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Abstract: Fault transient impulses induced by faulty components in rotating machinery usually
contain substantial interference. Fault features are comparatively weak in the initial fault stage, which
renders fault diagnosis more difficult. In this case, a sparse representation method based on the
Majorzation-Minimization (MM) algorithm is proposed to enhance weak fault features and extract
the features from strong background noise. However, the traditional MM algorithm suffers from two
issues, which are the choice of sparse basis and complicated calculations. To address these challenges,
a modified MM algorithm is proposed in which a sparse optimization objective function is designed
firstly. Inspired by the Basis Pursuit (BP) model, the optimization function integrates an impulsive
feature-preserving factor and a penalty function factor. Second, a modified Majorization iterative
method is applied to address the convex optimization problem of the designed function. A series
of sparse coefficients can be achieved through iterating, which only contain transient components.
It is noteworthy that there is no need to select the sparse basis in the proposed iterative method
because it is fixed as a unit matrix. Then the reconstruction step is omitted, which can significantly
increase detection efficiency. Eventually, envelope analysis of the sparse coefficients is performed to
extract weak fault features. Simulated and experimental signals including bearings and gearboxes are
employed to validate the effectiveness of the proposed method. In addition, comparisons are made
to prove that the proposed method outperforms the traditional MM algorithm in terms of detection
results and efficiency.

Keywords: rotating machinery; sparse representation; feature enhancing; Majorzation-Minimization;
fault detection

1. Introduction

Rotating machinery is widely applied in industrial fields. However, it generally operates under
tough working conditions and is, therefore, subjected to mechanical failure. Faults occurring in rotating
machinery may result in the fatal breakdown of the entire machinery system and can even cause
casualties [1]. Therefore, condition monitoring and fault diagnosis of the rotating machinery have
extremely vital significance. This is important for guaranteeing the production efficiency and plant
safety in modern enterprises [2].
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Since considerable fault information is displayed via vibration signals, the vibration-based
diagnostic technique has emerged as an effective approach for mechanical fault diagnosis [3]. However,
in the initial fault stage, fault features are comparatively weak. They possess low-amplitude and are
mixed with more noise so that the fault features may be completely obscured by strong background
noise [4]. Therefore, an efficient method is needed to enhance weak fault features and reduce noise [5].
Proper analysis for transient detection from the weak fault signals has attracted substantial scholarly
attention throughout the past decades. Various methods have been proposed to extract weak fault
features such as wavelet transform, empirical mode decomposition (EMD), higher order spectrum,
and energy difference spectrum. Wang et al. [6] developed a fault feature enhancement method based
on ensemble empirical mode decomposition (EEMD) and tunable Q-factor wavelet transform, which
could extract the weak fault features of roller bearings. Chen et al. [7] studied a fault feature extraction
method based on over complete rational dilation discrete wavelet transform (ORDWT), which aims
to reduce the noise of fault signals and extract different types of fault features. The achieved results
demonstrated that the ORDWT-based technique successfully identified the incipient fault features
of gearbox. Tian et al. [8] proposed a novel modulation signal bispectrum (MSB) based robust
detector for bearing fault detection, which allows effective suppression of both stationary random
noise and discrete aperiodic noise and it can also enhance the modulation effects of a bearing fault
and can be used to provide optimal frequency bands for fault detection. Zhang et al. [9] proposed
a feature extraction method based on variational mode decomposition (VMD) and singular value
energy difference spectrum in which the effectiveness is verified through wind turbine bearing fault
experiments. Despite their relative successes, some drawbacks of existing methods persist. For instance,
the decomposing thresholds of wavelet transform are not adaptive, but the method is easily influenced
by multiple factors and the modal aliasing is always occurred based on EMD, which exacerbates the
difficulty of feature extraction.

Given these weaknesses, an emerging method called sparse representation brought a new
insight toward extracting the weak fault features [10]. There are several applications of sparse
representation such as signal compression [11], de-noising [12], and weak fault feature extraction [13].
Sparse representation is employed to describe signals as linear combinations of a few atoms from a
pre-specified dictionary. Research on sparse representation has thus far focused on two aspects [14].
First, scholars have examined the design of the sparse representation basis such as the orthogonal basis
and over complete dictionary wherein representation coefficients can be computed as inner products
of the signal and the pre-specified dictionary. Guo et al. [15] proposed a novel sparse representation
method based on an online dictionary learning algorithm to satisfy real-time fault signal processing
requirements. Second, pursuit methods have been applied toward solving the optimization problems
such as the Basis Pursuit (BP) and Matching Pursuit (MP). In this case, the sparse coefficients of the
most correlation between signals and atoms are calculated at each iteration, after which the sparsity
vector can be obtained upon meeting the terminal iteration condition [16]. Fan et al. [17] proposed a
sparse representation approach based on the traditional Majorzation-Minimization (MM) algorithm
and by seeking to achieve fault signal de-noising and extract the weak fault features. Simulated
studies and gearbox experiments both verified the effectiveness of the proposed method. However,
the selection of sparse bases had a substantial impact on the fault diagnosis result. This method also
contained more computations, which compromised efficiency [18].

