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Abstract: Pixel-based and object-based classifications are two commonly used approaches in
extracting land cover information from remote sensing images. However, they each have their
own inherent merits and limitations. This study, therefore, proposes a new classification method
through the integration of pixel-based and object-based classifications (IPOC). Firstly, it employs
pixel-based soft classification to obtain the class proportions of pixels to characterize the land cover
details from pixel-scale properties. Secondly, it adopts area-to-point kriging to explore the class spatial
dependence between objects for each pixel from object-based soft classification results. Thirdly, the
class proportions of pixels and the class spatial dependence of pixels are fused as the class occurrence
of pixels. Last, a linear optimization model on objects is built to determine the optimal class label of
pixels within each object. Two remote sensing images are used to evaluate the effectiveness of IPOC.
The experimental results demonstrate that IPOC performs better than the traditional pixel-based
hard classification and object-based hard classification methods. Specifically, the overall accuracy
of IPOC is 7.64% higher than that of pixel-based hard classification and 4.64% greater than that of
object-based hard classification in the first experiment, while the overall accuracy improvements in
the second experiment are 3.59% and 3.42%, respectively. Meanwhile, IPOC produces less salt and
pepper effect than the pixel-based hard classification method and generates more accurate land cover
details and small patches than the object-based hard classification method.

Keywords: land cover mapping; mixed object; uncertainty; pixel-based classification; object-based
classification; integration

1. Introduction

Land cover is a fundamental variable in many scientific studies such as resource investigations,
global climate change, and sustainable development [1–3]. The use of classifications is an efficient
way to extract land cover information from remote sensing images [4,5]. Classification approaches
can be divided into two general categories: (i) pixel-based classification, and (ii) object-based
classification [6,7]. Pixel-based classification approaches use the pixel as the basic analysis unit
while object-based classification approaches employ the object (i.e., a group of adjacent pixels) as
the basic analysis unit [6]. Pixel-based classification contains mainly two types: (i) pixel-based hard
classification, and (ii) pixel-based soft classification (PSC) (also termed as spectral unmixing) [7].
Pixel-based hard classification supposes each pixel is pure and it classifies individual pixels into
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mutually exclusive land cover classes in terms of their spectral properties. By contrast, PSC produces
the proportions (i.e., possibilities of class occurrence) of land cover classes within each pixel because
mixed pixels that contain more than one class are inevitable in various remote sensing images [8].
Usually, PSC results can be converted into pixel-based hard classification results by assigning the
class label with the maximum proportion to the pixel. Pixel-based classification has long been the
mainstay technique for classifying remote sensing images [9,10], especially low/medium spatial
resolution remote sensing images (e.g., MODIS images and Landsat images). In recent years, with the
advent of high and very-high spatial resolution remote sensing images, the advanced object-based
classification has been developed [6]. Object-based classification has two differences from pixel-based
classification. The first difference is that object-based classification performs in units of objects
derived from image segmentation whereas the process of pixel-based classification is directly based on
image pixels. The second difference is that pixel-based classification uses mainly the pixels’ spectral
properties while object-based classification employs not only spectral properties of objects but also
objects’ spatial, textural, and shape properties [6]. Despite these differences, both pixel-based and
object-based classifications have achieved a relatively satisfactory performance in extracting land
cover information from different remote sensing images [6,7]; each has their own inherent merits
and limitations. Pixel-based classification does not change the spectral properties of the pixels and
may preserve land cover details; however, it is difficult to use complementary properties (e.g., spatial
structures) [11,12], which may lead to the salt and pepper effect and the unmaintained structure of
land cover patches in classified maps [6,13]. Although object-based classification can use both spectral
and complementary properties of objects, the spectral properties of objects are smoothed by image
segmentation [14]; the segmentation errors caused by under-segmentation and over-segmentation
could affect the accuracy of object-based classification results [15]. The smoothed spectral properties
of objects may be suitable for heterogeneous land areas. However, they are inappropriate for
homogeneous land regions because the spectral separability between different classes are smoothed and
reduced in homogeneous areas [6,14], especially for medium spatial resolution remote sensing images.
Generating accurate image segmentation results is considered as the crucial process in object-based
classification; however, image segmentation errors are often inevitable [6,13,15–17]. For instance,
image segmentation usually produces the mis-segmented boundary of objects (e.g., the object marked
by the red polygon in Figure 1a). Meanwhile, some important small land cover patches cannot be
successfully segmented and they are merged into adjacent objects (e.g., the object marked by the red
polygon in Figure 1b). Basically, the two marked objects are mixed objects that include more than one
land cover class [15,18]. The mixed object in Figure 1a could be regarded as the classic high-resolution
type defined by Woodcock and Strahler [19], where the segmented objects are smaller than the objects
of interest and they often occur in intersection regions between different large land cover patches.
Land cover information in the intersection region of this type of mixed objects is often spatially related
with neighboring objects. By contrast, the mixed object in Figure 1b could be viewed as the classic
low-resolution type [19,20], where the segmented objects are larger than the objects of interest and
they usually involve isolated small land cover patches. In traditional object-based classification, mixed
objects have mixed properties of different land cover classes and all pixels within each mixed object
have to be assigned to the same class (i.e., a hard classification process on objects), and thus reducing
the accuracy of classified maps [15].
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Figure 1. Mixed objects. (a) A high-resolution type mixed object where the size of the segmented 
object with the red boundary is smaller than that of the water object; (b) A low-resolution type mixed 
object where the size of the segmented object with the red boundary is larger than that of its inner 
isolated patch. 

