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Abstract: Autonomous driving technology is vital for intelligent transportation systems. Vehicle
driving behavior prediction is the foundation and core of autonomous driving. A detailed review
of the existing research on vehicle driving behavior prediction can improve the understanding
of the current progress of research on autonomous driving and provide references for follow-up
researchers. This paper primarily reviews and analyzes the control models of autonomous driving,
prejudgment methods, on-road and intersection traffic decision-making, and shortcomings of the
research about the prediction of individual intelligent vehicle driving behavior, the prediction on
movements of vehicles connected via the Internet, and prediction of driving behavior in a mixed
traffic environment. The deficiencies in the research on vehicle driving behavior prediction are as
follows: (1) there are numerous limitations in the intelligent application scenarios of individual
intelligent vehicles; (2) although the Internet of Vehicles is a significant developmental trend, the
training and test datasets are not rich enough; and (3) as the research of mixed traffic flow is still in
the initial stages, the comfort brought by autonomous driving in hybrid driving environments is not
being considered. In addition to the above analyses and comments, the future research prospects of
vehicle driving behavior prediction are discussed as well.

Keywords: traffic engineering; intelligent transportation; autonomous vehicle; driving behavior;
individual intelligent vehicle; Internet of Vehicles

1. Introduction

The rapid increase in car ownership in the last few years has led to a corresponding
increase in traffic accidents. According to the World Health Organization (WHO), traffic
accidents are one of the top ten causes of death globally. An accident report published by
Volvo revealed that human error is the main cause in nearly 90% of all traffic accidents.
Advanced driver assistance systems (ADASs) or autonomous vehicles (AVs) are considered
to be effective solutions in reducing human error and the corresponding rate of traffic
accidents.

Prejudgment of the vehicle driving intention and behavior is the basis of AVs and is the
primary focus of scholars in related fields. Depending on whether the vehicle interacts with
roadside infrastructure and other vehicles, autonomous driving vehicles can be divided
into two groups: individual intelligent vehicles and the Internet of Vehicles (IoV). As the
degree of intelligence and automation of vehicles in actual traffic is uneven, the recognition
and prediction of vehicle driving behavior in various traffic environments have become
key considerations in the development of IoV and AVs.

Several studies on driving behavior prediction have been conducted in recent years,
using methods such as support vector machines, Markov chains, neural networks, Bayesian
methods, and game theory. These methods are based on a wide variety of disciplines,
including computer science, mathematics, economics, and physics. The models used in
these methods range from rule-based models to learning algorithm models and from one-
sided description models to specific functional models. However, most models are based

World Electr. Veh. J. 2021, 12, 88. https://doi.org/10.3390/wevj12020088 https://www.mdpi.com/journal/wevj

https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://doi.org/10.3390/wevj12020088
https://doi.org/10.3390/wevj12020088
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/wevj12020088
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj12020088?type=check_update&version=2


World Electr. Veh. J. 2021, 12, 88 2 of 15

on individual intelligent vehicles. The advantages offered by IoV are not exploited, and
mixed traffic driving environments are often ignored.

This paper reviews research on individual intelligent vehicle driving behavior pre-
diction, IoV driving behavior prediction, and driving behavior prediction in mixed traffic
driving environments to obtain a detailed understanding of the current progress of research
on vehicle driving behavior prediction, which is an important subset of AV control chal-
lenges. The contribution of this paper is twofold. At first, we explore the different driver
behavior prediction models. The results show that IoV has more advantages. The second
contribution is about the prospects of AVs.

In this paper, Section 2 introduces individual intelligent vehicles, Section 3 presents a
discussion of the IoV driving behavior, and Section 4 explores mixed traffic driving.

2. Research on Individual Intelligent Vehicle Driving Behavior Prediction

The original definition of an AV is an individual intelligent vehicle that relies on
recognizing the behavior of surrounding vehicles to predict their short-term trajectories
and then makes reasonable driving plans, such as staying in lane or changing lanes, using
algorithms, models, functions, and other methods.

2.1. Individual Intelligent Vehicle Motion-Planning Model

The global positioning of AVs is realized by an onboard GPS, and local path planning
is completed by a motion-planning model.