In an effort to solve the aforementioned drawbacks and address the problem of weak fault feature
extraction, an emerging method called Majorzation-Minimization algorithm brought a new insight
to sparse representation. There are several applications of MM algorithm such as feature extracting,
image processing, machine learning, and more. Jiang et al. [19] utilized MM algorithm to estimate the
maximum likelihood of magnetic resonance images. Sun et al. [20] introduced the application of MM
algorithm in signal processing, communication, and machine learning. In this paper, a novel sparse
representation method based on the MM algorithm and BP algorithm was investigated to extract
fault features. Essentially, the core idea of the MM algorithm is to utilize a series of simpler convex
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optimization problems to replace the original objective function [21]. However, the traditional MM
algorithm must initially select an optimal sparse basis, which has a great impact on fault diagnosis
results. Then a constrained optimization algorithm with the obtained special basis is incorporated
to derive a series of sparse coefficients, which increases the computation and associated burden of
fault diagnosis.

In this study, a modified MM algorithm is investigated that does not depend on the choice of
sparse basis and remarkably reduces the computation. The simple flowchart of the proposed method is
shown in Figure 1 and specific steps and flowchart are described in Section 3. First, vibration signals are
collected by acceleration sensors. Second, the sparse optimization objective function is designed based
on the Basis Pursuit (BP) model, which integrates the impulsive feature-preserving factor and penalty
function factor. The feature-preserving factor measures signal sparse representation error while the
penalty function factor measures the sparsity of the fault signals. Third, a non-quadratic Majorization
iterative method based on the modified MM algorithm is applied to address the convex optimization
problem of the designed function. It is noteworthy that there is no need to select the sparse basis in the
modified iterative method because it is fixed as a unit matrix. Signal reconstruction is also omitted
in the modified MM algorithm, which significantly increases detection efficiency. With the aid of the
proposed method, a series of sparse coefficients can be obtained in which the background noise can be
reduced and the weak fault features can be highlighted. Finally, envelope analysis of sparse coefficients
is conducted to extract the weak fault features. According to the proposed method, the period of
transient impulses can be effectively identified and the beneficial characteristic frequencies can be
extracted from the envelope spectrum of sparse signal.

Figure 1. Flowchart of the proposed method.

The remaining parts of this paper are organized as follows. Section 2 describes the basic theory
behind the BP algorithm and the Majorization iterative algorithm based on the MM method. The weak
fault feature extraction strategy is outlined in Section 3. Simulated and experimental data, which
consists of the roller bearing and gearbox, are presented in Section 4 along with a comparison method
based on the traditional MM algorithm. Final conclusions are drawn in Section 5.

2. Basic Theory

Considering the problem of weak fault feature extraction, sparse representation is often applied to
enhance the weak fault features and reduce noise. Consequently, the BP algorithm, which ensures that
sparse signals contain adequate faulty information, is introduced in Section 2.1. The MM algorithm,
which is capable of solving the convex optimization problem, is presented in Section 2.2.

2.1. Basis Pursuit Algorithm

This is fully obvious that signals induced by faulty mechanical components often mix with much
noise. Therefore, the BP algorithm is applied to capture the useful fault characteristic x from the signal
with noise y [22], which is expressed in Equation (1) below.

y(t) = x(t) + n(t) (1)

where y(t) is the sampled signal captured from the sensors, x(t) represents the characteristic signal
containing the fault components, and n(t) denotes noise.
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Basic Pursuit algorithm is adopted to identify redundant atoms from the library of the signal
sparse representation after which the weak transient components are extracted from the sampled
signal. The resultant model can be represented as Equation (2).

y(t) = Dα(t) + n(t) (2)

where D ∈ RN×M is a matrix called orthogonal basis that contains M atoms di ∈ RN , i = 1, 2 . . . M.
α ∈ RM denotes the sparse representation coefficient.

