bind 
level (SB or WB)] with the “count()” function to retrieve the number and names of the 
HLAs interacting with each peptide as SB or WB. The top ten peptides with the highest 
number of interacting alleles with strong affinity were kept for further analysis (Analy-
sis_HLA_I.py, Analysis_HLA_II.py, and Interactions_Summary.py). These are available 
in the Supplementary Materials. 

In addition, the coverage of the promising epitopes for the worldwide population 
was predicted by using the Population Coverage Calculation Tool of IEDB 
(http://tools.iedb.org/population/, accessed on 31 March 2021), with the following param-
eters: Class I and Class II combined and area: world. The information of the MHC re-
stricted epitopes was completed with the HLAs predicted to interact with these peptides 
(strong or weak binders) by NetMHCpan 4.1 [33] and NetMHCIIpan 4.0 [33]. 

Each promising peptide was predicted to interact with several HLAs. Therefore, a 
Coverage Score (CS) was defined to a calculated single value representing the coverage in 
the Colombian general population in the case of HLA I alleles, and the coverage per each 
ethnic group in the case of HLA II. Information regarding allelic frequencies for HLA I 
was very scarce (each dataset came from a single article), therefore WAF were not calcu-
lated and the estimated coverage was defined for HLA-A, HLA-B and HLA-C as the cu-
mulative frequencies (sum of the frequencies) of the alleles interacting as strong or weak 
binders with each peptide, in Colombian general population. On the other hand, the esti-
mated coverage for HLA II (DRB1) was calculated as the WAF of the interacting alleles 
per peptide. The calculated coverage scores were useful to selected candidate peptides 
with the highest estimated coverages. However, the low number of articles reporting 
HLAs frequencies for the Colombian population is a limitation and may affect the accu-
racy of the estimates.  

The customized scripts developed to calculate estimated coverages used the 
“groupby()” function to group the data according to the peptide sequence, bind level and 
type of HLA (HLA-A, HLA-B, HLA-C and HLA-DRB1; other HLA II alleles were not con-
sidered as they are not expected to be present in all individuals),as well as, the sum the 
frequencies of the interacting alleles for HLA I and the WAF for HLA II. 

Promising epitopes were submitted to Vaxijen v. 2.0 [34] to assess their immunogen-
icity in silico, by selecting viruses as target entities and default threshold. In addition, Al-
lertop 2.0 [35] was used to predict allergenicity, and Toxinpred [36]was utilized to evalu-
ate the theoretical toxicity with default parameters. Among these, SVM (Swissprot) based 
method, E-value cut-off for motif-based method of 10, SVM threshold of 0, and calculation 
of the following physicochemical properties: hydrophobicity, charge and molecular 
weight. In addition, the potential of the promising epitopes to induce the release of TNF 
gamma was evaluated in silico by using IFNepitope server 
(http://crdd.osdd.net/raghava/ifnepitope/, accessed on 31 March 2021). 
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2.5. Peptide-protein Docking Studies 
Theoretical binding affinities were calculated by molecular docking simulations to 

determine the possible interaction between the promising peptides and HLAs commonly 
found in the Colombian population. In order to do that, a blind docking strategy was used 
in AutoDock Vina, this software calculates in silico binding affinities and retrieves infor-
mation regarding the predicted pose and binding pocket of the peptides with the highest 
(absolute value) affinity scores. The structures of the promising epitopes were previously 
generated by modelling on Pep-Fold 3.0 server [37]. On the other hand, HLA I and HLA 
II selected to be highly frequent in the Colombian population with three-dimensional 
structures available in Protein Data Bank (PDB) [38] were downloaded in pdb format. The 
names of the proteins and their PDB identifiers (PDB ID) are available in Table S1. Subse-
quently, all ions, water molecules and other substructures were removed and the protein 
structures were prepared by using the biopolymer structure preparation tool of the in 
Sybyl X-2.0 (Tripos, St. Lous, MO, USA) with default settings. The resultant coordinates 
were optimized in the same software with the following parameters: Powell method, Koll-
man United and Kollman All Atoms force fields, AMBER charges, dielectric constant of 
1.0, nonbonded (NB) cutoff of 8.0, maximum interactions of 100 and termination gradient 
of 0.001 kcal/mol. Finally, the size and coordinates of the center of the grid containing the 
whole protein structure were determined, by using a spacing of 0.375 Å, and the resultant 
structures saved as pdbqt in AutoDock Tools (MGL Tools) [39]. These parameters and 
files were used as input for docking in AutoDock Vina [40], along with the following set-
tings: twenty number of modes, energy range of 1.5, and exhaustiveness of 25. The pre-
dicted docking affinity scores were ranked and used to identify the peptide-protein com-
plexes with the highest (absolute value) affinity scores. In order to better visualize these 
results, a heatmap with clustering trees was generated with the heatmap.2 function of the 
statistical program R version 3.6.3. [41,42].  

