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Abstract: The aging of oil-paper insulation in power transformers may cause serious power failures.
Thus, effective monitoring of the condition of the transformer insulation is the key to prevent
major accidents. The purpose of this study was to explore the feasibility of confocal laser Raman
spectroscopy (CLRS) for assessing the aging condition of oil-paper insulation. Oil-paper insulation
samples were subjected to thermal accelerated ageing at 120 ◦C for up to 160 days according to the
procedure described in the IEEE Guide. Meanwhile, the dimension of the Raman spectrum of the
insulation oil was reduced by principal component analysis (PCA). The 160 oil-paper insulation
samples were divided into five aging stages as training samples by clustering analysis and with
the use of the degree of polymerization of the insulating papers. In addition, the features of
the Raman spectrum were used as the inputs of a multi-classification support vector machine.
Finally, 105 oil-paper insulation testing samples aged at a temperature of 130 ◦C were used to further
test the diagnostic capability and universality of the established algorithm. Results demonstrated that
CLRS in conjunction with the PCA-SVM technique provides a new way for aging stage assessment of
oil-paper insulation equipment in the field.

Keywords: Raman spectroscopy; power transformers; aging stage; principal component analysis;
clustering analysis; degree of polymerization; support vector machine

1. Introduction

Transformers are essential components of a power transmission and distribution system.
According to the reports of the International Council of Large Electric Systems (CIGRE), the operating
life of transformers in most countries averages 30 years, and it is influenced by various factors,
including load, manufacturing process, and operating environment [1]. The condition of a transformer
is critical to the safety and reliability of the power system. The probability of an accident from
transformers increases with the deterioration of the insulation. Oil-paper insulation, which is the
main insulation type for oil-immersed transformers, suffers from thermal and electrical aging during
long-term operation. Thus, the identification of the different aging stages of oil-paper insulation,
particularly for transformers running for more than 20 years, becomes particularly critical and
important. Given that the degradation of insulation performance is a major and direct threat to
the reliability of transformer, a study on aging condition monitoring is of considerable importance in
the subject of insulation. Such a study can contribute to insulation diagnosis and lifetime prediction
several years in advance.

The degree of polymerization (DP) in insulation paper is commonly used to characterize the aging
degree of the insulation paper and has been regarded as a basic parameter to evaluate the aging stage
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of oil-paper insulation by the IEEE Guide [2]. On the basis of the massive body of research on the aging
mechanism and aging characteristic of insulation paper, Emsley introduced and improved the kinetic
equation for the degradation reaction of insulation paper to describe the development law of the DP in
the aging process [3–5]. Although DP has been accepted worldwide as the most effective indicator
for the discriminant analysis of the aging stages of insulation paper, it necessitates cutting the power
and hanging the cover of the transformer during sampling and measurement; as a result, the field
application of DP is restricted. For this reason, the aging state of the transformer insulation is mainly
indirectly reflected by the aging characteristics of the oil-paper insulation, namely its degradation and
dissolution in insulation oil [6].

Shroff studied the formation of furfural in the paper aging process and confirmed that an
approximate logarithmic relationship exists between the furfural content and the DP of the insulation
paper [7]. Thus, the concentration of furfural can serve as an essential characteristic to assess
the aging condition of the insulation [8–11]. Currently, high performance liquid chromatography
(HPLC), ultraviolet (UV) spectrophotometry and the colorimetric method are the major methods to
detect the concentration of furfural dissolved in oil. However, these methods have their respective
disadvantages. The drawbacks of HPLC include complex operation, difficult elution, and extra-column
effect existence [12]. UV spectrophotometry has poor stability and is susceptible to the organic matter
in the transformer oil [13]. Toluidine, which is used in the colorimetric method, is recognized as
one of the most potent carcinogens in the world; furthermore, the colorimetric method has lower
measurement accuracy than the other methods [14].

The thermal and electrical faults that develop in an oil-immersed power transformer are typically
associated with the formation of dissolved gases, including CO, CO2, CH4, C2H4, C2H2, C2H6

and H2 [15–17]. Used for several decades in testing and monitoring oil-immersed transformers,
dissolved gas analysis (DGA) has been accepted worldwide as an effective method for the diagnosis of
the aging stage of power transformers [18–20]. Various gas-in-oil detection methods have been
developed, including gas chromatography (GC), which is a well-known diagnostic method for
accurately determining the concentrations of nine different gases [21,22]. However, the performance of
chromatograph columns degrades with time, and GC monitoring systems need to be operated in a
laboratory by highly qualified personnel.

