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Abstract: This paper reviews the literature on applications of remote sensing for monitoring soil- and
crop- water status for irrigation purposes. The review is organized into two main sections: (1) sensors
and platforms applied to irrigation studies and (2) remote sensing approaches for precision irrigation
to estimate crop water status, evapotranspiration, infrared thermography, soil and crop characteristics
methods. Recent literature reports several remote sensing (RS) approaches to monitor crop water
status in the cultivated environment. Establishing the right amount of water to supply for different
irrigation strategies (maximization of yield or water use efficiency (WUE)) for a large number of
crops is a problem that remains unresolved. For each crop, it will be necessary to create a stronger
connection between crop-water status and crop yield.

Keywords: crop water status; water use efficiency (WUE); platforms; sensors; evapotranspiration
(ET); Crop water stress index (CWSI); time-temperature threshold (TTT); vegetation indices (VIs)

1. Introduction

Food is the basic and compulsory human requirement. It is expected that limited land and
inadequate water resources will negatively impact the expected increase in demand for food crops
during the next fifty years [1–3]. Subject to scenarios used, and assumptions and models employed,
different forecasts have been made for food and agricultural production and related irrigation water
needs. Food and Agriculture Organization (FAO) projections indicated a growth rate of world
consumption of agricultural products of 1.1% per year for the period from 2005 to 2050. In order to
meet this projected global demand, agricultural production would have to increase by 60% from 2005
to 2050 [4,5].

Production of food requires water. Since water resources are a limiting factor for human actions,
Water Use Efficiency (WUE) will be a crucial factor [6]. For these reasons, the European Parliament,
in agreement with the Horizon 2020 program, has coined the phrase “produce more with less” [7].
Agriculture is the main user of water worldwide, accounting for about 70% of total water withdrawals,
including the water used in livestock and aquaculture production [8]. Furthermore, it is expected that
this sector will witness increased water consumption of about 20% by the year 2025 [9]. Thus, it is
widely expected that the competition for water resources in many regions will increase. To meet the
increasing population’s demands for food and for water, it is critical to improve agricultural water
productivity, or economic yield per volume of water used [1,10].

Forty percent of total agricultural production comes from the 20% of the land that is irrigated [11].
Farmers in developing countries have to improve agronomic and water management practices in
order to increase WUE in all agroecosystems (from fully-rainfed to fully-irrigated farming systems).
Pereira et al., [12] reported that the above goal is chiefly important where water is a scarce commodity
(arid and semiarid regions). In these regions, it will be crucial to increase water productivity rather
than maximizing crop yield. Molden et al. [13] suggested, “The adoptions of techniques to improve water
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productivity will require an enabling policy and an institutional environment that aligns the incentives of
producers, resource managers and society, and provides a mechanism for dealing with trade-offs”. Irrigation
water management is sustainable if it realizes the objectives of preserving the natural environment
and sustaining irrigated agriculture for food security. Appropriate irrigation practices are aimed at
improving WUE in order to save water and maintain satisfactory yields [14].

Painter and Carren [15] emphasized the importance of reducing water losses below the root zone,
improving yield and crop quality, conserving the resource base, and lowering the risk of salinization
of groundwater to enhance sustainability. The authors also pointed out that “these gains can only be
achieved when all elements of precision operate synergistically within a given environment”.

For improving WUE at the regional level, Batchelor [16] suggested four methods of agronomic
improvements: (1) rely on improved crop husbandry; (2) introduce varieties with higher productivity;
(3) maximize cropped area during periods of low potential evapotranspiration and (4) when rainfall is
highest, promote water recycling.