2.6. Interactions Analysis and Molecular Dynamics 
The epitopes with the highest (absolute values) affinity scores predicted by Auto-

Dock Vina were submitted to interaction analysis using LigPlot+ [43]. This program was 
utilized with default parameters. In addition, a short molecular dynamics (MD) simula-
tion was performed to further study the interaction of the HLA-peptide complex contain-
ing the promising epitope obtained from the receptor-binding domain of the S protein of 
SARS-CoV-2 that presented the highest (absolute value) affinity score in silico. The MD 
was carried out in Gromacs (version 2020.2) [44], by using the Chemistry at Harvard Mac-
romolecular Mechanics (CHARMM) force field [45]. The peptide-protein complex was 
solvated by placing it into the center of a cubic box filled with water, 1.0 nm from the 
boundaries of the complex. After that, ions were added to neutralize the system, followed 
by a constant pressure (NVT) equilibrium simulation for 1 ns with a time step of 2 fs and 
reference temperature of 300 K. A second equilibrium step was carried out for 1 ns by 
using a constant particle number, pressure, and temperature (NPT) ensemble. The pro-
duction step of the MD simulation was executed during 10 ns under isothermal–isobaric 
conditions, with time step: 2 fs, reference temperature: 300 K, pressure 1 bar, van der 
Waals cutoff: 1.2 nm, and grid spacing: 0.16 nm using the leap-frog integrator and Verlet 
cutoff scheme. The atomic coordinates were recorded every 10 ps to obtain 1000 different 
molecular conformations. The same procedure was carried out with the peptide-free pro-
tein (HLA) for comparative purposes [46], by measuring the root-mean square deviations 
(RMSD). In addition, the root-mean square fluctuations (RMSF) of the residues of HLA-
B*08:01 (backbone) were computed using the trajectories of the MD simulation.  

  



Vaccines 2021, 9, 797 7 of 22 
 

 

3. Results 
3.1. Literature Search of HLAs Frequencies 

The literature search for HLA I frequencies in the Colombian population retrieved 
486 articles. These were obtained from PubMed, Web of Science and Science Direct by 
using the following query: (“MHC Class I” OR “MHC I” OR “HLA Class I” OR “HLA I” 
OR “HLA-A” OR “HLA-B” OR “HLA-C”) AND “Colombia” (Table 3). On the other hand, 
the systematic search for HLA II frequencies in the Colombian population retrieved 1057 
articles (Table 4). This search was carried out through the combination of three different 
queries in PubMed, Web of Science and Science Direct. Furthermore, a total of 12 and 39 
datasets referring HLA I and HLA II frequencies in Colombia were retrieved from AFND 
[28], respectively. 

Table 3. Results retrieved through systematic search on PubMed, Web of Science and Science Direct 
of HLA I allelic frequencies in the Colombian population (date consulted: 24 February 2021). 

HLA I Results 
PubMed 78 

Web of Science 116 
Science Direct 292 

Table 4. Results retrieved through systematic search on PubMed, Web of Science and Science Direct 
of HLA II allelic frequencies in the Colombian population (date consulted: 24 February 2021). 

HLA II Results of  
Query #1 

Results of  
Query #2 

Results of  
Query #3 

PubMed 77 105 6 
Web of Science 106 106 6 
Science Direct 345 266 40 

After duplicates removal, and manual screening of the titles and abstracts, 15 and 24 
articles were accessed for eligibility in the groups of HLA I and HLA II alleles, respec-
tively. Only articles reporting HLAs allelic frequencies with two-field resolution and cu-
mulated frequencies of 100 ± 2% were maintained. A PRISMA flow diagram showing the 
data collection process is presented in Figure 1. 
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Figure 1. PRISMA flow diagram of the systematic literature search of the frequencies of the alleles 
HLA class I (HLA I) and HLA class II (HLA II) in the the Colombian population by using PubMed, 
Web of Science and Science Direct, as well as the Allele Frequency Net Database (AFND). The num-
ber of records (n) represent the number of articles, which may contain multiple datasets. Each da-
taset is defined by a unique combination of: population and reference as usually presented in the 
grid format of AFND. 