Assuming that the sparse matrix D and sampled signal y are fixed, it is keen for obtaining the
succinct representation coefficient, which demonstrates that the majority of the atoms in the coefficient
vector are close to zero. This means only a handful of atoms will contribute to approximate the sampled
signal [1]. To ensure the signal can be effectively expressed in sparse representation, Equation (2) can
be converted into an optimization problem, which is shown below.

min‖α‖0 s.t. ‖y− Dα‖ ≤ ε (3)

where ‖α‖0 represents the number of nonzero items in x and ε denotes the error threshold.
Strictly speaking, l0 norm is the best method to measure the sparsity. Nevertheless, it doesn’t

belong to a continuous function and, in this case, the continuous derivative cannot be achieved.
To solve this problem, Chen S., Donoho D. L. et al. [23] proposed that utilizing the l1 norm to measure
the sparsity, which can be converted in the following equation.

min‖α‖1 s.t. ‖y− Dα‖2 ≤ ε (4)

With the constraint of l1 norm minimization, sparse representation is defined as a series of
constrained extremum problems that can be solved by a linear programming approach. Therefore,
the aforementioned optimization problems can be expressed as seen in Equation (5).

α̂ = argmin
α

{
F(α) =

1
2
‖y− Dα‖2

2 + λ‖α‖1

}
(5)

where F(α) is the sparse representation function.
There are two parts in this function. The first part is the impulsive feature-preserving factor

measuring the signal sparse representation error and the second part is the penalty function factor
measuring the sparsity of fault signals. Two variables exist in this function where one is the penalty
factor λ that will adjust the weight of the two parts in the objective function. It is generally proportional
to the transients and noise components in the signal. Another one is the sparse matrix D, which directly
affects the degree of sparsity. In order to reduce computational complexity, the sparse matrix is fixed
as a unit matrix.

In light of this convex optimization problem, the difference between sampled signal y and
characteristic signal x can be gradually decreased such as where the noise components are reduced
by minimizing F(α). Since it is difficult to minimize the object function F(α) unless it is quadratic,
a Majorization iterative method based on the MM algorithm is applied in this study.

2.2. Majorzation-Minimization Algorithm

As mentioned earlier, the minimization of the object function F(α) can be easily solved if the
function is quadratic. Based on this core idea, a modified MM approach is studied in which the
objective function F(α) can be replaced by a sequence of simpler minimization problems [24]. Hk(α) is
defined as the replaced function and satisfies the properties as seen in Equation (6).

∀α, Hk(α) ≥ F(α)

Hk(αk) = F(αk)
(6)
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To minimize F(α), an iterative algorithm based on MM is presented and a series of the sparse
coefficients {αk, k = 1, 2, 3 . . .} can be obtained according to Equation (7).

αk+1 = argmin
α

Hk(α) (7)

where k denotes iterations.
Generally, the Majorization iterative algorithm consists of two sections. First, it consists of finding

the initial value α0, meeting F(α0) = H0(α0) and stipulating that the other values of F(α) are less
than H0(α), which is shown in Figure 2. Second, minimizing the objective function H0(α) as the
minimum value α1 so that α1 is a new iterative value making F(α1) = H1(α), which is the same as the
previous step. With an increase of iterations, the minimum value of the object function can be clearly
obtained [24].

According to the sparse representation noted in Equation (5), two factors should be taken into
account. One is the impulsive feature-preserving factor, which is more easily minimized due to
its quadratic term. Therefore, it can be solved by running several steps of the conjugate gradient
algorithm. The other one is the penalty function factor, mark it as ‖α‖1 = Ψ(α), term |α| as φ(α),
and then Ψ(α) = ‖α‖1 = ∑ N

n=1|α(n)| = ∑ N
n=1φ(α(n)). φ(α) is an absolute value function, which

imposes a challenge for minimization. According to MM algorithm, assume a quadratic function h(α)
as seen in the following equation.

h(α) = Aα2 + Bα + C (8)

where A, B, and C are constants.
The surrogate function h(α) should be the upper bound of φ(α) that agrees with φ(α) at αk,

as shown in Figure 2. Therefore, conditions in Equation (6) are equivalent to h(αk) = φ(αk), h′(αk) =

φ′(αk). In order to simplify the Majorization algorithm, consider a special form of h(α) that assumes
an unknown parameter B = 0 [25]. Then, h(α) can be expressed as seen in the following equation.

h(α) = Aα2 + C (9)

Next, solving for A and C makes A = (φ′(αk)/2αk), C = φ(αk)− (αk/2)φ′(αk). Then,

h(α) =
φ′(αk)

2αk
α2 + φ(αk)−

αk
2

φ′(αk) (10)

According to the aforementioned algorithm, the conditions in Equation (6) are equivalent to the
following equation.