Numerous scholars have systematically reviewed predictive decision-making models
of individual intelligent vehicle behavior. Thomas et al. [1] reviewed the research results of
an AV behavior decision-making system, compared and analyzed the research progress
of various behavior models, and emphasized the importance of driving behavior anal-
ysis. Kumar and Prasad [2] divided driving behavior models into analysis models and
prediction models, compared and analyzed numerous models in detail, and showed that
driver behavior models significantly differ from different vehicle drivers. Xiong et al. [3]
divided driving behavior decision models into two types of models, namely rule-based and
learning algorithm-based models; they affirmed the superiority of the latter. In contrast,
Chen et al. [4] proposed a novel system based on the combined research results of the
two kinds of driving behavior models: descriptive models and functional models. They
revealed that existing descriptive models are too one-sided and functional models lack
reliable big data support, making them unsuitable for the complex traffic environments
found in China.

Recently, machine learning has been widely employed in the field of driver behavior
recognition, particularly by Tesla, which, based on camera visual perception, uses artificial
intelligence and data learning to perform behavior prediction and trajectory planning.

Berndt et al. [5] used the hidden Markov model (HMM) to recognize driving intentions.
Zhu et al. [6] and Zhang et al. [7] proposed a driving behavior recognition method based
on a support vector machine (SVM); the test results demonstrated a good recognition effect.
Liu et al. [8] integrated the HMM and SVM methods to improve the accuracy of driving
intention recognition. Considering a case with an insufficient sample dataset for machine
learning, Zong et al. [9] proposed a driver behavior prediction model based on the HMM
and an artificial neural network (ANN), which uses the HMM to tutor the ANN to improve
learning. An experiment proved that multiview convolutional neural network (MV-CNN)
and joint data augmentation (JDA) have better generalization ability than ANN [10].

Although a machine learning classification algorithm can identify the intention of a
driver to change lanes to the left or right lane or stay in the current lane, it cannot provide a
specific driving trajectory. Consequently, Ye et al. [11] used a kinematic or dynamic model
to predict vehicle trajectory. Hu et al. [12] proposed an AV path planning method based on
discrete optimization.

Ji et al. [13] believed that trajectory and driving intention should be predicted si-
multaneously. Therefore, they used deep learning methods to design a driving intention
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recognition and vehicle trajectory prediction model based on a long short-term memory
(LSTM) network. The proposed model significantly improved the accuracy of intention
recognition and trajectory prediction of the surrounding vehicles.

2.2. Prediction of Individual Intelligent Vehicle Behavior Recognition
2.2.1. Prediction of Individual Intelligent Vehicle Driving Behavior on Roads

On-road driving can be divided into straight and lane-changing driving behaviors.
Both behaviors must be accurately predicted and judged by AVs to ensure smooth and safe
driving in continuous traffic flow.

Adaptive cruise control (ACC) is used to detect and track the vehicle ahead and
maintain a safe and comfortable distance. The concept of car-following is implemented
based on this technology. ACC is one of the most important technologies for AVs. It im-
proves driving comfort, reduces driver error, improves safety, increases traffic capacity,
and reduces fuel consumption. Numerous scholars have conducted detailed research on
ACC. Zhu et al. [14] calibrated the response time parameters between vehicles based on
the experience of skilled drivers and proposed an ACC control strategy based on response
time to improve the safety and reliability of the system. Zhu et al. [15] used deep reinforce-
ment learning theory to optimize car-following control in ACC. Luo et al. [16] proposed a
multiobjective ACC algorithm based on a model predictive control (MPC) framework that
significantly improved driving comfort and fuel economy.

Compared to straight driving, lane-changing behavior can be dangerous and cause
serious accidents, primarily due to the inaccurate estimation of the surrounding traffic.
Extensive research has been conducted on lane-change control systems to alleviate this
problem. Chen et al. [17] combined rough set methods to propose lane-changing rules
for AVs in an urban environment. Jiang et al. [18] determined an optimal lane-changing
trajectory based on the hp-adaptive pseudospectral method and manual driving trajec-
tory and established lane-changing rules for AVs in emergency situations. From the
perspective of machine learning, dynamic Bayesian networks [19,20] and random forest
methods [21] have also been widely used to intelligently predict the trajectory of a vehicle
lane-changing maneuver.