Raman spectroscopy has been widely used in food, materials, chemistry, biochemistry and other
fields for qualitative or quantitative analyses [23–27]. It shows considerable potential in the early
failure diagnosis for transformers. Furfural was previously characterized by the Raman signal at
1707 cm−1 and reached a detection limit of 14.4 mg/L [28]. In recent years, Raman detection for
dissolved gases in oil has also been proposed [29]. However, the application of Raman spectra to the
assessment of the aging condition of a transformer has been rarely reported. Accordingly, the primary
objectives of this study are to explore the Raman spectral characteristics of oil-paper insulation, and to
establish a method of its application to aging stage assessment of oil-immersed transformers.

In this study, thermal accelerated aging experiments were conducted at 120 ◦C for up to 160 days
in order to obtain oil-paper samples [2]. The mapping relationship between the Raman signal of the
insulation oil and the DP of the insulation paper was investigated. Firstly, a principal component
analysis (PCA) was conducted to extract the representative features from the Raman signal for use
in the aging condition diagnosis. Secondly, the dimension-reduced spectral data were utilized in
the clustering analysis to divide the sample into five categories, which correspond to the five aging
stages according to the average DP of the insulation paper immersed in oil. Next, a genetic algorithm
(GA)-optimized multi-classification support vector machine (SVM) was employed to develop a suitable
diagnostic algorithm for assessing the aging condition of the oil-paper insulation. Finally, 105 more
insulation samples were aged at 130 ◦C and used to further test the diagnosis performance of the
established algorithm model.
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2. Materials and Methods

2.1. Raman Instrumentation

The working principle of the platform used in the Raman spectroscopic studies of insulation oil
is illustrated in Figure 1, the excitation source is focused on the oil sample by confocal microscopy
to excite Raman scattering. Subsequently, the scattered light is collected by an objective and guided
into a charge-coupled device (CCD), which is connected to the spectrometer controlled by a personal
computer. The Raman spectra of the insulation oil associated is displayed on the computer screen in
real time and can be saved for further analysis.
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Figure 1. Schematic diagram of the CLRS liquid detection test platform.

On the basis of the given operating principle, a Raman detection platform was constructed to study
the Raman spectra of the insulation oil. The system mainly consists of a 532 nm CW laser with a power
of 500 mW as the excitation source, and its current controller (LDX-3232) and temperature controller
(TCU151); a 50× long-focal-length objective used for laser convergence and signal collection, which
has a high spatial resolution to avoid the interferences produced by the entrance window; a Video
Cassette Recorder (VCR) helping to adjust the facula; a back-thinned CCD (refrigeration temperature:
−85 ◦C, distinguishability: 2000 × 256, quantum efficiency: >90%), an Andor 500i series spectrometer
with three blazed gratings (600 lines per 500 nm, 1800 lines per 500 nm, and 1200 lines per 750 nm)
and the focal length of the spectrometer was 500 mm. The system acquired the Raman spectra with
light intensity on the oil sample stabilized at 35 mW, the spectrum over the wavenumber range of
390–3082 cm−1. Exposure time and the number of accumulations were respectively set to 5 s and three
times to avoid signal oversaturation and light degradation of the oil characteristics. Moreover, the
width of the entrance slit of the spectrometer was set to 100 µm.

2.2. Thermal Accelerated Aging Experiment

Thermal accelerated aging experiments were conducted to obtain oil-paper samples at different
aging stages in a short time. Performing accelerated aging in sealed systems is recommended in the
IEEE loading guide to simulate the real aging of modern sealed transformers [2]. The 25# transformer
mineral oil was provided by Chuanrun Lubricant Company, China. The cellulose papers samples
provided by Baoqing Paper Co. Ltd. (Hunan, China) had a thickness of 0.3 mm and a diameter of
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32 mm. The samples were pretreated as follows: Firstly, 17.6 g of papers samples were taken out every
time and placed in a glass bottle (250 mL), all papers samples were placed in a vacuum box and dried
at 90 ◦C for 48 h. The temperature of the vacuum box was then adjusted to 40 ◦C. Secondly, fresh
mineral oil was then added into each bottle at an oil/paper mass weight ratio of 10:1 (each bottle
contains 176 g of oil and 17.6 g of paper). Thirdly, all the bottles were placed back to the vacuum box.
The temperature of the vacuum box was maintained at 90 ◦C for another 48 h and then cooled down to
room temperature. Subsequently, each bottle was filled with dry nitrogen gas and then sealed (1 atm).
Finally, the 160 samples were placed in aging ovens and heated to 120 ◦C for the accelerated thermal
aging of up to 160 days. Twenty samples were collected in days 1, 10, 20, 40, 70, 102, 110, and 160 to
obtain oil-paper insulation samples with different aging states.