∀α hk(α) ≥ φ(α)
φ′(αk)

2αk
α2 + φ(αk)− αk

2 φ′(αk) ≥ Ψ(α)
(11)

In attempting to simplify the concrete form of α, the above function will be converted into a
matrix format.

1
2

α∗Λ−1
k α +

1
2
‖αk‖1 ≥ ‖α‖1 (12)

where Λk denotes the diagonal matrix with Λk = diag(|αk|), Λ−1
k represents the inverse of Λk, and α∗

denotes the complex conjugate transpose of α.



Sensors 2018, 18, 1003 6 of 19

Figure 2. Sparse iterative algorithm based on MM.

Incorporated with the impulsive feature-preserving factor, the majorization function Hk(α) can
be expressed as Equation (13).

Hk(α) =
1
2
‖y− Dα‖2

2 + λ(
1
2

α∗Λ−1
k α +

1
2
‖αk‖1) (13)

According to the Majorization Iteration Algorithm, Equation (7) for α can be updated as
seen below.

αk+1 = argmin
α

(
1
2
‖y− Dα‖2

2 +
λ

2
α∗Λ−1

k α +
λ

2
‖αk‖1

)
(14)

The last part of this function λ
2 ‖αk‖1 can be omitted because it is a fixed value. Therefore, a new

updated equation can be simplified as seen in the equation below.

αk+1 = argmin
α

(
1
2
‖y− Dα‖2

2 +
λ

2
α∗Λ−1

k α

)
(15)

Equation (15) is thereby quadratic in α. With the aid of the traditional MM algorithm [17],
the solution to this problem can be converted explicitly using linear algebra and leads to the following
updated equation.

αk+1 =
(

D∗D + λΛ−1
k

)−1
D∗y (16)

However, some issues remain and should be taken into account [17]. Due to the sparsity of α,
when the atoms of α go to zero, those of Λ−1

k would go to infinity, which leads to incorrect results.
To solve this issue, the updated equation is converted into Equation (17).

αk+1 =
1
λ

Λk

[
D∗y− D∗(DΛkD∗ + λI)−1DΛkD∗y

]
(17)

The other issue pertains to the selection of the optimal sparse matrix. This problem can be solved
by correlation filtering. Afterward, the constrained optimization algorithm with the obtained special
basis is incorporated to achieve a series of sparse coefficients.

By contrast, the sparse matrix in the modified MM algorithm doesn’t need to be selected because
it is fixed as a unit matrix. The updated equation can be simplified using matrix inverse lemma, which
will not lead to infinite values and erroneous results [26]. Furthermore, since the sparse matrix is a unit
matrix, signal reconstruction can be omitted and thus xk+1 = αk+1. In summary, the modified MM
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algorithm can significantly reduce the computational complexity and markedly increase the detection
efficiency. The simplified update equation is thus converted into the calculation below.

xk+1 = y− DT
(

1
λ

Λk + DDT
)−1

Dy (18)

By running the iterative procedure expressed in Equation (18), an optimal sparse signal x̂
containing the fault transient components can eventually be obtained.

3. Weak Fault Feature Enhancing Strategy Using Sparsity-Promoted Method

As mentioned earlier, vibration signals captured from faulty mechanical components often mix
with much noise by imposing significant obstacles to weak fault feature extraction. It is, therefore,
reasonable to enhance weak features and reduce noise by sparse representation [4]. As such, a fault
feature extraction strategy based on the BP algorithm and MM method is investigated in this paper.

The flowchart of the weak fault feature enhancing strategy is presented in Figure 3. The process is
as follows: inspired by BP theory, a convex optimization objective function is designed that integrates
the impulsive feature-preserving factor and penalty function factor. The feature-preserving factor
measures the signal sparse representation error and the penalty function factor measures the sparsity
of the fault signals. Essentially, this function reveals the differences between the fault signal without
noise and the sampled signal. Then the Majorization iterative method based on the modified MM
algorithm is applied to minimize this function. It is noteworthy that there is no need to select the sparse
matrix G in the modified iterative method because it is fixed as a unit matrix. The penalty coefficient λ

should be adjusted according to signal energy, which is generally proportional to the noise and fault
impact components in the signal [27]. Through iteration, a series of sparse coefficients containing the
transient components can be achieved. For the sparse matrix is the unit matrix, according to y = D ∗ x,
the sparse signals are the same as sparse coefficients, which means signal reconstruction is omitted in
the proposed method and inspired by sparse representation. The fault transients are reflected as the
nonzero value of the sparse signal, which means it is the same as the sparse coefficients. Furthermore,
the reciprocal of the transient period is consistent with the characteristic frequency. Finally, envelope
analysis is employed to extract the fault features. Experiments on roller bearings and gearboxes were
conducted in this study to verify the effectiveness of the proposed method. Comparison experiments
show that the proposed algorithm outperforms the traditional MM method in terms of detection
results and efficiency.