2.2.2. Prediction of Individual Intelligent Vehicle Driving Behavior at Intersections

Road intersections are vital for traffic movement and are required for vehicles to
gather, turn, and evacuate. Safe and efficient passing through intersections is an important
area of research for AVs. As individual intelligent vehicles cannot interact with other
vehicles and achieve collaborative control, they cannot rely solely on motion models to pass
through complex intersections. Song et al. [22] stated that AVs must understand the driving
intentions of human drivers, and they proposed an intention decision-making algorithm to
ensure that AVs can pass through intersections intelligently. In contrast, Cheng et al. [23]
used a different approach and believed that purely probabilistic or evidence-based tech-
niques were not sufficiently effective tools for such decision-making. They suggested that
game theory tools can better judge and recognize the evolution of uncertain situations, and
they proposed a game model for AVs driving through intersections with both manned and
unmanned vehicles.

Unsignalized intersections (USI) also are challenging for AVs due to high uncertain-
ties. Yang et al. [24] identified multiple impact variables of AVs at USI using a random
forest approach.

2.3. Research Comments

1. Individual intelligent vehicle motion-planning model

The rule-based behavior decision system represented by the finite state machine is
widely used in the DARPA Urban Challenge. However, methods such as convolutional
neural networks and deep learning based on learning algorithms rely too much on the
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richness and accuracy of training data; nevertheless, Kumar, Xiong, and Chen believed that
they have significant potential in the field of autonomous driving.

Considering the research on behavior prediction and decision-making, the introduc-
tion of machine learning and other technologies to intelligent vehicle control, such as in the
models proposed by Berndt, Zhu, Liu, and other scholars, appears to be a general trend.
However, the extraction and collection of learning data must be considered. Considering
the field of machine learning, classification algorithms can better identify driving inten-
tions, regression algorithms can effectively extrapolate driving trajectories, and clustering
algorithms can be used to analyze driving styles.

The individual intelligent vehicle models listed in Table 1 were all developed toward
personalized and intelligent fully automated driving, as shown in Figure 1. Owing to
the upper limit of the ability of individual intelligent vehicles, current AVs are limited
by various factors and require human intervention during driving. Automatic driving
cannot be fully realized as there are significant differences between automatic driving and
personal manual driving habits, and driving comfort is usually poor.

Table 1. Research summary of motion planning models for individual intelligent vehicles.

Research
Objective Author Year Opinion or Model

Review

Thomas [1] 1994 Emphasized the importance of driving behavior analysis
Kumar et al. [2] 2015 Driver behavior models significantly differ for different vehicle drivers
Chen et al. [4] 2016 Believed that functional models are superior to descriptive models
Xiong et al. [3] 2018 Based on the potential of the learning algorithm model

Intent
recognition

Berndt [5] 2008 Used HMM to recognize driving intention
Zhu et al. [6] 2017 Recognition method of driving behavior based on SVM
Liu et al. [8] 2018 HMM and SVM

Zong et al. [9] 2009 Proposed HMM and ANN driver behavior prediction models
Zhang et al. [10] 2019 MV-CNN has better generalization ability than ANN
Zhang et al. [7] 2021 SVM optimization

Trajectory
prediction

Ye et al. [11] 2016 Established dynamic model to predict vehicle trajectory
Hu et al. [12] 2018 AV path planning method based on discrete optimization
Ji et al. [13] 2019 Vehicle trajectory prediction model based on LSTM

Figure 1. Research course of motion planning model of individual intelligence.
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2. Prediction of individual intelligent vehicle driving behavior on roads

The research on ACC systems, as shown in Figure 2 and Table 2, utilizes car control
strategies based on factors such as reaction time or distance to ensure safety by maintaining
a safe distance from the vehicle ahead. However, reaction time and safe distance are differ-
ent for different drivers. Consequently, it is difficult to calibrate ACC systems, resulting
in poor performance indicators such as comfort. The application of deep reinforcement
learning theory and the MPC framework in intelligent transportation systems can improve
the intelligence of ACC systems. Notably, most current ACC systems focus on analyzing
the impact of longitudinal traffic flow and ignore the impact of lateral vehicles in complex
urban traffic environments.

Figure 2. Structure chart of driving behavior prediction of individual intelligent vehicles.

Table 2. Research summary of driving behavior prediction of individual intelligent vehicles.