Before CLRS measurement was performed, the oil samples were cooled naturally to room
temperature (28 ◦C). For the analysis of aging condition of the oil-paper insulation, the DP of the
oil-impregnated papers aged with the oil was measured according to ASTM D4243-99.

2.3. Data Pre-Processing

The average spectral data set of five repeated Raman measurements on each insulation oil sample
was used for oil classification to reduce the spectral measurement errors in this study. The raw spectra
acquired from the insulation oil in the 390–3082 cm−1 range represented a combination of prominent
oil fluorescence, oil Raman scattering signals, and noise. Baseline commonly exists in the spectrum
detection, and it is mainly caused by fluorescent substance generated during the aging process,
the fluorescence of oil, impurities in oil and the detecting equipment. The baseline will bring a very
adverse impact on the extraction of spectral features. Accordingly, baseline correction is important
means to solve this problem, and is an important part of Raman spectrum signal preprocessing.
The raw spectra were preprocessed by adjacent five-point smoothing to reduce the noise. For the
polynomial baseline correction method, the baseline was estimated using cubic spline functions [30–32],
which were obtained by the least-squares criterion. As shown in Figure 2, the function fitted by the
points was then subtracted from the raw spectrum to obtain pure Raman spectrum of each oil sample.
Each of the baseline-subtracted Raman spectra was normalized to the integrated area under the curve
in the wavenumber range of 390–3082 cm−1 to enable a better comparison of the spectral shapes and
relative peak intensities among the different oil samples.
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2.4. Empirical Approach

Oil color is one of the important indicators of insulation performance. In this study, the color of
the insulation oil produced by the same company became darker as aging time is extended, as shown
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in Figure 3a. Fresh oil is usually pale yellow and transparent. The mechanical mixture and free carbon
generated the aging characteristic groups, such as C=C and C=O, which were responsible for darkening
and browning of oil in the process of aging experiment. As shown in Figure 3b, the deepening of the
color of the insulation oil resulted in an increase in the baseline noise; as a result, some details of the
spectra were covered, and the signal-to-noise ratio was reduced.
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2.5. Multivariate Analysis

A high dimension of the Raman spectral space (each Raman spectrum had 2000 data points)
results in the complexity of computation and inefficiency of optimization [33]. Thus, in this study,
PCA was first performed on the insulation oil Raman data set to reduce the dimension of the Raman
spectral space whilst retaining the most diagnostically significant information for oil classification.
The entire spectrum was standardized so that the mean of the spectrum was zero and the standard
deviation of all the spectral intensities was one to eliminate the influence of inter- and intra-subject
spectral variability on PCA. Mean centering ensured that the principal components (PCs) form an
orthogonal basis [34,35]. The standardized Raman data sets were assembled into data matrices with
feature columns and instance case rows. Thus, PCA was performed on the standardized spectral data
matrices to generate PCs comprising a reduced number of orthogonal variables, which accounted for
most of the total variance in the original spectra. PC scores reflected the differences between each
class. These significant PC scores were applied to select the training samples for clustering analysis
and develop the SVM algorithm for multiclass classification.
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The SVM used was a binary classifier that assessed the aging stage of the oil-paper insulation in
this study as a multi-classification problem. A multi-classification method called one-against-one is
constructed to solve the multi-classification problem and recognize the aging stage of the oil-paper
insulation in transformers [36]. The basic principle of the “one-against-one” method is that k (k− 1)/2
classifiers can be constructed to solve a k-class discrimination problem and each of these classifiers is
trained to distinguish two classes. With the training data assumed to belong to the mth and the nth
class, the multi-classifier can be derived by solving the binary classifier problem:

min
ω,b,ξ

1
2 (ω

mn)T (ωmn) + C
k
∑

i=1

(
ξmn

i
)
(ωmn)T ξi ≥ 0

i f yi = m, (ωmn)T φ(xt) + bmn ≥ 1− ξi
mn

i f yi = n, (ωmn)T φ(xt) + bmn ≤ −1 + ξi
mn

(1)

where (x1, y1) , · · ·, (xl , yl) denote the training data; xi represents the attributes (features);
yi ∈ {1, · · ·, k} is the target value (class labels); φ is the function used to map xi to a higher dimensional
space; ω = [ω1, ω2, · · ·, ωN ]