The details of this iterative procedure are summarized as seen below.

(1) Collect the vibration signals y using acceleration sensors,
(2) Construct the Majorization iterative function and initialize k = 1, sparse matrix D, penalty factor λ,

and Λk = diag(|αk(n)|),
(3) According to Equation (18), carry out the Majorization iterative steps and update the iterative

number k←k + 1.
(4) Obtain sparse signal xk+1, which only contains the transient components.
(5) Perform envelope analysis and extract the fault characteristic frequency.
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Figure 3. Feature enhancing algorithm framework based on MM.

4. Application Cases

To demonstrate the effectiveness and applicability of the proposed method, experiments including
simulated data, roller bearings, and gearboxes were conducted. In addition, comparisons were made
to prove that the proposed method outperformed the sparse representation method based on the
traditional MM algorithm.

4.1. Simulation Analysis

Vibration signals induced by bearing faults can be simulated as in the following equation.

y(tn) = A(tn)e−2π fnξ(tn−Tk) × sin(2π fn(tn − Tk) + φ0) + v(t),

Tk = Tk−1 + ∆Tk, n, k = 1, 2, 3, . . . N − 1
(19)

where {A(tn), n = 0, 1, 2, . . . , N − 1} denotes the amplitude of transient responses. The sampling
frequency is fs = 10 kHz, the system resonance frequency is fn = 3 kHz, the initial phase angle is
φ0 = 5 rad, and the relative damping ration is ξ = 0.1. Tk represents the trigger time of the kth impulse
and ∆Tk = 0.01 is the time between the (k − 1)th and kth impulse in which fault characteristic frequency
is 100 Hz. In order to simulate the background noise, Gaussian noise v(t) is added to the simulated
signal and the SNR is −5 dB [28].
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The signals in this paper are all normalized to guarantee the signal amplitude at the same
magnitude. The waveform and the spectrum of the simulated signal are shown in Figure 4a,b,
respectively, where the fault characteristic frequency can be obtained and is close to the theoretical
frequency 100 Hz. To simulate the strong background noise, Figure 4c shows the waveform of the
simulated signal with noise where the impact peak is unclear. Envelope analysis is selected as a
comparison to validate whether the proposed algorithm can extract the weak fault features from the
signal with noise. Fault frequencies of interest are submerged in the envelope spectrum, which is
shown in Figure 4d.

Figure 4. Simulated signals: (a) time-domain waveform of simulated signal, (b) envelope spectrum of
simulated signal, (c) simulated signal with noise, and (d) envelope spectrum of signal with noise.

As noted, the proposed method aims at enhancing the weak fault features and detecting
features from the sparse signal. According to the proposed strategy, in the optimization iterative
in Equation (18), the simulated signal with noise y is regarded as the initial iterative value, the sparse
matrix G is marked as the unit matrix, the penalty coefficient λ = 0.24, and iterations k = 20. Through
iteration, a series of sparse coefficients only containing the transient components can be obtained,
which is illustrated in Figure 5a. Figure 5b shows the envelope spectrum of the sparse signal where the
defect frequency can be clearly extracted and the SNR of sparse signal is −0.649 dB. Compared with
Figure 4c,d, the sparse signal demonstrates an excellent effect on transient detection. The noise can be
well discarded and the fault characteristic frequencies can be clearly captured. Since the unit matrix
is selected as the sparse basis, the reconstructed sparse signal is the same as the sparse coefficients.
This means the signal reconstruction is omitted. Besides that, in order to verify the effectiveness of
the proposed method for signals with different SNR, some supplementary experiments were also
carried out and the following results were obtained: the SNR of simulated signals were −8 dB and −2,
with the aid of the proposed method, the SNR of sparse signals could be got with −0.904 dB and
−0.524 dB. Therefore, the proposed method, not only improves detection precision but also increases
the detection efficiency.
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Figure 5. Detection results of simulated signals using the proposed method: (a) waveform of sparse
signal and (b) envelope spectrum of the sparse signal.