To address the aforementioned problems in the object-based classification, several studies have 
been conducted to combine pixel-based and object-based classifications to improve the accuracy of 
land cover maps [14,21–27]. They can be divided into three groups: (i) majority rule; (ii) the best class 
merging rule; and (iii) expert knowledge. The methods in the group of majority rule first perform 
pixel-based classification and image segmentation and then they assign an object to a specific class 
that has the majority number of pixels within the object in pixel-based classified maps [21,22]. The 
second group of methods first implement both pixel-based and object-based classifications and then 
the result of each class with the highest accuracy from either the pixel-based or object-based classified 
map is selected and all selected results are finally merged into a combined classification map [14,24]. 
The last group of methods mainly builds comprehensive decision rules to assign each object to a 
particular class according to expert knowledge [23,25–27]. Although these methods have achieved 
improved land cover maps, less attention has been paid to handling the mixed object problem for 
producing detailed land cover information within a mixed object. Mixed objects are the analog of 
mixed pixels. In the pixel-based classification, the super-resolution mapping (SRM) technique was 
developed as a post-processing step of PSC to deal with the land cover spatial distribution 
uncertainty of mixed pixels. SRM can determine where different classes spatially distribute within a 
mixed pixel [20,28–40]. Unfortunately, no research such as SRM for mixed objects has been proposed 
for handling the land cover spatial distribution uncertainty of mixed objects by estimating the 
accurate spatial distribution of different classes within mixed objects at the pixel scale. 

The purpose of this study is to propose a novel classification method through the integration of 
pixel-based and object-based classifications (IPOC). It aims to estimate where different land cover 
classes spatially distribute within mixed objects in traditional remote sensing image classifications. 
IPOC uses the basic idea of SRM to deal with the mixed object uncertainty problem by taking 
advantage of both pixel-based and object-based classifications. The class proportions of pixels 
generated by PSC are used to represent land cover details pixel by pixel, especially the small land 
cover patches in low-resolution mixed objects (e.g., the low-resolution mixed object in Figure 1b). The 
class spatial relationships are explored from object-based soft classification (OSC) results for each 
pixel to characterize the class spatial dependence between objects because some mis-segmented land 
cover patches in the intersection regions (e.g., the high-resolution type mixed object in Figure 1a) are 
usually spatially dependent on neighboring objects. The class proportions of pixels and the class 
spatial dependence of pixels are further fused to determine the optimal class labels of pixels within 
each object. Two experiments are conducted to assess the effectiveness of IPOC. 
  

Figure 1. Mixed objects. (a) A high-resolution type mixed object where the size of the segmented
object with the red boundary is smaller than that of the water object; (b) A low-resolution type mixed
object where the size of the segmented object with the red boundary is larger than that of its inner
isolated patch.