3.2. HLAs Selection for Epitope Prediction 
3.2.1. HLA I 

The total set of HLA I allelic frequencies reported for the Colombian population, in-
cluding Colombian Amerindian groups, according to the systematic search are presented 
in Table S2. The HLA I allelic frequencies in the general Colombian population (Dataset: 
Colombia-Bogotá) obtained from AFND [28] were used to identify the 10 most frequent 
HLA-A, HLA-B and HLA-C alleles (Table 5). Similarly, the data corresponding to the Na-
tive American groups: Arhuaco, Embera, Inga, Kogi, Chimila Norte, Wiwa Norte, 
Waunana, Wayyu, Zenú, Ticuna Arara and Ticuna Tarapaca were used to identify the 
most frequent HLA-A, HLA-B and HLA-C alleles in each of these populations (Table 6). 
The sum of the top-10 frequencies for the HLA-A, HLA-B and HLA-C alleles in the general 
Colombian population (Group: Colombia Bogotá) was 0.736, 0.523 and 0.778, respectively. 
All Colombian Native American groups showed HLA-A*24: 02 as the most frequent HLA-
A allele, which is also the most common for the general population (Dataset: Colombia-
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Bogotá). On the other hand, the most frequent HLA-B and HLA-C alleles reported for 
Colombian Amerindian groups showed a greater variability. 

Table 5. Top 10 most frequent HLA-A, HLA-B and HLA-C alleles in the general population of Co-
lombia according to data obtained from the Allele frequency net database (AFND) [28] (date con-
sulted: 24 February 2021). Abbreviations: n, sample size. 

Ethnic 
Groups 

HLA-A HLA-B HLA-C 

Allele Frequency 
(%) 

Allele Frequency (%) Allele Frequency (%) 

Colombia-
Bogotá 

(n = 1463) 

A*24:02 20.8 B*35:43 8.6 C*04:01 14.9 
A*02:01 16.1 B*40:02 8.4 C*01:02 11.4 
A*01:01 6.1 B*44:03 5.6 C*07:02 9.7 
A*03:01 6.1 B*51:01 5.6 C*07:01 8.9 
A*68:01 5.2 B*07:02 5.0 C*03:04 8.2 
A*29:02 4.5 B*35:01 4.5 C*05:01 5.1 
A*11:01 4.3 B*14:02 4.0 C*06:02 5.1 
A*31:01 4.0 B*44:02 3.9 C*16:01 5.1 
A*23:01 3.3 B*18:01 3.5 C*08:02 4.9 
A*02:22 3.2 B*08:01 3.2 C*12:03 4.5 

Table 6. HLA-A, HLA-B and HLA-C alleles with the highest frequency in each Colombian Amerin-
dian groups reported in the Allele frequency net database (AFND) [28] (date consulted: 24 February 
2021). Abbreviations: Abbreviations: n, sample size; PDB, Protein Data Bank Identifier. 

Ethnic Groups 
HLA-A HLA-B HLA-C 

Allele  Frequency Allele Frequency Allele Frequency 
Arhuaco (n = 17) A*24:02 0.441 B*35:43 0.441 C*01:02 0.382 
Embera (n = 14) A*24:02 0.536 B*39:05 0.429 C*07:02 0.464 

Inga (n = 16) A*24:02 0.367 B*40:02 0.286 C*01:02 0.367 
Kogi (n = 15) A*24:02 0.433 B*35:43 0.429 C*01:02 0.571 

North Chimila (n = 47) A*24:02 0.457 B*51:10 0.404 C*15:02 0.468 
North Wiwa El Encanto 

(n = 52)  A*24:02 0.433 B*35:43 0.385 C*01:02 0.51 

Waunana (n = 20) A*24:02 0.6 B*40:02 0.25 C*03:04 0.35 
Wayuu (n = 15) A*24:02 0.2 B*40:02 0.2 C*04:01 0.25 
Zenu (n = 16) A*24:02 0.417 B*40:02 0.25 C*15:02 0.25 

Ticuna Arara (n = 17) A*24:02 0.5 B*39:03 0.286 C*07:02 0.429 
Ticuna Tarapaca (n = 19) A*24:02 0.526 B*40:02 0.447 C*03:04 0.529 

3.2.2. HLA II 
The complete set of HLA II allelic frequencies reported for the Colombian popula-

tion, including Colombian Amerindian groups and African Colombians, are presented in 
Table S3. Furthermore, WAFs of HLA II in the Colombian population were calculated as 
the weighted average of the frequencies obtained from the literature search and AFND 
[28]. This information grouped by ethnicity and the specific alleles in two-field formats 
are presented in Table S4. Alleles with WAFs > 5% in each ethnic group (Mestizo, African 
American and Colombian Amerinds) were selected for further analysis (Table 7). 
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Table 7. HLA II alleles with high frequency (WAFs > 5%) in each of the three ethnicities included in 
this study for the Colombian population. 