4.2. Experimental Verification and Discussion

4.2.1. Test Rig

To verify the feasibility of the proposed method in practical engineering applications, several
experiments were performed by testing set-ups with roller bearings and a gearbox. Figure 6a
shows the testing set-up of roller bearings, which is comprised of a motor, roller bearings (NTN204),
and acceleration sensors. Two accelerometers were mounted in opposite directions (horizontal and
vertical) of the bearing housing. In addition, in this study, defective gearbox signals were analyzed.
The testing set-up for the gearbox was equipped with a motor, a gearbox, loading equipment, and two
accelerometers. The vibration signals of the defective gear were collected through two accelerometers
mounted on the gearbox in vertical and horizontal directions. The fault gearbox was a two-stage
gearbox that contained a driving shaft I (a driving gear), a middle shaft II (two gears: a driving gear
and a driven gear), and a driven shaft III (a driven gear).

Figure 6. Experimental system, (a) experimental table, (b) gear broken-tooth fault, (c) bearing outer-race
fault, and (d) bearing inner-race fault.
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During the test, roller bearing faults occurred on the outer-race and inner-race, the gearbox
fault occurred on the driven gear of the third speed, which is displayed in Figure 6b–d, and the
red circles represent the location of faults. It is apparent that the inherent frequencies of roller
bearing are generally distributed in the high-frequency band. To fully analyze the signal, a larger
sampling frequency is selected to acquire more comprehensive information of the machinery
conditions [29]. Therefore, the sampling frequency of bearing experiment was 100 kHz and the
frequency of the gearbox experiment was 10 kHz. The roller bearing operated at a speed of 1300 rpm
while the gearbox of the third speed operated at a speed of 340 rpm. The size of the flaw in the
roller bearing was 0.05 mm × 0.3 mm (depth × width) in which the gear flaw was broken-tooth.
The technical characteristics of the roller bearings and gearbox are displayed in Tables 1 and 2.
The corresponding fault characteristic frequencies of the bearing and gearbox are computed according
to Equations (20) to (22) [30,31].

Table 1. Structure parameters of roller bearing.

Number of Rollers External Diameter (mm) Inner Diameter (mm) Width (mm)

11 47 20 14

Table 2. Structure parameters of gearbox.

Research Object Number of Teeth Rotating Period (s) Rotating Frequency (Hz) Meshing Frequency (Hz)

Driving Gear I 80 3.448 0.29
23.15Driven Gear II 19 0.824 1.214

Driving Gear II 80 0.824 1.214
97.13Driven Gear III 17 0.175 5.714

The fault characteristic frequency of bearing with outer race is shown in the equation below.

fr =
N
2

(
1− d

D
cos α

)
f0 (20)

The fault characteristic frequency of bearing with inner race is shown in the equation below.

fh =
N
2

(
1 +

d
D

cos α

)
f0 (21)

The fault characteristic frequency of gear with broken-tooth is shown in the equations below.

fm = Z1 f1 = Z2 f2

fz =
fm
Z

(22)

where N denotes the number of roller elements, D is the pitch diameter, d is the roller diameter, f0, f1

and f2 represent the rotating frequency of roller bearing, driving gear, and driven gear, respectively,
α is the contact angle, fr, fh, fz represent the characteristic frequency of the outer race, inner race,
and broken-tooth, respectively, fm is the gear meshing frequency, and Z1, Z2 denote the number of
gear teeth. Based on these parameters, the computed results of characteristic frequencies are listed in
Table 3.

Table 3. Fault characteristic frequencies.

Fault Category Outer Race Inner Race Broken-Tooth

Fault characteristic frequency (Hz) 86.32 145.84 5.714
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4.2.2. Detection of the Bearing Fault in the Outer Race

To demonstrate the effectiveness of the proposed method for weak feature extraction, the proposed
method is initially utilized to extract the weak fault features of roller bearing with a fault in the
outer race. Figure 7a depicts the time-domain waveforms of the vibration signal in which the transients
submerge in other noise components. Accordingly, it is difficult to detect fault transients as the transient
cyclic period cannot be captured clearly. Envelope analysis is selected as a comparison to validate
whether it is possible to extract the weak fault features from the vibration signal. Figure 7b shows
the spectrum of Figure 7a in which the resonance bands can be selected as 8000–15,000 Hz and then
calculate envelop spectrum, which is illustrated in Figure 7c. However, the fault frequencies of interest
are too weak to extract in the envelope spectrum.

Figure 7. Bearing signals: (a) time-domain signal with outer-race fault, (b) spectrum of the time-domain
signal, and (c) envelop spectrum of the time-domain signal.