To address the aforementioned problems in the object-based classification, several studies have
been conducted to combine pixel-based and object-based classifications to improve the accuracy of
land cover maps [14,21–27]. They can be divided into three groups: (i) majority rule; (ii) the best class
merging rule; and (iii) expert knowledge. The methods in the group of majority rule first perform
pixel-based classification and image segmentation and then they assign an object to a specific class that
has the majority number of pixels within the object in pixel-based classified maps [21,22]. The second
group of methods first implement both pixel-based and object-based classifications and then the result
of each class with the highest accuracy from either the pixel-based or object-based classified map is
selected and all selected results are finally merged into a combined classification map [14,24]. The last
group of methods mainly builds comprehensive decision rules to assign each object to a particular
class according to expert knowledge [23,25–27]. Although these methods have achieved improved
land cover maps, less attention has been paid to handling the mixed object problem for producing
detailed land cover information within a mixed object. Mixed objects are the analog of mixed pixels.
In the pixel-based classification, the super-resolution mapping (SRM) technique was developed as
a post-processing step of PSC to deal with the land cover spatial distribution uncertainty of mixed
pixels. SRM can determine where different classes spatially distribute within a mixed pixel [20,28–40].
Unfortunately, no research such as SRM for mixed objects has been proposed for handling the land
cover spatial distribution uncertainty of mixed objects by estimating the accurate spatial distribution
of different classes within mixed objects at the pixel scale.

The purpose of this study is to propose a novel classification method through the integration
of pixel-based and object-based classifications (IPOC). It aims to estimate where different land cover
classes spatially distribute within mixed objects in traditional remote sensing image classifications.
IPOC uses the basic idea of SRM to deal with the mixed object uncertainty problem by taking
advantage of both pixel-based and object-based classifications. The class proportions of pixels
generated by PSC are used to represent land cover details pixel by pixel, especially the small land
cover patches in low-resolution mixed objects (e.g., the low-resolution mixed object in Figure 1b).
The class spatial relationships are explored from object-based soft classification (OSC) results for each
pixel to characterize the class spatial dependence between objects because some mis-segmented land
cover patches in the intersection regions (e.g., the high-resolution type mixed object in Figure 1a) are
usually spatially dependent on neighboring objects. The class proportions of pixels and the class
spatial dependence of pixels are further fused to determine the optimal class labels of pixels within
each object. Two experiments are conducted to assess the effectiveness of IPOC.
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2. Methods

The flowchart of IPOC is presented in Figure 2. With the inputs of remote sensing images and
training samples, IPOC involves four main processes: (i) generating the land cover class proportions
of each pixel and each object; (ii) estimating the class spatial dependence from object-scale properties
for each pixel; (iii) fusing the class proportions and the class spatial dependence of pixels; and
(iv) determining the optimal class label of each pixel within an object. More details about the four
processes are described below.
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Figure 2. Flowchart of the integration of pixel-based and object-based classifications (IPOC).

2.1. Generating the Class Proportions of Pixels and Objects

Pixel-based classification is able to represent land cover details pixel by pixel according to
unsmoothed spectral properties. Object-based classification not only uses the spectral properties
of objects but also considers objects’ complementary properties, such as spatial structures. Therefore,
they are involved in IPOC to make full use of pixel-based and object-based classifications. Both PSC
and OSC results can provide the class proportions (between 0 and 1) of the analysis units (i.e., pixel
and object) to describe how much area of each class the unit contains. IPOC uses the PSC to generate
the class proportions of pixels, which facilitates in characterizing the land cover details for each pixel.
The OSC is involved in IPOC to use spectral and complementary properties of objects and produces
the class proportions for each object. It is noteworthy that both PSC and OSC can generate the class
proportions of each analysis unit by a soft classifier (e.g., a soft support vector machine classifier).

2.2. Estimating the Class Spatial Dependence from Object-Scale Properties for Each Pixel

Although PSC results provide the class proportions pixel by pixel, OSC results cannot specify
the pixels’ class proportions using object-scale properties. Meanwhile, the class proportions of pixels
generated only by PSC cannot use object-scale spectral and complementary properties. Furthermore,
the class spatial relationships (i.e., dependence) between objects shown in Figure 1 fail to use pixel
by pixel in PSC. Therefore, in order to consider object-scale properties and the land cover spatial
dependence between objects, the area-to-point kriging [41] is used to estimate the class spatial
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dependence from OSC results for each pixel. Area-to-point kriging (ATPK) is an advanced geostatistical
technique based on the spatial dependence theory. It is able to consider the spatial relationships
between irregular areas with different shapes and sizes (e.g., objects) to estimate the spatial dependence
of attributes for fine units (e.g., points or pixels) within each area using neighboring areas [41].
ATPK estimates the attribute value of fine units within each area using a linear combination of
neighboring areas. In this paper, the area and point in ATPK correspond to the object and the centroid
of the pixel, respectively.