T is the linear weight vector which links the feature space to output space;
b is the threshold; and C is the penalty parameter of the error term. The training samples were mapped
from the input space into a higher dimensional feature space via a mapping function φ. The scalar
product φ (xi) ·φ

(
xj
)

is calculated directly by computing the kernel function k
(

xi, xj
)

for given training
data in an input space. Radial basis function (RBF) is a common kernel function as the follows.

k
(

xi, xj
)
= exp

(
−γ||xi − xj||2

)
(2)

where γ is the kernel parameter, and γ > 0.

3. Results

3.1. Classification of the Training Samples

We employed the entire Raman spectrum (390–3082 cm−1) to determine the most diagnostically
significant Raman features and to improve the analysis and classification of the insulation
oil. Firstly, the raw spectra were treated using the baseline correction and denoising method.
After normalization, PCA was employed to observe the latent distribution of the samples subjected to
the spectral pre-processing methods. As shown in Figure 4, the obtained PC scores indicate that the
cumulative variance proportion of the first 12 PCs (PC1, PC2, . . . , PC12) reaches about 95%, which is
diagnostically significant for discriminating oil-paper insulation of different aging conditions.
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Although PCA analysis does not provide the answer for what the physical meaning of the
PC component is, the loading plot can provide some hints related to the characteristic vibrational
frequencies giving the dominant contribution to the components. Figure 5 is PCA loading plots 1, 2,
3 and 4 on the Raman spectra of the insulation oil; the loading indicated the variable's contribution
to the principal component. The vibration characteristics of the loading weight are closely related to
the contribution of the chemical composition to the principal components. Thus, the loading plots
show us which vibrational bands have significantly contributed to the differences seen in the PCA
plot, and provide more information on the Raman spectra of oil in each aging stage.
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Figure 5. The first four diagnostically significant principal components (PCs). PCA loading plot for
(a) PC1; (b) PC2; (c) PC3 and (d) PC4.

Some relatively high (positive and negative) values are marked and associated with their
corresponding variables in the Raman spectra, such as peaks from furfural (1418 cm−1, 1470 cm−1

and 1670 cm−1), CO (2144 cm−1), CO2 (2802 cm−1); acetone, which is the recently proposed aging
characteristic, generated peaks at 526 cm−1, 780 cm−1, 1211 cm−1 and 1712 cm−1 [29,37]. From the
loading plot we can see that PC1 has a high correlation ranging all the Raman bands. PC2 has a
positive correlation in the Raman bands of 1000–1500 cm−1 and 2750–3000 cm−1; PC3 has a high
correlation in the Raman bands of 400–600 cm−1, 1900–2500 cm−1 and 2750–3000 cm−1; and PC4 has a
high correlation in the Raman bands of 400–600 cm−1 and 2000–2800 cm−1.

Every 20 thermal accelerated aging samples were taken out from the aging ovens at eight time
points of one, 10, 20, 40, 70, 102, 110 and 160 days and numbered from #1 to #160. The samples
were divided into eight groups: A, B, C, D, E, F, G and H. The DP of the oil-impregnated papers was
measured and the clustering analysis was conducted on the low-dimension features of all 160 oil
samples. The clustering results of oil at different aging times provided the basis for the classification
of the training samples. Mahalanobis distance and shortest distance methods were employed in
clustering the characterization factors without any prior knowledge [38]. The clustering results are
shown in Figure 6.
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Observing the clustering spectra without any prior reference, we arrived at the following
conclusions: firstly, the 160 samples could be divided into two classes when the distance of the
samples was approximately 16.5. The samples aged for only one day (nearly fresh) were separated
from those aged for more than 10 days. Secondly, when the distance of the samples was reduced to
15.5, the seriously aged (160 days) samples could be separated from the others. When the distance
was set to 5–13, the samples aged for 10 days; 20, 40 and 70 days; 102 and 110 days belonged to three
different aging stages, respectively. However, certain crosses occurred between classes in the clustering
result. For instance, a few samples in group E (70 days) joined class IV with groups F (102 days) and
G (110 days). Furthermore, some samples in group D (40 days) even jumped to class V and were
classified together with group H (160 days). Nevertheless, we still divided the 160 training samples into
five classes according to the real aging time. Corresponding to the average DPs of the oil-impregnated
papers in the groups, these five classes represented the five aging stages.