Research
Objective Author Year Opinion or Model

Straight
Luo et al. [16] 2009 Improve driving comfort and fuel economy
Zhu et al. [14] 2017 ACC strategy based on response time
Zhu et al. [15] 2019 ACC car-following control optimization

Lane-
changing

Schreier et al. [19]
Toru et al. [20] 2014 Lane-changing probability of dynamic Bayesian network

Schlechtriemen et al. [21] 2015 Prediction of lane-changing based on random forest method
Chen et al. [17] 2017 Combining rough set urban environment lane-changing rules
Jiang et al. [18] 2019 Autonomous driving emergency lane-changing rules

Intersections
Song et al. [22] 2016 Intention perception of driver at intersection

Cheng et al. [23] 2019 Intersection driving game model
Yang et al. [24] 2019 USI multiple impact variables

Considering lane-changing behavior, as shown in Figure 2 and Table 2, current smart
car lane-changing trajectory planning includes methods such as search, optimization, and
functions. New methods, such as the hp-adaptive pseudospectral method and artificial
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intelligence, use functional methods to overcome hysteresis and the redundancy of existing
methods. However, the problem of imperfect data still persists. Moreover, the influence of
lateral vehicles and the relative speed of the obstacles ahead must be considered. The com-
bination of rough sets can increase the generality of lane-changing control algorithms but
has limitations in terms of its accuracy.

3. Prediction of individual intelligent vehicle driving behavior at intersections

Traffic automation of individual intelligent vehicles at intersections is a complex
problem. This is primarily because the traffic complexity at intersections is much higher
than that of ordinary road sections. In general, only the intelligent motion planning model
embedded in the vehicle is used, and its efficiency and safety are yet to be investigated.
Song et al. proposed an intersection driver-intention perception decision-making algorithm,
and Cheng et al. proposed a game theory model to optimize the traffic perception of
individual intelligent vehicles at intersections. However, independent and one-sided
approaches cannot be used to solve the problems of individual intelligent vehicles, and
manual intervention is still required.

The discussed studies in the second section are summarized in Table 3.

Table 3. Research summary of individual intelligent vehicle driving behavior prediction.

Chapter Research Objective Summary Author/Year

Individual intelligent
vehicle

motion-planning
model

Review
Reviewed and analyzed driving
behavior models from different

perspectives

Thomas/1994 [1]
Kumar et al./2015 [2]
Chen et al./2016 [4]
Xiong et al./2018 [3]

Intent recognition The introduction of machine
learning and other technologies to

intelligent vehicle control

Berndt/2008 [5]
Zhu et al./2017 [6]
Liu et al./2018 [8]

Zong et al./2009 [9]
Zhang et al./2019 [10]
Zhang et al./2021 [7]

Trajectory prediction
Ye et al./2016 [11]
Hu et al./2018 [12]
Ji et al./2019 [13]

Prediction of
individual intelligent

vehicle behavior
recognition

On-road

Straight Development and optimization of
ACC

Luo et al./2009 [16]
Zhu et al./2017 [14]
Zhu et al./2019 [15]

Lane-
changing

Safe and reliable lane-changing
control systems are needed

Schreier et al./2014 [19]
Toru et al./2014 [20]

Schlechtriemen et al./
2015 [21]

Chen et al./2017 [17]
Jiang et al./2019 [18]

At intersections Its efficiency and safety are yet to
be investigated

Song et al./2016 [22]
Cheng et al./2019 [23]
Yang et al./2019 [24]

3. Research on IoV Driving Behavior Prediction

Tian Bin et al. [25] stated that cooperative vehicle infrastructure (CVI) and IoV are key
technologies for overcoming the limitations of individual intelligence in AVs. The inter-
national standard for autonomous driving (ISAD) was proposed in 2019. This standard
categorizes the facilities required to support autonomous driving into five levels, wherein
the A-level defines roads that can enable autonomous driving, with AVs, roads, and traffic
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connected by ISAD. IoV technology has gradually transitioned from individual intelli-
gent vehicles to vehicle-to-vehicle (V2V) communication, data distribution, and CVI. IoV
technology enables the formation of an organic vehicle–road–person entity.

3.1. IoV Model Optimization

Considering the shortcomings of the individual intelligent vehicle motion models,
Li et al. [26] stated that an IoV environment should not only include “individual intelli-
gence” driving, but also share environmental perception and driving decision information
with other IoV vehicles and intelligent roadside infrastructures. Accordingly, a collabo-
rative decision-making mechanism can be adopted to realize “networked intelligence”
operations. Zhao et al. [27] proposed a multimodal multitask spatial–temporal convolu-
tion (MM-STConv) end-to-end autonomous driving behavior decision model. It is based
on RGB images, deep learning, and vehicle history data [28], and can better predict the
trajectory of the vehicle ahead to control its own speed and turning angle.