Suppose X to be the remote sensing image with M pixels and K land cover classes. Let Fk(Or)

be the kth class proportion for object Or(r = 1, 2, . . . , R) derived from OSC, where object Or consists
of N pixels xn(n = 1, 2, . . . , N). With OSC results as inputs, ATPK can estimate the kth class spatial
dependence measurement of pixel xn using a linear combination of the objects’ proportions of the kth
class as

Dk(xn) =
R′

∑
r=1

λr(xn)·Fk(Or) (1)

where Dk(xn) is the kth class spatial dependence measurement for pixel xn within an object; R′ is the
number of neighboring objects used for estimating the class spatial dependence measurements; λr(xn)

is the kriging weight for pixel xn from object Or and it is generated by solving a kriging system using
R′

∑
r′=1

λr′(xn)·C(Or, Or′) + µ(xn) = C(Or, xn)

R′

∑
r′=1

λr′(xn) = 1
(2)

where C(Or, Or′) is the area-to-area covariance between arbitrary two objects Or and Or′ ; C(Or, xn) is
the area-to-point covariance between object Or and pixel xn; µ(xn) is the Lagrange multiplier [41].

It is noteworthy that ATPK needs the point support (i.e., pixel scale) model of covariance or
semivariance for each class before its implementation in Equation (2). The point support model
characterizes the spatial variation of an attribute (e.g., a land cover class) at the target support.
The point support model is often hard to obtain directly because of only areal data being available [42].
Fortunately, there is an indirect way to get the point support model from areal data by a deconvolution
technique in geostatistics [41]. In this paper, the deconvolution is used to generate the point support
semivariogram of each class from the object-based classification results. Given an initial point support
model, the deconvolution calculates the difference between the model fitted to the input areal data
and the regularized model derived from the current point support model. If the difference meets
the terminal condition, the point support model is obtained; otherwise, the point support model is
fine-tuned according to the difference and the deconvolution process is repeated until the best point
support model is found. More details about deconvolution can be found in [41].

2.3. Fusing the Class Proportions of Pixels and the Spatial Dependence of Pixels

To make full use of both pixel-based and object-based classifications, the class proportions of
pixels from pixel-scale properties and the class spatial dependence measurements of pixels from
object-scale properties were fused as the new class occurrence for each pixel by

Pk(xn) = Fk(xn)·ω + Dk(xn)·(1−ω) (3)

where Pk(xn) is the fused value for pixel xn to represent the kth class occurrence; Fk(xn) is the kth class
proportion of the pixel xn derived from PSC; Dk(xn) is the kth class spatial dependence measurement
of pixel xn generated by ATPK; ω is the weight for the class proportions of pixels and it is determined
by evaluating the overall accuracy as a function of the weight (see Section 4.1).
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2.4. Determining the Optimal Class Label of Each Pixel within an Object

When the fused class occurrence of each pixel is obtained, the class label of each pixel can be
determined in two ways. The first way is the traditional class allocation approach in hard classification:
each pixel is assigned to a specific class with the maximum class occurrence value. However, this
approach loses classification information for mixed pixels and mixed objects [28]. The second way is
the commonly used class allocation approach in SRM. An optimization model is built to determine the
optimal label of a subpixel. The objective of the optimization model is to maximize the sum of class
occurrence values of subpixels within a mixed pixel. The constraint of the optimization model is that
the subpixel number of each class should be proportional to the class proportion [43–45]. This approach
can not only assign a specific class with the maximum class occurrence to an analysis unit but also
maintains the class proportions of the analysis units to avoid the loss of classification information.
Therefore, IPOC uses the basic idea of the second approach in determining the optimal spatial locations
of different classes within each object. Generally, PSC and OSC may use different properties and
produce different results. In order to combine both PSC and OSC results as class constraints in IPOC,
the class proportions of pixels derived from PSC and the class proportions of objects derived from
OSC are equally weighted in units of objects. Before the combination of PSC and OSC results, the
class proportions of pixels should be aggregated into objects by calculating the class average value
of all pixels’ proportions within an object. Subsequently, IPOC builds a linear optimization model to
determine the optimal spatial locations of different classes within each object. Note that the linear
optimization model is only used for mixed objects and a pure object is directly assigned the same class
to all pixels within the pure object. The linear optimization model is

Maximize z =
K

∑
k=1

N

∑
n=1

Yk(xn)·Pk(xn) (4)

Subject to


K
∑

k=1
Yk(xn) = 1

N
∑

n=1
Yk(xn) = F′k(Or)·N

(5)

where Yk(xn) ∈ {0, 1} is the class label of pixel xn for the kth land cover class, Yk(xn) = 1 means that
pixel xn is assigned to the kth class and Yk(xn) = 0 otherwise; F′k(Or) is the equally weighted class
proportion of object Or for the kth class; N is the number of pixels within the object Or. The objective
function z in Equation (4) aims to maximize the sum of class occurrences of all pixels within an
object. There are two constraint functions: (i) each pixel is assigned to a specific class, as shown in
the first equation in Equation (5); and (ii) the number of pixels for a class within an object should
be proportional to the combined class proportion of the object, as shown in the second equation in
Equation (5).