Wallace and Batchelor [17] reported four categories (agronomic, technical, managerial, and
institutional) for improving the efficiency of irrigation. Technical solutions may improve irrigation
uniformity, reduce leaching, and lead to adoption of irrigation practices that increase rainfall
effectiveness. Among managerial improvements, the authors highlighted the implementation of
irrigation scheduling systems based on crop demand. The institutional improvements “rely on the user
involvement in scheme operation and maintenance; introduction of water pricing and legal frameworks to provide
incentives for efficient water use and disincentives for inefficient use; introduction of integrated catchment
management; improved training and extension”. In 2005, Johansson [6] emphasized the importance at the
farm level of the extension services for improving information or of cheap credit for adjusting to the
changing environments associated with water policy reforms (water-pricing reforms, particularly).

Because more efficient irrigation practices can optimize WUE [18], and drip irrigation reduced
crop evapotranspiration losses and runoff [19–21], the technology was appropriate for applying water
to orchards and vegetables [22]. Proper irrigation (timing and amount) increased the crop WUE and
crop yield [23]. In contrast, improper irrigation can lead to the onset of crop water deficits causing
water and nutrient deficiencies that reduce yield [23,24]. Nevertheless, regardless of the strategy
engaged, the benefits of irrigation scheduling can be reached only by applying the exact amount of
water required [25]. Raine et al. [26] define precision irrigation as “the accurate and precise application
of water to meet the specific requirements of individual plants or management units and minimize
adverse environmental impact”. Monitoring water use and crop water status in the field is important
for developing effective precautions, and for this purpose, some indicators are required [27]. A very
large body of research, spanning almost four decades, has demonstrated that much of the required
agricultural information can be derived from remotely sensed data [28] starting from crop water status
detection. IN order to develop effective irrigation strategies, it is necessary to identify the appropriate
indicators for monitoring crop water status at the farm level [27]. For these purposes, the required
agricultural information may be derived from remotely sensed data [28].

2. Scope of the Review

The applications of remote sensing to irrigation monitoring and management are reviewed
herein. The assessment of the ideal crop water requirement is indispensable for several objectives
linked to agronomic, economic, and environmental issues: (i) maximize crop yield (the ’yield gap’);
(ii) stabilize production by adopting a safeguard against the vagaries of weather; (iii) ameliorate crop
quality; (iv) save water; (v) limit onset of diseases; and (vi) limit groundwater pollution caused by
N leaching losses. A seventh (vii) crucial point is the ’yield gap’ of the environment under study.
This means defining the potential and constraints of the field environment (sub optimal management,
inappropriate technology, and/or lack of training of farmers). This is possible when water constraints
on crop production are removed by using appropriate irrigation scheduling for getting more crop
yield per drop of water [9,29], contributing to social growth of the irrigated area.
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In 2008, Fereres [8] called for a more efficient and sustainable irrigation than in the past, at a
time when the rate of irrigation was expected to slow down, and when the investments in irrigation
and drainage were on the decline. Fereres also emphasized challenges in irrigated agriculture due to
modernization of irrigation networks and management, the improvement of water institutions, and
the responses to periodic droughts. The last point has imposed the introduction of new water saving
technologies in horticulture.

A holistic approach is necessary for moving from a traditional approach to precision irrigation,
defined as site-specific irrigation management that relies on the variable application of water according
to soil and crop variability. It is a potential solution for increasing productivity and reducing the
environmental impact of irrigated agriculture. A holist approach needs a deep and precise knowledge
of the crop water requirements and the cultivated environment. The innovative deficit irrigation and
partial root drying management strategies [29] have encouraged the development of new methods for
monitoring water stress (abiotic). Fernández [30] focused on plant-based methods that integrate the
soil and atmospheric water status and the plant response to the surrounding conditions.

The present review describes the role of remote sensing with respect to crop water status, its
surface energy balance, the relationship between surface temperature and remotely sensed vegetation
indices, and WUE and evapotranspiration. This review is limited to field-key studies, and presents
applications of remote sensing for managing irrigation and water resources for meeting the current and
future challenges of agricultural water resources management. A list of references is presented
as a good resource for any who are interested in remote sensing applied to irrigation studies.
The review is organized into the following main sections: (1) Sensors and platforms applied to
irrigation studies; (2) Remote sensing approaches for precision irrigation for estimating crop water
status, evapotranspiration, infrared thermography, and soil and crop characteristics.