3.2. Prediction of IoV Driving Behavior
3.2.1. Prediction of IoV Driving Behavior on Roads

An ACC system can be further optimized by IoV. Su et al. [29] and Jin [30] proposed a
car-following model based on ACC that considers the behavior of the driver and studied
the relationship between the longitudinal traffic flow in an IoV driving environment.
Yang et al. [31] further studied the potential of ACC in IoV environments based on the
car-following model. They revealed that a data-driven car-following model in a big data
environment can rapidly adapt to changes in driving behavior and provide important
support for the development of AVs.

Geng et al. [32] proposed an automatic driving lane-changing motion planning and
control algorithm based on a priori probability and a posteriori deterministic prediction.
The status quo of the surrounding environment and possible dangerous behaviors are
considered simultaneously to determine whether the vehicle stays in its current lane or
changes lanes. Huang et al. [33] and Tejada et al. [34] proposed an intelligent vehicle lane-
changing trajectory planning and control system considering different driving styles. Based
on historical data, they defined three driving styles: aggressive, ordinary, and cautious.
Drivers with different styles were found to have different requirements for the use of
intelligent vehicles.

The emergence of IoV has improved the intelligence and personalization of lane-
changing control in AVs, and new research has been conducted to ensure the safety of
lane-changing behavior. Huang et al. [35] proposed a driver behavior analysis method
based on the vehicle onboard diagnostic (OBD) information and AdaBoost algorithms.
It can better determine whether the current driving behavior belongs to safe driving or not.
Bussooa et al. [36] proposed a system to monitor drivers using the Internet of Things (IoT)
technology and regulate their lane-changing behavior. Wu et al. [37] and Zhang et al. [38]
established an intelligent vehicle collision avoidance model that can reduce the collision risk
of AVs during lane-changing, considering different perspectives. Xue et al. [39] proposed
a method to recognize dangerous driving behavior and provide a reference for the risks
posed by surrounding vehicles.

3.2.2. Prediction of IoV Driving Behavior at Intersections

IoV removes the barriers between individual vehicles and between vehicles and
infrastructure. The prediction of driving behavior at intersections is an important area of
study in autonomous driving research.

Xiong et al. [40] proposed a method to predict the driving intentions of other vehicles
based on the HMM, which controls the motion behavior of intelligent vehicles through a
hybrid state system. This method realizes the interactive problem of vehicles on a highway
ramp and verifies the cooperative control of unmanned vehicles at intersections. Based on
the development of vehicle-to-infrastructure (V2I) and V2V communications and historical
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driving data, Song et al. [41] and Duan et al. [42] proposed a behavioral decision model for
intelligent vehicles and multivehicle collaborative control at intersections.

3.3. Research Comments

1. IoV model optimization

The studies discussed in this section are summarized in Figure 3 and Table 4. These
studies considered not only the influence of the driver of a single ICV on vehicle motion
planning, but also the interactive influence of the decision-making of multiple ICVs. This
represents a novel approach for the development of ICVs and fully autonomous driving
technology. AVs cannot be completely individual intelligences, and each vehicle must be
intelligent. Essentially, a system of “autonomous intelligence” + “connected intelligence”
is required.

Table 4. Research summary of IoV driving behavior prediction.

Research Objective Author Year Opinion or Model

Straight

ACC car-following
model

Jin [30] 2011 Car-following model based on driver behavior
Su et al. [29] 2018 Personalized car-following model

Yang et al. [31] 2019 Data-driven car-following model

Lane-changing

Lane-changing
intention

Geng et al. [32] 2015 A priori and a posteriori lane-changing prediction
Huang et al. [33] 2019 Trajectory planning and control based on driving style
Tejada et al. [34] 2020 Based on models of ‘typical’ human driving behavior

Lane-changing
safety

Huang et al. [35] 2015 Behavior analysis method based on OBD
Bussooa et al. [36] 2019 Monitoring illegal lane-changing behavior using IoT

Wu et al. [37] 2019 Collision avoidance model based on vehicle contour
Zhang et al. [38] 2020 AV high-speed collision avoidance model

Xue et al. [39] 2020 Dangerous vehicle marking

Intersections

Intersection
cooperative control

Xiong et al. [40] 2014, 2015 Intersection cooperative control method based
on HMM

Song et al. [41] 2016 Decision-making model for intersection behavior

Duan et al. [42] 2020 Multivehicle cooperative control based on V2I and V2V
intersections

Considering the MM-STConv end-to-end autonomous driving behavior decision
model proposed by Zhao et al., the introduction of deep learning and networked historical
data can solve the problem of a lack of a priori probability. Currently, some models rely on
images to a significant extent. Poor weather conditions, low ambient brightness at night,
and the reflections of the vehicles ahead can result in poor prediction results.