The linear optimization model produces an indicator map (i.e., Yk) for a class. These indicator
maps can be integrated into a final hard classified map. When the final hard classified map is obtained,
the optimal spatial locations of different classes within each object are determined simultaneously.

3. Experiments

Two experiments were carried out on different images (an ASTER image and a ZY-3 image) to
assess the effectiveness of the proposed IPOC. PSC was used to produce the class proportions of
pixels for each image. Image segmentation was first performed on each image to yield the objects in
the eCognition software®(v. 8.7, Trimble Germany GmbH, Munich, Germany), and then OSC was
employed to generate the class proportions of objects. The soft support vector machine classifier was
used to both PSC and OSC because the support vector machine classifier is a widely used approach
in classifying remote sensing images [46]. With the outputs of PSC and OSC as inputs, IPOC was
implemented on each image to produce the optimal spatial locations of different classes within
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objects. To compare with IPOC, traditional pixel-based hard classification (PHC) and object-based hard
classification (OHC) results were produced by the hard support vector machine classifier. Note that
PHC and PSC used mainly the spectral properties of pixels while OHC and OSC employed not only
spectral properties of objects but also complementary properties (i.e., textures) of objects. Both visual
inspection and quantitative metrics were applied to evaluate the performance of PHC, OHC, and IPOC
for each test image.

3.1. Experiment on ASTER Imagery

A 15-m multispectral ASTER image with 560 × 560 pixels is presented in Figure 3a. It contains
four main land cover classes of water, vegetation, buildings, and bare ground. The training samples
of the four classes were manually selected from Figure 3a for both pixel-based and object-based
classifications. Training samples included 2338 pixels of water, 13,218 pixels of vegetation, 8005 pixels
of buildings, and 1019 pixels of bare ground. These training samples were used as the inputs of
pixel-based and object-based hard classifications to produce the PHC map in Figure 3b and the OHC
map in Figure 3c. Meanwhile, the class proportions of pixels and objects were obtained by the soft
support vector machine classifier with these training samples. IPOC took the class proportions of
pixels and objects as its inputs to generate the IPOC map in Figure 3d. A stratified random sampling
scheme was employed to select 2200 validation sites as test data from Figure 3a. Each validation site
was first visually interpreted into a specific class, and then compared with PHC, OHC, and IPOC maps
to compute confusion matrices and their indices of overall accuracy (OA), producer’s accuracy (PA),
user’s accuracy (UA), and Kappa coefficient (KA) for quantitative accuracy assessment.

It can be found from Figure 3 that PHC preserved some small land cover patches and details
but produced many isolated pixels. Some isolated pixels of buildings were evident in the PHC map
of Figure 3b. By contrast, OHC avoided the salt and pepper effect caused by isolated pixels but lost
some land cover details. It is clear that the isolated pixels of buildings in the PHC map were almost
reduced in the OHC map of Figure 3c. Comparing the IPOC map with the PHC and OHC maps, IPOC
generated less isolated pixels than PHC and preserved more land cover details than OHC. Using both
pixel-based and object-based classifications, IPOC produced a more accurate classified map than
PHC and OHC in visual examination, especially for the land cover details in intersection regions and
small land cover patches. The results of the three methods in a subarea marked by a yellow rectangle
in Figure 3a demonstrate this point. The IPOC result in Figure 3h displayed more accurate details
than the OHC result of Figure 3g in the intersection regions between water and vegetation because
OHC produced much over-classified water compared with the original ASTER image of Figure 3e.
Meanwhile, IPOC preserved more accurate small bare ground and linear building patches than PHC
and OHC at the right of the subarea in Figure 3h because PHC wrongly classified the small bare
ground patch into buildings and OHC wrongly classified the small linear buildings into the class of
bare ground.