According to the guide for the diagnosis of insulation aging in oil-immersed power
transformers [39,40], the five training classes of the clustering results in Figure 7a represented five
aging stages: fresh condition (DP > 800), early age (500 < DP < 800), medium age (250 < DP < 500),
late age (150 < DP < 250) and terminal age (DP < 150). Figure 7b illustrated the utility of the first
three PCs for the classification of the training samples. PC1, PC2 and PC3 retained high percentages
of the total variance (44.77%, 31.06% and 8.23%, respectively). With the information on PC1, PC2
and PC3, classes I, II and V were clearly distinguished; however, the identification of class III and
class IV initially did not achieve an ideal effect. By combined analysis of the loading plot (Figure 5)
and the scores plot (Figure 7b), we can see that the aging process has a positive correlation with
PC2, which can be largely ascribed to the generation of the typical aging characteristics (furfural, CO
and CO2). Besides, the acetone shows a clear contribution to PC2. During the aging process, the
break and formation of C–C and C=C may influence the contribution of bands 400–600 cm−1 and
2750–3000 cm−1. The information in the loading plot can also be used to discriminate the aging stage
of the oil-paper insulation.
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3.2. Results of the Multi-Classification SVM

Accordingly, all 12 diagnostically significant PCs were loaded into the multi-classification SVM
model to generate a suitable diagnostic algorithm for aging stage classification and to improve oil
diagnosis. Table 1 shows the classification results based on the PCA-SVM technique coupled with the
10-fold cross-validation method.

Table 1. Confusion matrix for the support vector machine.

True Class
Predicted Class

True Positive Rates Positive Predictive Values
I II III IV V

I 19 0 1 0 0 95.0% 100%
II 0 17 3 0 0 85.0% 94.4%
III 0 1 59 0 0 98.3% 84.3%
IV 0 0 6 34 0 85.0% 100%
V 0 0 1 0 19 95.0% 100%

The classification results indicated that the PCA-SVM diagnostic algorithm demonstrated a
significantly good capability in diagnosing the oil-paper insulation aging stage. In the 10-fold
cross-validation for the original cases, the average accuracy of the 10 instances of training and testing
was 92.5%. The method had the capability to distinguish fresh oil and serious aged oil clearly, but had
a slight difficulty with the middle three aging stages.

In this study, the penalty parameter C and the kernel function parameters γ for SVM can be
optimized by a genetic algorithm [40]. After being trained with the feature quality of the historic
training data, the best parameters C and γ for SVM can be determined. For each chromosome
representing C, γ and selected features, the training dataset is used to train the SVM classifier, while
the testing dataset is used to calculate the classification accuracy. When the classification accuracy is
obtained, each chromosome is evaluated by fitness function [41]. The fitness curve of seeking for the
best C and γ of the SVM by GA is shown in Figure 8a. The best C and γ are 17.3 and 1.44, respectively.
It can be seen from Figure 8b that the accuracy of the 10-fold cross-validation [42] has been raised to
99.37% (159/160).
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3.3. Testing for the Established Diagnostic Method

In order to test the diagnostic capability and universality of the established algorithm, 105 testing
samples with another weight ratio of oil and paper were accelerated for aging at 130 ◦C. The samples
were prepared and aged following the procedure mentioned before. Every 15 samples were taken
out from the aging ovens at aging times of zero, three, 11, 20, 30, 38 and 70 days. The average DP of
the oil-impregnated papers at each aging time was measured. Although detecting results for the DPs
of samples in same aging time may fluctuate a lot, the seven groups of samples were divided into
five aging stages according to the average DP of each group. The classification result was shown in
Figure 9a; there are 30, 15, 30, 15, 15 samples in each class.
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(b) Scatter plots of the PC scores for five classes of oil samples, with the PC scores derived from the
Raman spectra.

The Raman spectrum of every oil sample was detected using the same experimental procedure.
Firstly, each raw Raman spectrum was pre-treated by smoothing and baseline correction. Then, the
dimension was reduced to 12 features by using the same transfer matrix obtained and used for the
training samples in the PCA process. Figure 9b demonstrated the first three PCs of the 105 samples;
it indicated that the testing samples, especially the middle three classes, were more confusing than
the training samples. However, the fresh condition and serious aging still had high identification.
Finally, the processed spectral data set was recognized by our multi-classification SVM trained
by the 160 training samples mentioned before. Table 2 shows the testing diagnosis results by the
established algorithm.
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Table 2. Results of the testing experiment using GA-SVM.