2. Prediction of IoV driving behavior on roads

The application of car-following models and data-driven car-following models in
intelligent transportation systems in IoV environments can increase the intelligence of
ACC systems. These models are based on nonparametric methods (artificial intelligence,
machine learning, deep learning, etc.) and can adapt to the complex driving environments
and aggressive driving behavior in China, but they require a large amount of high-precision
data as a sample dataset.
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Figure 3. Structure chart of IoV driving behavior prediction.

In contrast to independent real-time decision-making by individual intelligent vehicles,
Geng et al. comprehensively considered the a priori probability of traffic rules, driving
experience, and driver style and the HMM-based a posteriori probability to fully realize
the advantages of IoV. This approach reduces the time required for behavior recognition
and trajectory planning and improves the prediction accuracy. Based on the application
of an intelligent rough set of individual intelligent vehicles, the consideration of driving
personalization factors demonstrated by Huang et al. is important. The supplement of such
factors not only realizes the personalized requirements of drivers with different driving
styles, but also improves the algorithmic constraints on the basis of rough sets to ensure
accurate control.

3. Prediction of IoV driving behavior at intersections

The intersection behavior decision model proposed by Song et al. and the multivehicle
cooperative control model at intersections proposed by Duan et al. are considered as exam-
ples for further discussions. Using V2I and V2V technologies, the intersection traffic model
can help AVs judge the traffic conditions of other vehicles at intersections and use dedicated
short-range communication (DSRC) technology to realize multivehicle coordinated control
at unsignalized intersections, which is in line with the development trend of coordinated
vehicle–road development. The introduction of HMM, driver intention analysis, and other
technologies can establish new research directions, enrich the research on autonomous
driving at intersections, and improve the safety and comfort of driving behavior prediction
in intermittent traffic flow.

As these models make driver judgments based on historical vehicle trajectory, without
the influence of the other vehicles entering the intersection, the collected data are imperfect,
and the judgment results have errors. Therefore, future research can use onboard network-
ing equipment, sensors, and CAN or CIDAS data [43] to improve judgment accuracy.

4. Research on Predictive Problems in Mixed Traffic Driving Environments
4.1. Research on Automatic–Manual Mixed Traffic Flow

Existing research generally assumes that AVs have a high level of intelligence and
actual road traffic consists of mixed traffic flow, with different types of vehicles (such as
automatic–manual mixed traffic flow). The study of mixed traffic flow reveals the internal
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mechanism of real traffic and can help build more accurate and faster predictive models
for AVs.

Research on mixed traffic flow comprising automatic and manual driving has gradu-
ally increased in recent years. Bose et al. [44] analyzed the influence of automatic–manual
mixed traffic flow on the traffic flow characteristics and environment in a single lane.
Subsequently, Ioannou et al. [45] analyzed same-scale automatic and manual driving
traffic density maps and simulated the changing characteristics of mixed traffic flow.
Huang et al. [46] proposed a method to enable the coexistence of AVs and manual vehicles,
thereby reducing the cost of highway automation and infrastructure requirements. Qiu [47]
proposed a traffic flow model for mixed flow with automatic and manual driving. Some
scholars believe that if the proportion of intelligent vehicles reaches 80%, the traffic flow
capacity would be twice that of fully manual driving, and traffic congestion would be
reduced by 50% [48].

Research on mixed traffic flows has increased significantly in recent years. Qin et al. [49]
analyzed the differences in traffic behavior between cooperative adaptive cruise control
(CACC)/ACC vehicles and manually driven vehicles and combined their respective ad-
vantages and disadvantages to build a car-following model and establish a theoretical
basis for heterogeneous traffic flow. Ye et al. [50–53] established a model for ICVs in
mixed traffic flows based on a two-lane cellular automation model for heterogeneous
traffic flows. Subsequently, they proposed a modeling method for ICVs based on the chart
method and simulated the model considering factors such as density, speed, performance,
and permeability.