Table 1 displays the quantitative accuracy assessment for the three classified maps of the ASTER
image. The overall performance of IPOC was better than both PHC and OHC, and OHC was slightly
better than PHC. Specifically, the OA of IPOC was 7.64% and 4.64% greater than PHC and OHC,
respectively. At the same time, the KA of IPOC were 0.114 and 0.0731 higher than PHC and OHC,
respectively. Focusing on individual classes, the PA of vegetation was significantly higher than the
other three classes and the PA difference among the three maps was small. Although IPOC and PHC
had nearly the same PA for water, they were clearly higher than OHC because of several omitted water
patches in the OHC map. The PA increase of IPOC was evident in the two classes of buildings and bare
ground. IPOC increased the PA of buildings by 5.54% and 5.06% over PHC and OHC, respectively.
IPOC achieved the average PA increase of bare ground by 15.13%. The quantitative assessment further
confirms the findings in the visual evaluation, especially for these improvements of buildings and bare
ground classes.
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Figure 3. Experimental results of the 15-m ASTER image. (a) Multispectral ASTER image;
(b) pixel-based hard classification (PHC) result; (c) object-based hard classification (OHC) result;
and (d) IPOC result. (e–h) Maps from (a–d) in the yellow rectangle subarea, respectively.

Table 1. Accuracy assessment for the ASTER image.

Method Water Vegetation Buildings Bare Ground

PHC
PA (%) 77.25 92.07 79.04 55.11
UA (%) 75.26 86.77 66.67 78.57

OA (%) = 79.95 KA = 0.6918

OHC
PA (%) 68.78 94.17 79.52 66.53
UA (%) 80.25 83.85 90.66 75.11

OA (%) = 82.95 KA = 0.7327

IPOC
PA (%) 77.78 95.72 84.58 75.95
UA (%) 97.35 86.14 90.93 85.36

OA (%) = 87.59 KA = 0.8058

PA: producer’s accuracy, UA: user’s accuracy, OA: overall accuracy, and KA: Kappa coefficient.
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3.2. Experiment on ZY-3 Imagery

A 5.8-m multispectral ZY-3 image (480 × 480 pixels) in Figure 4a was tested. This area also
included four main land cover classes, namely water, vegetation, buildings, and bare ground.
The training samples of the four classes were manually chosen from Figure 4a for classifications.
Training samples included 1010 pixels of water, 3700 pixels of vegetation, 2888 pixels of buildings, and
2228 pixels of bare ground. These training samples were used in pixel-based and object-based hard
classifications to generate the PHC map in Figure 4b and OHC map in Figure 4c. At the same time,
the pixel-based and object-based soft classifications were performed to yield the class proportions
of pixels and objects. They were used as inputs of IPOC to generate the IPOC map in Figure 4d.
To quantitatively assess the PHC, OHC, and IPOC maps, 1700 validation sites were chosen as test
data from Figure 4a by a stratified random sampling scheme. Each validation site was first manually
interpreted into a specific class. Then, they were further compared with corresponding sites in PHC,
OHC, and IPOC maps to compute confusion matrices and their indices.
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As can be seen from Figure 4, the PHC map had a large number of salt and pepper pixels,
especially in the two classes of buildings and bare ground while OHC effectively avoided the salt and
pepper effect in Figure 4c. Despite this, PHC produced more accurate land cover details and small
patches than OHC. For instance, Figure 4c had some wrongly classified small road patches in the same
areas marked by two black ellipses in Figure 4d. The IPOC map in Figure 4d exhibits that it has less
salt and pepper effect than the PHC map and more accurate land cover details than the OHC map.
Especially, the small linear road patches in the two areas marked by two black ellipses in Figure 4d
were preserved by IPOC. When visually comparing the original ZY-3 image in Figure 4a with the three
classified maps, IPOC map is closer to the real spatial distribution of land cover than the other two
maps in Figure 4b,c.

Table 2 shows the quantitative accuracy indices of PA, UA, OA, and KA for the three classified
maps of the ZY-3 image. The accuracy assessment confirms the conclusion of visual evaluation. It can
be seen that the overall performance of IPOC was better than both PHC and OHC, and the difference
between PHC and OHC was very small. The average OA increase of IPOC was 3.5% and the KA
of IPOC were 0.0528 and 0.0494 higher than PHC and OHC, respectively. As for single classes, the
PA of each class achieved different improvements. Compared with PHC and OHC, the average PA
increases of IPOC were 2.8%, 3.05%, 5.33%, and 2.64% for water, vegetation, buildings, and bare
ground, respectively.

Table 2. Accuracy assessment for the ZY-3 image.