Based on the proposed method, a convex optimization objective function of the roller bearing
is designed and inspired by BP theory. The sampled signal is regarded as the initial value y of the
majorization iterative. Considering fault diagnosis efficiency, a unit matrix is chosen as the sparse
orthogonal matrix G. Next, simplify the objective function and convert it into the modified iterative
expression in which the penalty coefficient λ = 0.32 and iterations k = 20. Via the above steps,
the vibration signals can be sparsely represented. As shown in Figure 8a, the proposed method is
effective in reducing noise and the signal only contains the fault impact peak. Figure 8b displays
the envelope spectrum of the sparse signal where weak fault feature frequencies can be successfully
extracted and it is consistent with the theoretical frequency (86.32 Hz). Compared Figure 7a with
Figure 7c, the sparse signal exerts an excellent effect on transient detection. The transient cyclic
period can be captured accurately and the fault characteristic frequencies can be clearly extracted.
Since the unit matrix is selected as the sparse basis, the reconstructed sparse signal is the same as the
sparse coefficients. In other words, signal reconstruction is omitted. Therefore, the proposed method
improves detection precision along with detection efficiency.
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Figure 8. Detection results of outer-race fault using the proposed method: (a) waveform of sparse
signal and (b) envelope spectrum of the sparse signal.

4.2.3. Detection of the Bearing Fault in the Inner Race

The proposed method is then utilized to extract the weak fault features of the roller bearing
with a fault in the inner race. Figure 9a shows the time-domain waveforms of the vibration
signal in which most transients are submerged in other noise components. Envelope analysis is
selected as a comparison to validate whether it can extract the weak fault features from the vibration
signals. Figure 9b shows the spectrum of Figure 9a in which the resonance bands can be selected
as 3000–10,000 Hz and then calculate envelop spectrum. However, as shown in Figure 9c, the fault
frequency is hidden in other noise frequencies and the status of the roller bearing is difficult to identify.

Figure 9. Bearing signals: (a) time-domain signal with inner-race fault, (b) spectrum of the time-domain
signal, and (c) envelope spectrum of the time-domain signal.

According to the proposed strategy, with the optimization iterative Equation (18), the vibration
signal is regarded as the initial iterative value y, the sparse matrix G is marked as the unit matrix,
the penalty coefficient λ = 0.55, and iterations k = 20. Through iteration, the vibration signal can be
sparsely represented and the weak fault feature can be clearly enhanced. As illustrated in Figure 10a,
a series of sparse coefficients containing the transient components can be achieved. Figure 10b shows
the envelope spectrum of the sparse signal in which the twice rotating frequency equaling 42.72 Hz and
the defect frequency equaling 146.5 Hz can be obviously extracted. Due to the existence of the structural
defects in testing set-up such as misalignment fault, the twice rotating frequency (42.72 Hz) can be
clearly extracted in Figure 10b. Compared Figure 9a with Figure 9c, the sparse signal demonstrates an
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excellent effect on transient detection: the transient cyclic period can be well captured and the fault
characteristic frequencies can be clearly extracted.

Figure 10. Detection results of inner-race fault using the proposed method: (a) waveform of sparse
signal and (b) envelope spectrum of the sparse signal.

4.2.4. Detection of the Gearbox Fault with Broken-Tooth

To prove the commonality of this method, the proposed method is utilized to analyze the gearbox
signal. The vibration signal caused by the gear with tooth-broken is shown in Figure 11a in which the
transient period cannot be identified due to the existence of noise and other interfering components.
As illustrated in Figure 11b, the meshing frequency can be extracted equal to 97.05 Hz and it is
consistent with the theoretical frequency (97.13 Hz). Consequently, the malfunction appeared to
occur on the second meshing, which may be the driving gear II or the driven gear III. However,
it is impossible to diagnose which gear is faulty since the fault characteristic frequency is too weak
to extract.

Figure 11. Gearbox signals: (a) time-domain signal with tooth-broken fault and (b) envelope spectrum
of the time-domain signal.

At a constant rotating speed, the localized fault in the gearbox tends to cause periodic shocks and
thereby arouses periodic transients in vibration signals. Therefore, the gearbox fault can be diagnosed
based on the transient period. However, due to the weak faulty, the fault transient period is obscured
by strong background noise. Therefore, it is necessary to enhance the weak features. With the help of
the proposed method, a convex optimization objective function (18) is designed. The sampled signal
is regarded as the initial value y of the Majorization iterative. Considering fault diagnosis efficiency,
a unit matrix is chosen as the sparse orthogonal matrix G. Next, simplify the objective function and
convert it into the modified iterative expression, the penalty coefficient λ = 2.7, and iterations k = 20.
Via the above steps, the vibration signals can be sparsely represented as a series of periodic transients
and the cyclic period ∆T = 1/ fz = 0.175 s can be obtained in Figure 12a, which corresponds to the
theoretical fault characteristic frequency (5.714 Hz). Figure 12b shows the envelope spectrum of the
sparse signal in which the defect frequency, the meshing frequency, and its side band can be obviously
extracted. Based on the mentioned analysis, the fault appears to occur on the driven gear III. Compared
with the vibration signal in Figure 11a, it is disclosed that the sparse signal represents an excellent
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effect on transient detection as the transients’ cyclic period can be clearly captured as well as fault
characteristic frequencies can be extracted obviously.