4.2. Research Comments

As shown in Table 5, scholars have conducted extensive research on automatic–manual
mixed traffic flow. Bose et al. and Ioannou et al. applied the Q-K diagram to illustrate that
automated transportation improves transportation efficiency in a study on the importance
of autonomous driving. Huang et al. proposed an autonomous vehicle driving system
(AVDS) that only uses vehicle sensor information, thereby eliminating the need for com-
munication between vehicles. This can help individual intelligence AVs to quickly enter
the market, and it allows manual and automatic vehicles to coexist. Nevertheless, there
are considerable shortcomings with individual intelligent vehicles, and communication
between vehicles is necessary. Therefore, vehicles as part of an IoV system can better coexist
with manual vehicles and individual intelligent vehicles.

Table 5. Research summary of IoV driving behavior prediction.

Author Year Opinion or Model

Bose et al. [44] 1999 Automatic–manual mixed traffic flow characteristics in a single lane
Huang et al. [46] 2000 Coexistence of AVs and manual vehicles

Ioannou et al. [45] 2003 Analyzed and studied automatic and manual driving Q-K diagrams
Qiu et al. [47] 2016 Mixed traffic flow model

Ye et al. [50–53] 2018 ICV modeling method in mixed traffic flow
Qin et al. [49] 2019 Car-following model of heterogeneous traffic flow

From another perspective, the above research showed that disruptions from manual
vehicles would obviate the advantages of AVs. Accordingly, heterogeneous traffic flow
theory becomes significant due to the difficulty of completely eliminating manual driving
in a short time, which may better coordinate the mixed traffic flow.

The above-mentioned research primarily analyzes automatic–manual mixed traffic
flow considering driving safety and efficiency. However, some studies also consider the
mutual influence mechanism of automatic and manual driving, especially in a mixed traffic
flow in an IoV environment. Ye et al. and Qin et al. explored the theoretical basis of the
interaction mechanism of heterogeneous traffic flows.
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5. Conclusions
5.1. Shortcomings

Several studies and experiments related to vehicle automation, in areas such as indi-
vidual intelligence AVs, IoV, AVs, and mixed traffic flow driving behavior prediction, have
been conducted in recent years. These research efforts have yielded invaluable knowledge
and data, which have promoted the development of AVs.

A systematic review of the existing research was performed herein, which revealed
that most traditional individual intelligent vehicle behavior prediction models are only suit-
able for specific traffic scenarios and cannot adapt to complex scenarios, such as complex
intersections. Although the individual intelligent vehicles manufactured by companies
such as Tesla use advanced artificial intelligence and machine learning algorithms, driving
in dynamically changing traffic conditions remains a significant challenge for individual
intelligent vehicles, especially on city roads. The collaborative control of vehicles belonging
to an IoV network can help AVs make more accurate behavior predictions and more reason-
able trajectory planning. However, the current data collection, analysis, and arrangement
methods are not systematic, and training and test datasets are quite poor. Consequently,
IoV technology is not yet suitable for widespread adoption.

Existing driving control algorithms primarily set path tracking accuracy as the main
control target, leading to the frequent starting and stopping of vehicles. Consequently, AVs
are more likely to cause motion sickness compared to traditional vehicles. In addition, the
short reaction times and following distances of AVs can increase the psychological pressure
on persons driving traditional vehicles, creating additional traffic safety hazards. This is
even more prominent in current driving environments with mixed traffic flows.

Considering the prejudgment of vehicle driving behavior, there are numerous limita-
tions in the application of individual intelligent vehicles that require the cooperation of
specific traffic environments, thereby preventing the development of fully autonomous
vehicles. The combination of IoV and AVs has several advantages, but the available training
datasets are not rich enough. Despite being integrated with decision-making processes, the
application of driving behavior prediction remains a significant challenge. Mixed traffic
flow has gradually become an important area of research. Nevertheless, theoretical and
applied research is still relatively rare, and the comfort of autonomous driving in a mixed
driving environment is still poor.

5.2. Prospects

1. Recognition of driving status based on vehicle files

Owing to the relationship between the personality traits of a driver and their driving
behavior, IoV can be used to establish a priori logic that considers the personality of
the driver, vehicle history, traffic rules, etc. When driving on the road, other ICVs can
obtain this logic by scanning the license plates of neighboring vehicles using onboard
cameras. The a priori probability of the driving behavior of the vehicles can be calculated,
and the dynamic Bayesian network or random forest method can be used to calculate
the a posteriori probability and provide efficient and accurate behavior prediction and
trajectory planning.