Method Water Vegetation Buildings Bare Ground

PHC
PA (%) 80.68 83.78 75.54 79.42
UA (%) 92.21 88.30 78.00 67.64

OA (%) = 80.65 KA = 0.7074

OHC
PA (%) 81.82 84.27 73.61 81.00
UA (%) 88.89 89.51 83.52 63.56

OA (%) = 80.82 KA = 0.7108

IPOC
PA (%) 84.09 87.07 79.90 82.85
UA (%) 100.00 88.81 87.77 70.40

OA (%) = 84.24 KA = 0.7602

PA: producer’s accuracy, UA: user’s accuracy, OA: overall accuracy, and KA: Kappa coefficient.

4. Discussion

4.1. Impact of Fusion Weight on IPOC Performance

Fusing the class proportion of pixels and the class spatial dependence of pixels was a critical
process of IPOC. Thus, it was necessary to analyze the impact of the tradeoff between the class
proportion and the class spatial dependence of pixels on the performance of IPOC. Here, ten different
weights (from 0.05 to 0.95 with an interval of 0.1) of the class proportion of pixels were used to produce
the IPOC maps for the ASTER image and ZY-3 image. The IPOC map of each weight was used to
calculate its OA and these OAs were plotted in Figure 5 for each testing image. As can be observed
from Figure 5, the OA curve reached the peak when the weight of the class proportions of pixels
equaled 0.75 for the ASTER image. For the ZY-3 image, the maximum OA corresponded to the weight
of 0.65. Therefore, the weights of 0.75 and 0.65 were applied to generate the final IPOC maps for
the ASTER image and ZY-3 image, respectively. Figure 5 shows that the accuracy of IPOC gradually
increased first and then decreased with the increase in the weight of the class proportions of pixels.
It means that either object-based classification or pixel-based classification cannot effectively represent
the land cover information and that the use of both pixel-based and object-based classifications is a
more accurate way to represent land cover information. According to the two experimental results, the
mapping of land cover details and small patches was mainly improved by IPOC. This is largely due
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to the fact that IPOC used pixel-scale and object-scale properties simultaneously. Meanwhile, IPOC
provided more accurate classified results for mixed objects than both PHC and OHC. Besides, IPOC
determined the class label of pixels in units of the object, which avoided some isolated pixels and
preserved the land cover details simultaneously.Remote Sens. 2018, 10, 77  11 of 15 
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4.2. Analysis of Image Segmentation Scales

Image segmentation was considered as a crucial process in object-based classification [6]. It often
required that several parameters be set, of which the segmentation scale was the most important [6].
The segmentation scale played a critical role in controlling the quality of the segmented objects and
an optimal scale needed to be chosen in the process of image segmentation. Usually, the optimal
segmentation scale generated the best image segmentation result [16]. Therefore, ten segmentation
scales (from 5 to 50 with an interval of 5) were applied to the ASTER image and ZY-3 image. The optimal
segmentation scale of each image was chosen from the ten scales by a segmentation quality assessment
method. Segmentation quality assessment methods should consider the homogeneity within objects
and the heterogeneity between objects [16]. Here, we used the G function proposed in our previous
work [13] to assess the quality of segmentation results and select the optimal segmentation scale for
each image. The G function combined the homogeneity within objects and heterogeneity between
objects using Moran’s I values and objects’ variances and it achieved a satisfactory performance in
selecting the optimal segmentation scales [13]. Figure 6 presents the G function values in the y-axis
with different segmentation scales in the x-axis. When the G function reached the highest value, the
corresponding segmentation scale was the optimal segmentation scale. As can be seen from Figure 6,
the optimal segmentation scales were 20 and 15 for the ASTER image and ZY-3 image, respectively.
Therefore, the selected optimal segmentation scales were used for both object-based classification and
IPOC in the above two experiments. Note that the segmentation scale range from 5 to 50 was used in
this study and different segmentation scale ranges may lead to different optimal segmentation scales.
Compared with other studies [47,48], this scale range was relatively small. The selection of this scale
range was based on the fact that the relatively small scale range may lead to a relatively small optimal
scale for image segmentation. A relatively small scale may generate relatively less under-segmentation
objects, which would result in mixed objects [49]. Therefore, the segmentation scale range from 5 to 50
was chosen to avoid lots of mixed objects. Although IPOC can effectively handle the mixed objects, the
effectiveness of IPOC would be reduced if there were lots of large mixed objects generated by large
scales in image segmentation. The reasons are that (1) IPOC inherits the basic idea of SRM and the
performance of SRM is gradually decreased with an increase in scale factors [30,36,49], and (2) the
class spatial dependence between objects are gradually reduced with an increase in object size [49].
The selection of the optimal segmentation scale depends on various factors (e.g., different remote