3. Sensors and Platforms

Jensen et al. [31] reported that the first aerial images were taken by a camera mounted on a balloon
around 1859. From the very beginning of satellite-based remote sensing in the 1970s, the use of remote
sensing for terrestrial applications has increased tremendously [32]. Remote sensing is the acquisition
of information about an object, or event through the analysis of data acquired obtained by a device
without contact with the target under investigation [33]. The term remote sensing includes all the
traditional primary mapping data acquisition technologies [34].

Remote-sensing instruments are designed to identify various wavelengths of the electromagnetic
spectrum referred to as a “band” or “channel”. Each instrument is characterized by a specific number
and widths of wavelengths detected; some instruments detect discrete bands, while others detect
fairly narrow wavelengths or broader bands (multispectral, visible and near-infrared wavelengths,
microwave, thermal sensing systems) [35–37].

Remote sensing is able to identify spectral signatures of all surfaces and objects. Sensors can sense
targets with a specific spatial resolution of image data defined by the smallest spatial area sampled or
viewed. Digital images are made up of pixels, each pixel characterized by specific spectral and spatial
attributes [38], as the intensity of reflectance or emittance measured by a sensor [39]. Spatial resolution
corresponds to the spatial area each displayed or printed pixel represents.

When the time image was shot (day or year) is a crucial point in interpreting remotely sensed data
analysis [40]. If the same area is imaged in the morning and late afternoon, a greater number of features
with different orientations may be discerned than if the area is only imaged in the morning [41]; this
is especially true when interpreting vegetation classes. Multi-temporal images are taken at different
times to monitor changes in the environment and to analyze numerous processes [42,43]. The temporal
dynamics may range from hours to a number of years. Sexton et al. [44] and Guerschman et al. [45]
reported that “to assess changes over a time sequence accurately, effects in the data not caused by true
environmental changes (such as differing atmospheric conditions and sun or view angle positions)
must first be accounted for”.
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Other sensors are defined as bidirectional, due to the illumination angle at which the energy
source strikes the target, and the position (angle) at which the instrument receives the emitted or
the reflected energy (called the view angle) as described by Schowengerdt [46] and Campbell and
Wynn [47].

3.1. Remote Sensing Sensors

Different remote sensing sensors have been developed for monitoring crop growth and yield, as
well as the spatial variability within fields. Many factors may affect crop growth and yield variability,
such as soil characteristics, soil fertility, soil moisture, canopy volume, biomass and architecture, water
content, and biotic and abiotic stress. Different types of sensors can monitor and measure these factors;
Lee et al. [48] discussed electronic sensors, spectroradiometers, machine vision, multispectral and
hyperspectral sensors, thermal sensors, and machine olfaction systems. A detailed review on sensors
related to agricultural crop was reported by Ruiz-Altisent et al. [49]. The authors provided an overview
of sensing technologies and application as: (i) electromagnetic sensors, spectroscopic sensors, and
computer vision; (ii) mechanical contact and acoustic sensors; (iii) biosensors; and (iv) wireless-sensor
networks. Wang et al. [50] studied recent development and future perspective of wireless sensors in
agriculture and the food industry.

Sensors can be divided into several broad categories of basic sensor system types such as active and
passive. Passive sensors (photographic, electro-optic radiometers, passive microwave systems visible,
infrared, and thermal imaging systems, etc.) are the most common for vegetation correlated remote
sensing. These sensors provide helpful information for crop monitoring, but their major limitation
is the strong relationship among data acquisition and lighting (time of day and year; latitude) and
weather conditions (cloud cover). Data from passive sensors requires accurate measurements of solar
radiation and correction for “atmospheric effects” [34,40].