Figure 12. Detection results of tooth-broken fault using the proposed method: (a) waveform of sparse
signal and (b) envelope spectrum of the sparse signal.

4.3. Comparison with the Traditional MM Algorithm

To further validate the superiority of the proposed method on detection results and efficiency,
the same signals are processed using the traditional MM algorithm in which the optimal wavelet
bases parameters of different research objects are firstly constructed by correlation filtering. Different
wavelet bases may result in different detection results, which may lead to poor detection. Next the
constrained optimization algorithm with obtained special basis is incorporated to achieve a series
of sparse coefficients and the reconstructed signal can eventually be obtained through the sparse
coefficients and special basis. In general, the traditional approach mainly involves correlation filtering,
the constrained optimization algorithm, and signal reconstruction, which may increase the amount of
calculation. By contrast, there is no need to select sparse basis in the modified MM algorithm or to
reconstruct the signals for the sparse matrix is fixed as the unit matrix. Therefore, the modified MM
algorithm can reduce computational complexity and boost detection efficiency considerably.

The traditional method is firstly utilized to extract the weak fault features of the roller bearing
with outer-race fault. The bearing signal is shown in Figure 7a and its spectrum is illustrated in
Figure 7b. According to the method based on the traditional MM algorithm, the wavelet basis can
be obtained via correlation filtering (see Figure 13a). Then the constrained optimization algorithm
with obtained special basis is incorporated to achieve a series of sparse coefficients (see Figure 13b).
Figure 13c illustrates the reconstructed signal where the noise can be reduced effectively, but the
transient cyclic period cannot be clearly observed. Figure 13d displays the envelope spectrum of the
reconstructed signal. The feature frequencies of interest are not clear. Then the traditional method is
utilized to extract the weak fault features of the simulated fault, the roller bearing with inner-race fault
and gearbox fault, which is shown in Figure 14a–c. Compared with the detection results using the
proposed method, the modified method shows better transient detection as the fault characteristic
frequencies can be extracted more obviously.

Figure 13. Cont.
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Figure 13. Detection results of outer-race fault signals using the traditional method: (a) Optimal
wavelet basis, (b) sparse coefficients, (c) reconstructed signal, and (d) envelope spectrum of the
reconstructed signal.

Figure 14. Detection results using the traditional method: (a) envelope spectrum of simulated sparse
signal, (b) envelope spectrum of the inner-race sparse signal, and (c) envelope spectrum of the gearbox
sparse signal.

To substantiate the efficiency of these two methods, several comparative experiments were carried
out to obtain the detection time. The average detection time of the simulated signal using the proposed
method is 0.1865 s and the average detection time using the traditional method is 9.0883 s. Due to the
fewer data points, there are fewer differences in fault detection time of the simulated signal. However,
the detection time of bearing and gear fault signals is quite different actually. Figure 15 shows the
detection time for 10 sets of experiments using the two methods. It can be seen that the detection time
of the proposed method is far less than that of the traditional method. Therefore, the proposed method
can greatly reduce computational complexity and significantly increase detection efficiency.
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Figure 15. Detection time using two methods.

5. Conclusions

In this study, a sparsity-promoted method based on the BP and modified MM algorithm is
proposed to extract weak fault features. The optimization objective function is initially designed to
make the noise-polluted signal approximate to the transient impact, which means that fault feature
enhancement can be converted into a convex optimization problem. Then the Majorization iterative
method based on a modified MM algorithm is applied to solve the convex optimization problem.
Through iteration, not only the strong background noise reduces but also a series of sparse coefficients
only containing transient components can be obtained. To verify the validity of the proposed method,
simulated and experimental signals of bearings and gearboxes are analyzed. The results indicate that
the sparse signal represents an excellent effect on transient detection. The transient cyclic period can
be well captured and the fault characteristic frequencies can be clearly extracted. Envelope analysis is
selected as a comparison to validate whether it can extract the weak fault features from the vibration
signal. It can be seen that the fault frequencies of interest are too weak to extract in the envelope
spectrum, but they can be successfully extracted using the proposed method. In addition, comparisons
using the traditional method demonstrate that the proposed method outperforms the traditional
method in terms of detection results and efficiency.
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