Aging Time (Day) Average DP True Class
Predicted Class Accuracy

I II III IV V

0 1124 I 14 0 1 0 0 93.3%
3 916 I 12 1 1 1 0 80.0%

11 621 II 2 9 2 1 1 60.0%
20 449 III 1 3 10 1 0 66.7%
30 382 III 0 1 12 0 2 80.0%
38 221 IV 1 1 3 8 2 53.3%
70 132 V 0 0 1 2 12 80.0%

The results of the testing experiment were evaluated by the classification result of the average
DP, which showed a decrease in the accuracy of the data set (73.3%). Results of the DP measurement
indicated that the aging stages of the tested samples were more confusing than those of the training
samples. The aging stage of some individual samples (e.g., samples aged for 20, 30 and 38 days)
between two adjacent aging times was hardly identified even though the two groups had a clear
difference in average DP. Furthermore, the errors in the DP measurement and spectral detection also
had an impact on the accuracy of the testing experiment.

4. Discussion

Given that the oil-paper insulation aging process is part of a widely accepted multistep, continuum
progression cascade from fresh insulation oil to insulation deterioration, the component and content
distinction of insulation oils at each aging stage is vague, rendering the characterization and
discrimination of these oils by Raman spectral analysis more challenging. The Raman spectral pattern
between oil samples at each aging stage could be very similar. For these reasons, accurately classified
training samples should be obtained to develop a robust diagnostic algorithm. In this study, the
training samples were classified by clustering analysis and defined by the widely accepted gold
standard for assessing the transformer aging stage, i.e., the DP of the papers aged together with oil.

However, this study did not focus on any specific characteristic products of oil-paper insulation
aging for the following reasons: (1) The concentration of furfural in oil will fluctuate with a change
in the operating temperature of a transformer; (2) Different weight ratio of oil and paper in a
transformer will lead to different furfural content detection results for equipment at the same aging
stage; (3) Even if gases are detected accurately, the employment of the most used methods (e.g., Rogers,
International Electrotechnical Commission (IEC)ratio and Duval triangle) for DGA data may yield a
certain percentage of incorrect diagnoses, and their significance is also easily misinterpreted [6]. In a
Raman fingerprint information analysis, the quantitative detection of the specific components of the
sample is not required; only the contents of the chemical components and the proportion relationship
in the form of a macroscopic spectral signal are needed. Thus, the problem resulting from the presence
of numerous components in transformer oil and the difficulties in qualitative and quantitative analyses
are mitigated.

Although this study has provided milestone contributions, further work may focus on the
following aspects. Firstly, the in situ detection based on Raman technology has not yet realized
a precise quantitative analysis for the aging characteristics of substances in mineral oil. With the
development of Raman detecting technology, such as the use of surface-enhanced Raman spectroscopy,
the difference between insulation oil in every aging stage may be highlighted, and may ultimately
realize quantitative analysis for characteristics in oil. Secondly, all the materials in this study are
provided by the same company, prepared in the same mode, and aged in the same environment,
whereas real operating transformers have different materials, structures, aging environments, and
other conditions. Thirdly, the related data processing method and classification algorithm can still be
optimized to improve the accuracy of the diagnosis. In order to make this diagnostic method suitable
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for field application, a great deal of work is required to collect oil-paper samples from transformer
substations, which is helpful for the growth of the diagnostic model.

5. Conclusions

In summary, for the purpose of using more information contained in the Raman spectra for
spectral analysis, a multivariate statistical analysis using an entire spectrum to determine the most
diagnostically significant spectral features was proposed. The training samples were divided into five
classes by cluster analysis and defined as five aging stages according to the DP of the insulating paper.
The final accuracy of multi-classification SVM is 99.37% by 10-fold cross-validation. Although the
algorithm did not perform as expected in the final test, the accuracy can principally meet the demand of
engineering applications. The diagnosis accuracy can be further improved by enhancing the detection
technology, adopting a higher laser power, classifying training samples accurately, adopting surface
enhanced Raman scattering (SERS) and optimizing the algorithm. Therefore, the CLRS method can
provide a new mode for realizing a fast, non-destructive, and comprehensive assessment of the aging
state of oil-paper insulation.
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