HLA II Alleles WAFs (%) n 
Mestizo   

DQB1*03:02 22.47 1737 
DQB1*03:01 19.23 1737 
DQB1*02:01 14.45 1737 
DRB1*04:07 12.39 1737 
DQB1*05:01 11.63 1737 
DQB1*04:02 10.76 1737 
DRB1*07:01 9.29 1925 
DQB1*06:02 7.03 1737 
DRB1*15:01 6.28 1925 
DRB1*08:02 6.25 1737 
DRB1*03:01 5.74 1925 
DRB1*13:01 5.09 1925 

African Colombian   
DQA1*01:02 23.42 234 
DQA1*05:01 19.86 140 
DQB1*02:01 19.79 182 
DQA1*01:01 18.04 234 
DQB1*05:01 17.69 182 
DQB1*06:02 16.21 182 
DQB1*03:01 15.88 182 
DRB1*15:03 13.47 182 
DQA1*03:01 12.77 94 
DQB1*04:02 12.37 182 
DQA1*04:01 11.29 140 
DRB1*03:01 10.98 182 
DRB1*03:02 9.17 182 
DRB1*07:01 8.56 182 
DRB1*08:01 8.30 42 
DQA1*02:01 8.04 234 
DRB1*08:04 6.00 42 
DRB1*13:04 6.00 42 
DQB1*03:02 5.94 182 
DRB1*13:02 5.65 182 
DRB1*01:01 5.14 140 

Colombian Amerindians   
DPB1*04:02 49.99 668 
DQA1*03:01 46.27 1573 
DPB1*14:01 45.67 668 
DRB4*01:00 44.23 1300 
DQB1*03:02 43.49 2633 
DRB4*01:01 38.10 34 
DQA1*05:01 35.05 2084 
DRB1*04.03 32.30 48 
DQB1*03:01 32.06 2633 
DQA1*05:00 19.62 321 
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DQB1*04:02 18.53 2537 
DRB5*01:00 18.20 77 
DRB3*01:01 18.11 1573 
DRB1*14:02 18.01 2173 
DQA1*04:01 17.59 2348 
DRB1*04:07 17.32 2829 
DRB5*02:00 17.11 1257 
DRB1*16:02 14.48 2777 

DRB1*08:022 14.29 42 
DRB1*04:11 14.19 2691 
DRB1*08:02 10.47 2701 
DRB1*08:04 7.32 2091 
DRB1*04:04 7.23 2722 

According to the Venn diagram (Figure 2), only three HLA II alleles exhibited over 
5% of WAFs in the three main ethnic categories of the Colombian population were con-
sidered in this study (Mestizo, African Colombian, and Colombian Amerindians). These 
were DQB1*03:02, DQB1*03:01, and DQB1*04:02. Mestizos and African Colombians who 
share five high frequency alleles (WAFs > 5%): DQB1*06:02, DRB1*07:01, DQB1*05:01, 
DQB1*02:01, and DRB1*03:01. Mestizos and Colombian Amerindians presented two com-
mon alleles with WAFs > 5%: DRB1*08:02 and DRB1*04:07. Besides, African Colombians 
and Colombian Amerindians share the HLA II alleles DQA1*05:01, DRB1*08:04, 
DQA1*04:01, DQA1*03:01 with WAFs > 5% in each group. These alleles are proposed as 
key targets in the development of HLA II epitopes focused to cover different ethnicities of 
Colombia.  

 
Figure 2. Venn diagram of the HLA II alleles with weighted allele frequencies (WAFs) over 5% 
among ethnicities reported in the Colombian population. 

3.3. T–cell Epitope Prediction 
T cell epitopes were generated based on 34 HLA I and 19 HLA II alleles commonly 

found in the Colombian population and available in the servers used for epitope predic-
tion (Table 8). These were the top-ten HLA-A, HLA-B and HLA-C most frequent alleles 
per type found in the Colombian general population (Dataset: Colombia-Bogotá) and the 
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most common HLA-A, HLA-B and HLA-C alleles found in each of the Colombian Amer-
indian groups with reports of HLA I. As well as, HLA II alleles reported to be present 
with high frequency (WAFs > 5%) in the Colombian population. 

Table 8. HLA I and HLA II alleles used in this study for T-cell epitope prediction. 

Type HLA I and HLA II Alleles 

HLA-A 
HLA-A*24:02, HLA-A*02:01, HLA-A*01:01, HLA-A*03:01, HLA-

A*68:01, HLA-A*29:02, HLA-A*11:01, HLA-A*31:01, HLA-A*23:01, and 
HLA-A*02:22. 

HLA-B 
HLA-B*35:43, HLA-B*40:02, HLA-B*44:03, HLA-B*51:01, HLA-B*07:02, 
HLA-B*35:01, HLA-B*14:02, HLA-B*44:02, HLA-B*18:01, HLA-B*08:01, 

HLA-B*39:05, HLA-B*51:10, and HLA-B*39:03. 

HLA-C 
HLA-C*04:01, HLA-C*01:02, HLA-C*07:02, HLA-C*07:01, HLA-

C*03:04, HLA-C*05:01, HLA-C*06:02, HLA-C*16:01, HLA-C*08:02, 
HLA-C*12:03, and HLA-C*15:02. 