IoV and CVI can fully exploit the advantages offered by big data; together with ve-
hicle driving history data, they can be used to identify the type of driver and provide
personalized automatic driving control. Furthermore, deep learning algorithms and neural
networks can be used to simulate the driving of experienced drivers in AVs, such that
that the trajectory of autonomous driving satisfies the requirements of different drivers.
In mixed traffic flow environments, different motion planning models are required based
on the driving conditions and vehicles ahead, considering the degree of driving anthropo-
morphism and ride comfort, to satisfy safety requirements.

2. Realization of fully autonomous driving based on all-element traffic information
perception



World Electr. Veh. J. 2021, 12, 88 12 of 15

The “Automotive Driving Automation Classification” was formally implemented in
China on 1 January 2021. It divides driving automation into six levels, i.e., Levels 0–5. Level
0–2 autonomous driving requires the driver to take over dynamic driving tasks during the
entire process. Level 3 represents conditional autonomous driving, which is already present
in several high-end car models such as those produced by Mercedes-Benz, Honda, and
Audi. The realization of Level 4 highly automated driving and Level 5 fully autonomous
driving lies in achieving “autonomy”, which is the direction of current autonomous driving
research efforts.

Based on large-scale, omnidirectional, and complete traffic information perception,
AVs can realize scenario-adaptive driving behavior prediction by comprehensively con-
sidering traffic rules, driving experience, etc., using a trained motion planning model to
predict the future behavior of surrounding vehicles, to realize autonomous driving.

In recent years, artificial intelligence has developed rapidly, and deep learning and
neural networks have been increasingly used in various fields, including transportation.
An all-element traffic information perception system can collect a large amount of credible
traffic data in a short duration of time, provide rich training datasets for machine learning,
and provide accurate and high-quality big data for intelligent driving behavior decision-
making systems based on learning algorithms. Convolutional neural networks, machine
learning, deep reinforcement learning, and other algorithms can be applied to AVs, allowing
them to perform intelligent learning, forming a virtuous circle, and eventually achieving
intelligent, highly autonomous driving or even fully autonomous driving.

3. Virtual simulation experiments

Although an actual vehicle test can provide more realistic results, simulation experi-
ments still offer the advantages of convenience and speed. Considering the authenticity
of a training scene, a more realistic traffic problem can be established at the micro level
by developing an abstract driving framework that captures the details of human driving,
thereby ensuring that various types of complex anthropomorphic driving behaviors are
employed in simulation experiments. The controller can be trained using game engines,
such as Grand Theft Auto V (GTAV), combined with deep learning, to reduce the collection
of actual sample data. After correction and optimization, the controller can be applied to
real-world environments to achieve lane-keeping control.

4. Prediction of driving behavior in mixed traffic flows

The application of IoV can enable the realization of V2X multiterminal interactive
communications. Consequently, behavior prediction between AVs can be more inclined
toward using big data, CVI, IoV, deep learning algorithms, etc., to solve prediction problems.
However, as manual vehicles still dominate the roads, manual–automatic mixed traffic
flow environments will continue to exist for a long time.

In addition, according to current technological development trends and market pene-
tration levels, highly digital and intelligent AVs are difficult to realize in a short period of
time. Therefore, research on predictive problems in mixed traffic driving environments
with different levels of intelligent connectivity is necessary. Moreover, this is a problem
not only for automatic–manual mixed traffic flows, but also between traditional vehicles
without intelligence, individual intelligent vehicles, and ICVs of different intelligence
levels in an IoV environment. For a new ICV, vehicles can achieve interconnections with
other vehicles with the same level of intelligent connectivity. However, for vehicles with
other levels, they must be converted to individual intelligent identification and prediction
systems. Currently, there is little research on this problem.

5. Autonomous “agents”

An autonomous “agent” may be another form of artificial intelligence technology in
AVs, but its use is more like putting a mechanical brain into the AV. This means that AVs
are not only autonomous but also capable of learning to improve their own understanding
of the world.
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The driving brain should have the following functions: (1) accomplishing driving
tasks independently and safely in various complex environments; (2) continuously learning
and updating, performing natural social behaviors and driving behaviors of human beings,
which may help in the process of decision-making in an environment where there are
multiple autonomous vehicles (or even non-autonomous vehicles); (3) sounding an alarm
when security cannot be guaranteed.

However, autonomous “agents” may face enormous legal and ethical issues. On the
one hand, the behavior of autonomous “agents” is highly unpredictable. There are concerns
about their intelligence level being too low or too high or too. Judgments of accident liability
also are cause for concern. After all, it is absurd to convict an AI.
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