Remote Sens. 2018, 10, 77 12 of 15

sensing images and land surface complexity) [6]; therefore, the impact of different segmentation scales
on IPOC can be discussed in the future.Remote Sens. 2018, 10, 77  12 of 15 
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4.3. Comparison between IPOC and the Other Method

IPOC was compared with traditional PHC and OHC in the two experiments and the experimental
results show that IPOC outperformed both PHC and OHC. To further evaluate the effectiveness of
IPOC, the majority rule-based method using pixel-based and object-based classifications was chosen
to compare with IPOC [21,22]. The majority rule-based method first adopted PHC to produce the PHC
result. Next, image objects were generated by image segmentation. Last, each object was allocated
to a specific class that had the majority number of pixels within the object in PHC results. Here,
the majority rule-based method was performed in the first experiment for the evaluation purpose.
The result in Figure 3b was first used to calculate the pixel number of each class within an object,
which was generated by the image segmentation of Figure 3a with the segmentation scale of 20. Then,
the object was allocated to the class that had the maximum pixels within the object. The majority
rule-based result was obtained when each object was labeled by a land cover class. The 2200 validation
sites in the first experiment were also used to compute the confusion matrix of the majority rule-based
result. The OA of the majority rule-based result was 83.68% and the KA was 0.7474, which was
extracted from the confusion matrix. Compared with the majority rule-based method, the OA and
KA of IPOC increased by 3.91% and 0.0584, respectively. The OAs of the majority rule-based method
were 3.73% and 0.73% higher than PHC and OHC, respectively. When comparing with traditional
PHC and OHC, the accuracy improvements of the majority rule-based method were slightly lower
than those of IPOC. The main reason was that the majority rule-based result was affected by PHC
and OHC results whereas IPOC not only took the advantages of PSC and OSC but also explored the
class spatial dependence between objects to produce the detailed land cover information within mixed
objects. Therefore, IPOC performed better than an existing classification method based on pixel-based
and object-based classified results and the traditional PHC and OHC.

4.4. Uncertainty Analysis of Validation Data

Validation data played a critical role in quantitatively assessing classification results [50].
Validation sites were first chosen by a stratified random sampling scheme, and then each site was
manually interpreted into a specific class for accuracy assessment. The selection and interpretation of
validation sites had uncertainty for accuracy assessment. When the number of validation sites was set,
each time the stratified random sampling scheme generated different validation sites, the accuracy
assessment result may have had slight differences. Although there was uncertainty in generating
validation sites, the accuracy assessment results would be stable in theory because of the stratified
random sampling scheme [51]. The interpretation accuracy of validation sites varied depending on
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different experts. A recent study found that classifiers were more sensitive to geospatial label errors
and a web-based labeling tool was introduced to avoid the geospatial label errors [50]. In this study,
the interpretation process was completed by an expert. According to the web-based labeling tool,
the expert zoomed in on each site to carefully consider the geospatial label of the site to avoid the
labeling errors. Therefore, the label errors had slight impact on the accuracy assessment of PHC, OHC,
and IPOC. Although the validation data had uncertainty, they affected only the quantitative accuracy
assessment. In the two experiments, the visual evaluation of the classification results was carried out
and indicates that the proposed IPOC method produced better classified image quality than both PHC
and OHC.

5. Conclusions

This study aimed to propose a new classification method through integration of pixel-based
and object-based classifications (IPOC) for dealing with the mixed object uncertainty problem. IPOC
adopted pixel-based soft classification to produce the class proportions of pixels that were used
to characterize the land cover details pixel by pixel. At the same time, IPOC explored the spatial
relationships from object-based soft classification results and these spatial relationships between objects
were employed to characterize the class spatial dependence of each pixel. The class proportions of
pixels and the spatial dependence of pixels were combined further to produce a hard classification map
by a linear optimization model in units of object. The results of the two experiments demonstrated
that IPOC outperformed traditional pixel-based hard classification (PHC) and object-based hard
classification (OHC). Therefore, IPOC is a new option for land cover mapping through the integration
of pixel-based and object-based classifications.

In experiments, only two remote sensing images in small areas were used to assess the
effectiveness of IPOC. In the future, IPOC can be conducted with more remote sensing images over
larger areas in practical applications.
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