HLA-DRB1 

DRB1*01:01, DRB1*03:01, DRB1*03:02, DRB1*04:03, DRB1*04:04, 
DRB1*04:07, DRB1*04:11, DRB1*07:01, DRB1*08:01, DRB1*08:02, 
DRB1*08:04, DRB1*08:22, DRB1*13:01, DRB1*13:02, DRB1*13:04, 

DRB1*14:02, DRB1*15:01, DRB1*15:03, and DRB1*16:02. 

HLA I epitopes were generated based on the SARS-CoV-2 proteins S (Table S5), N 
(Table S6), E (Table S7) and M (Table S8). Similarly, HLA II epitopes were generated from 
each of these viral structural proteins (Tables S9–S12). The promising peptides (with the 
highest number of strong interactions for HLA-I and HLA-II commonly found in the Co-
lombian population) that exhibited predicted immunogenicity, non-toxicity and non-al-
lergenicity are shown in Table 9.  

Table 9. Promising peptides for epitope-based vaccine design from structural proteins of SARS-
CoV-2 showing the estimated coverage and the availability of experiments in the immune epitope 
database (IEDB). These molecules presented predicted immunogenicity, non-toxicity and non-aller-
genicity. (IEDB, date consulted: 31 March 2021). Abbreviations: ML: MHC ligands assays. TC-IFNg: 
Tcell assays (IFNg release), TC-A: Tcell assay (Activation), TC-QB: T cell assay (qualitative binding), 
TC-IL5: T-cell, TC-TNF: T Cell Assays (TNF release), (+): positive, (-): negative. IEDB: Immune 
Epitope Database, WAF: weighted allelic frequencies. 

Epitopes 
Estimated Coverage for Colom-

bian Population (WAF) 
Experiments 

(IEDB) IEDB ID 

Spike Protein (S)   
HLA 1    

VYDPLQPEL HLA-A = 50.85%, HLA-B = 34.39%, 
HLA-C = 82.07%. 

ML: (+). 
TC-IFNg: (-). 

71996 

YQPYRVVVL HLA-A = 43.43%, HLA-B = 18.49%, 
HLA-C = 82.07%. 

TC-QB: (+). 1334394 

TLDSKTQSL 
HLA-A = 25.42%, HLA-B = 15.04%, 

HLA-C = 82.07%. 

TC-A: (+). 
TC-QB: (+). 

TC-IFNg: (-). 
1075075 

VRDPQTLEI HLA-A = 24.09%, HLA-B = 7.42%, 
HLA-C = 57.39%. 

 - 

FTISVTTEI HLA-A = 19.34%, HLA-B = 14.84%, 
HLA-C = 57.5%. 

TC-A: (+). 1317060 

HLA 2    

RAAEIRASANLAATK HLA-DRB1 = 48.88%. ML: (+). 
TC-IFNg: (-). 

533447 
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TPINLVRDLPQGFSA HLA-DRB1 = 33.7%. ML: (+). 1330624 
FGGFNFSQILPDPSK HLA-DRB1 = 33.47%.  - 

KHTPINLVRDLPQGF HLA-DRB1 = 31.59%. 
TC-A: (+). 

TC-IFNg: (+). 
TC-IL5: (-). 

1309123 

Envelope Protein (E)   
HLA 1    

YVYSRVKNL HLA-A = 19.34%, HLA-B = 27.01%, 
HLA-C = 82.07%. 

TC-A: (+). 
TC-QB: (+). 1075128 

LAILTALRL HLA-B = 6.19%, HLA-C = 22.09%.  - 

VSLVKPSFY HLA-A = 14.9%, HLA-B = 8.65%, 
HLA-C = 27.97%. 

 - 

VTLAILTAL HLA-A = 16.13%, HLA-C = 33.47%.  - 
RVKNLNSSR HLA-A = 19.54%.  - 

HLA 2    
KPSFYVYSRVKNLNS HLA-DRB1 = 43.18%.  - 
VYSRVKNLNSSRVPD HLA-DRB1 = 55.99%.  - 
VKPSFYVYSRVKNLN HLA-DRB1 = 43.18%.  - 
YSRVKNLNSSRVPDL HLA-DRB1 = 37.1%.  - 
SFYVYSRVKNLNSSR HLA-DRB1 = 61.92%.  - 
PSFYVYSRVKNLNSS HLA-DRB1 = 55.74%.  - 

FYVYSRVKNLNSSRV HLA-DRB1 = 42.58%. 

TC-IFNg: (+). 
TC-TNF: (+). 
TC-IL5: (-). 
TC-A: (-). 

1310430 

LVKPSFYVYSRVKNL HLA-DRB1 = 26.5%.  - 
YVYSRVKNLNSSRVP HLA-DRB1 = 51.81%.  - 
Membrane Protein (M)   

HLA 1    
ITVATSRTL HLA-C = 47.52%.  - 

Nucleocapsid Protein (N)   
HLA 1    

QFAPSASAF HLA-A = 49.12%, HLA-B = 25.14%, 
HLA-C = 47.85%.  - 

QRNAPRITF 
HLA-A = 47.09%, HLA-B = 19.77%, 

HLA-C = 24.33%. 

TC-IFNg: (+). 
TC-QB: (+). 
TC-TNF: (-). 

TC-A: (-). 

1309136 

SPDDQIGYY 
HLA-A = 3.24%, HLA-B = 25.38%, 

HLA-C = 26%. 
TC-A: (+). 

TC-IFNg: (-). 1310816 

HLA 2    

GTWLTYTGAI-
KLDDK 

HLA-DRB1 = 40.37%. 
TC-IFNg: (+). 

TC-A: (+). 
TC-TNF: (+). 

1310464 

NFKDQVILLNKHIDA HLA-DRB1 = 24.69%.  - 
TKAYNVTQAF-

GRRGP HLA-DRB1 = 52.85%.  - 

According to the immunoinformatics analysis of these peptides (Table 9), only four 
promising epitopes were predicted to induce the release of TNF gamma by the 
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TNFepitope server (Table 10). The coverage calculation performed on IEDB for these 
epitopes showed that they are predicted to cover up to 96.62% of the worldwide popula-
tion.  

Table 10. Promising peptides predicted to induce the release of TNF gamma showing the world-
wide estimated coverage calculated by IEDB. ND: no data available. 

Epitopes SARS-CoV-2 
Protein 

IFN Epitope 
Server 

Worldwide Coverage (%) 
[IEDB] 

YQPYRVVVL S 0.29285355 96.62 
RAAEIRASANLAATK S 0.29346657 ND 

QFAPSASAF N 0.82212984 77.60 
SPDDQIGYY N 0.24883001 80.12 

These four promising epitopes are located in the S and N proteins of SARS-CoV-2. 
The peptides YQPYRVVVL and RAAEIRASANLAATK are placed in the receptor-bind-
ing domain (RBD) and the central helix (CH) of the S protein, respectively. On the other 
hand, SPDDQIGYY and QFAPSASAF are positioned in the N-terminal domain (NTD) 
and the C-terminal domain (CTD) of the N protein of SARS-CoV-2, respectively. 

3.4. Peptide-protein Docking Studies 
Confirmatory peptide-protein docking studies were carried out with AutoDock Vina 

[40,47]. The predicted binding affinity scores (kcal/mol) of HLAs interacting with promis-
ing peptides that showed immunogenicity, non-toxicity and non-allergenicity in silico are 
presented in Table S13, and represented as a heatmap with dendrograms in Figure 3. All 
the studied peptides exhibited high (absolute value) affinity scores with at least one of the 
evaluated alleles. Besides, three of the promising peptides that were predicted to induce 
the release of TNF gamma (YQPYRVVVL, QFAPSASAF and SPDDQIGYY) showed a 
multi-target behavior, by interacting with most of the HLAs used for docking studies. 
These were used for further analysis along with the other peptide that was predicted to 
induce the release of TNF gamma in silico (RAAEIRASANLAATK).  
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Figure 3. Heatmap representing the calculated docking affinity values (kcal/mol) of HLAs interact-
ing with promising epitopes that exhibited immunogenicity, non-toxicity and non-allergenicity in 
silico. 

3.5. Interactions Analysis and Molecular Dynamics 
The interaction analysis between the promising peptides predicted to induce the re-

lease of TNF gamma and four of the most common HLAs in the Colombian population 
was carried out by using LigPlot+ [43]. The three-dimensional view of the complexes and 
the interactions between these peptides with HLA-A*24:02, HLA-B*51:04, HLA-C*04:01, 
and HLA-DQB1*06:02 are presented in Figure S1–S4, respectively. All the promising 
epitopes were predicted to interact with the peptide-binding cleft of these HLAs. In addi-
tion, the three-dimensional view of the complex formed by the promising epitope with 
the greatest estimated coverage (YQPYRVVVL) and the protein (HLA-B*08:01) that exhib-
ited the highest (absolute value) affinity score with this peptide (−10.3 kcal/mol) is pre-
sented in Figure 4. 
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Figure 4. (A) Three-dimensional view of the complex formed by the peptide YQPYRVVVL with 
HLA-B*08:01 (PDB: 3X13); showing (B) the binding site and interactions predicted by LigPlot+. Hy-
drogen bonds are represented with lines in cyan. 

The MD simulation (Figure 5) confirmed the peptide induced conformational change 
that has been reported for the binding of epitopes with HLA I [48] and HLA II [46] pro-
teins. The average RMSD of the atomic positions for the dynamics and static models of 
the protein-peptide complex and the peptide-free protein were 4.27 Å and 2.67 Å, respec-
tively.  

 
Figure 5. Molecular dynamics (MD) simulation of the peptide/protein complex between 
YQPYRVVVL and HLA-B*08:01 (black), and the peptide-free protein HLA-B*08:01 (red). 
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The RMSF analysis (Figure 6) revealed the flexibility of HLA-B*08:01. The binding of 
the epitope YQPYRVVVL resulted in a similar fluctuation pattern with notorious differ-
ences in the RMSF values near the residues: ASP30, GLU58-ALA90, GLY104-ARG181, 
PRO193-GLU198 and ALA211-PRO276, which indicates that the binding to this epitope 
may influence conformational changes around these amino acids. 

 
Figure 6. Root-mean square fluctuations (RMSF) values of the backbone through the Molecular dy-
namics (MD) simulation of the peptide/protein complex between YQPYRVVVL and HLA-B*08:01 
(black), and the peptide-free protein HLA-B*08:01 (red). 

4. Discussion 
Immunoinformatics has been used for the prediction of epitopes of SARS-CoV2 

[19,49–50], as T-cells may be crucial to combat this virus causing COVID-19 [19]. The state 
of art regarding HLAs frequencies in Latin America is very limited [21], which is concern-
ing as this is one of the most affected areas for the pandemics. In this article, we performed 
a systematic review to find HLAs (HLA I and HLA II) allelic frequencies reported for the 
Colombian population. This expanded the number of organized datasets reporting HLAs 
allelic frequencies for the Colombian population from seven [21] to twelve for HLA I and 
seventy one for HLA II. 

The design of novel vaccines or treatments against COVID-19 are needed to cover 
the worldwide demand, especially in developing countries as Colombia. A computational 
approach was used to predict SARS-CoV-2 epitopes, as this approach has been shown to 
speed up the screening process of peptide libraries [47]. Hereby, we report four promising 
epitopes that presented immunogenicity, non-toxicity, non-allergenicity and potential to 
release TNF-gamma in silico. These are YQPYRVVVL and RAAEIRASANLAATK, which 
are based on the S protein of SARS-CoV-2, as well as, QFAPSASAF and SPDDQIGYY 
which are based on the N protein of this virus. Both structural proteins, N and S, have 
been reported to present immunogenic activity. 

The promising epitopes based on the S protein of SARS-CoV-2 (YQPYRVVVL and 
RAAEIRASANLAATK) proposed herein are conserved in the current variants of concern: 
Alpha (United Kingdom), Beta (South Africa), Gamma (Brazil) and Delta (India); as well 
as in all variants of interest: Eta (Multiple countries), Iota (United States of America), 
Kappa (India) and Lambda (Peru) [51]. The prioritization of epitopes like these that are 
conserved across variants of concern and interest of SARS-CoV-2 is crucial to prevent im-
mune evasion due to viral genomic diversity [52]. 
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The promising epitope YQPYRVVVL has been reported to exhibit high antigenicity 
against the beta variant from South Africa (GSAID ID: EPI_ISL_1706561) and another var-
iant from India (GSAID ID: EPI_ISL_1708422) [53]. Furthermore, this peptide exhibited 
high binding affinity for several HLAs in silico and has been proposed as candidate 
epitope for vaccine design [54]. On the other hand, the promising HLA II epitope 
RAAEIRASANLAATK has been reported to exhibit a good coverage in other Latin Amer-
ican countries, including Argentina, Bolivia, Brazil, Chile, Ecuador, Paraguay, Peru and 
Venezuela [21]. Furthermore, the candidate epitopes based on the N protein of SARS-
CoV-2 QFAPSASAF and SPDDQIGYY have been described as promising epitopes for the 
development of multi-epitope vaccines [55]. Therefore, the promising peptides described 
herein are not only restricted to the Colombian population, but also can be useful for the 
development of peptide-based vaccines for several countries. 

According to the IEDB, the promising epitopes proposed in this article can exhibit up 
to 96.62% of coverage in worldwide population. In addition, the estimated coverage of the 
peptide VYDPLQPEL calculated for the Colombian population based on allelic frequen-
cies indicated this could cover up to 82.07% of the population through its binding with 
HLA-C proteins, and present a coverage of 50.85% and 34.39% associated to its interaction 
with HLA-A and HLA-B in the Colombian population. 

The structural analysis carried out with AutoDock Vina [40] and LigPlot+ [43] 
showed that the promising peptides interacted with the expected binding site of the stud-
ied HLAs, in the peptide-binding groove [56]. Most of the interactions where hydrophobic 
with the presence of some hydrogen bonds. In addition, the contact residues predicted for 
YQPYRVVVL with HLA-B*08:01 revealed the interaction of this promising epitope with 
two amino acids in the positions 156 and 116 that have been reported as crucial for peptide 
recognition of HLAs [56], ASP156 and TYR116. 

The MD suggested a conformational change induced by the peptide binding, in the 
complex formed by the epitope with the highest coverage and the protein that presented 
the highest (absolute) value affinity score for it (VYDPLQPEL/HLA-B*08:01). This is in 
agreement with previous reports for similar systems of HLA proteins [46,48]. In addition, 
the RMSF pattern presented for the binding of the promising SARS-CoV-2 epitope 
VYDPLQPEL to HLA-B*08:01 is similar to the reported for the binding with a Barr virus 
peptide, which presented the same pattern and comparable values [57]. According to the 
RMSF analysis, the binding of the promising peptide increases the flexibility of the two 
alpha helices of HLA-B*08:01 (GLU58-ALA90 and ASP137-ARG181), as well as the region 
between the beta strands 2–3 (ASP30), 5–8 (GLY104-ALA136) and 9–10 (PRO193-
GLU198); and a large portion of the α3-domain (ALA211-PRO276). 

According to the aforementioned, the promising epitopes presented in this study 
may have an impact in the development of new peptide-based vaccines and diagnostic 
tests tended to cover Colombian and Latin American population, which also presented a 
good calculated coverage worldwide. However, further analysis is required and these 
peptides are proposed as candidates to be submitted to in vitro and in vivo tests. 

5. Conclusions 
This in silico study presents promising T-cell epitopes based on structural proteins of 

SARS-CoV-2 and HLAs highly frequent in the Colombian population. Some of them with 
estimated coverage greater than 80%. These peptides were predicted to exhibit immuno-
genic response, non-allergenicity and non-toxicity. Therefore, these may be useful in the 
processes of epitope-based vaccine design and diagnostic test development, and are sug-
gested as molecules to be prioritized for further in vitro and in vivo analysis. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/vaccines9070797/s1: Python Scripts: Analysis_HLA_I.py, Analysis_HLA_II.py, Interac-
tions_Summary.py, Python_Script_CumFreq.py, and Python_Script_WAF.py. Figure S1: Three-di-
mensional view of the overall structures (left) and predicted peptide-protein interactions (right) of 
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the complexes formed by HLA-A*24:02 with the SARS-CoV-2 promising peptides: A) 
YQPYRVVVL, B) RAAEIRASANLAATK, C) SPDDQIGYY, and D) QFAPSASAF. Figure S2: Three-
dimensional view of the overall structures (left) and predicted peptide-protein interactions (right) 
of the complexes formed by HLA-B*51:04 with the SARS-CoV-2 promising peptides: A) 
YQPYRVVVL, B) RAAEIRASANLAATK, C) SPDDQIGYY, and D) QFAPSASAF. Figure S3: Three-
dimensional view of the overall structures (left) and predicted peptide-protein interactions (right) 
of the complexes formed by HLA-C*04:01 with the SARS-CoV-2 promising peptides: A) 
YQPYRVVVL, B) RAAEIRASANLAATK, C) SPDDQIGYY, and D) QFAPSASAF. Figure S4: Three-
dimensional view of the overall structures (left) and predicted peptide-protein interactions (right) 
of the complexes formed by HLA-DQA1*01:02 (gray)/HLA-DQB1*06:02 (green; PDB ID: 6DIG) with 
the SARS-CoV-2 promising peptides: A) YQPYRVVVL, B) RAAEIRASANLAATK, C) SPDDQIGYY, 
and D) QFAPSASAF. Table S1. HLAs commonly found in the Colombian population with three-
dimensional structures available in Protein Data Bank (PDB) used in this study. Table S2. Results of 
the systematic search for HLA I commonly present in the Colombian population. Table S3. Results 
of the systematic search for HLA II commonly present in the Colombian population. Table S4. 
Weighted allelic frequencies (WAFs) of HLA II in the Colombian population calculated as the 
weighted average of the frequencies obtained from the literature search and AFND. Table S5. HLA 
I epitopes generated by NetMHCpan 4.1 based on the S protein of SARS-CoV-2. Table S6. HLA I 
epitopes generated by NetMHCpan 4.1 based on the N protein of SARS-CoV-2. Table S7. HLA I 
epitopes generated by NetMHCpan 4.1 based on the E protein of SARS-CoV-2. Table S8. HLA I 
epitopes generated by NetMHCpan 4.1 based on the M protein of SARS-CoV-2. Table S9. HLA II 
epitopes generated by NetMHCIIpan 4.0 based on the S protein of SARS-CoV-2. Table S10. HLA II 
epitopes generated by NetMHCIIpan 4.0 based on the N protein of SARS-CoV-2. Table S11. HLA II 
epitopes generated by NetMHCIIpan 4.0 based on the E protein of SARS-CoV-2. Table S12. HLA II 
epitopes generated by NetMHCIIpan 4.0 based on the M protein of SARS-CoV-2. Table S13. Auto-
Dock Vina docking affinity scores (kcal/mol) predicted for the interaction between the promising 
peptides and HLAs commonly found in the Colombian population. 
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