Active sensors use an artificial source of energy; in active remote sensing, humans can control the
nature (wavelength, power, duration) of the source energy. Active sensors (Radar systems, LiDAR)
do not need sun light and perfect weather conditions (less dependence on environmental factors);
therefore, they can be more dedicated and targeted toward the remote sensing objectives even at night
or under adverse conditions (haze, clouds, rain, etc.) [34,40].

3.2. Remote Sensing Platforms

The platform on which a particular sensor is lodged states the distance of the sensor from the
target, timing, periodicity, location, and extent of coverage of the acquired image. The detailed
information obtained is strictly related to the distance between the object of interest and the type of
platform. Remote sensing platforms can be divided into three groups: satellite, airborne and Unmanned
Aerial Vehicles (UAVs), and ground based solutions. According to Matese et al. [51], each of these
platforms and sensors shows strengths and weaknesses related to technological, operational and
economic factors.

3.2.1. Satellite

Satellites can be classified by (i) altitude; (ii) orbital geometry (geostationary, equatorial and sun
synchronous) and (iii) timing. Regarding the first point, there are space shuttles orbiting around
250–300 km above the earth; space stations orbiting from 300 to 400 km above; low level satellites from
700 to 1500 km above, and high-level satellites, about 36000 km above the earth's surface. The first
remote sensing satellite appeared in 1960 for meteorological purposes. Geostationary satellites have a
24 h-period of rotation, so they always stay over the same earth location. Usually, communications
and weather satellites have often-geostationary orbits, generally located over the equator. To ensure
repeatable sun illumination conditions during specific seasons, sun synchronous satellites have orbits
nearly passing over the poles. Sensor and orbital characteristics determine the frequency of data
acquisition (Table 1). The satellite frequency ranges from twice a day to every 16 days.
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Table 1. Satellites for agricultural purposes.

Satellite Resolution Revisit (Days) Instruments Field of Application

Aqua Multichannel Microwave
Radiometer (Passive Sensor)

Precipitation, oceanic water vapor,
cloud water,

ASTER
VNIR = 15 m,
SWIR = 30 m,

and TIR = 90 m
16

VNIR (Visible Near Infrared),
SWIR (Short Wave Infrared),

TIR (Thermal Infrared)

Vegetation and ecosystem dynamics, hazard
monitoring, geology and soils, land surface
climatology, hydrology, land cover change,

and the generation of digital elevation
models (DEMs).

CARTOSAT-1 2.5 m 5

two panchromatic cameras that
take black-and-white stereoscopic
pictures in the visible region of the

electromagnetic spectrum

Land and water resources management

Cloudsat 1.7 km radar (active sensor) cloud liquid water and ice water contents

Geoeye-1
0.46 m panchromatic

(B&W) and 1.84 m
multispectral resolution

from 2.1 to 8.3

Simultaneous panchromatic and
multispectral (pan-sharpened)

Panchromatic only;
Multispectral only

It features the most sophisticated technology
ever used in a commercial remote

sensing system

GPM 5–15 km - Microwave

Earth’s water cycle; better agricultural crop
forecasting and monitoring of freshwater
resources. GPM missions are to observe
global precipitation more frequently and

more accurately than TRMM (Tropical
Rainfall Measuring Mission).

IKONOS 0.82 3
3.2 m multispectral, Near-Infrared

(NIR) 0.82 m panchromatic
resolution at nadir.

Rural mapping of natural resources and of
natural disasters, tax mapping, agriculture

Landsat 7
(ETM+) 15–30 m 16 Radiometer (Passive Sensor)

It detects spectrally-filtered radiation in
VNIR, SWIR, LWIR and panchromatic bands

from the sun-lit Earth in a 183 km wide
swath when orbiting at an altitude of 705 km.

Landsat 8 15–100 16

Two main sensors: the
Operational Land Imager (OLI)

and the Thermal Infrared Sensor
(TIRS)

It collects images using nine spectral bands in
different wavelengths of visible,

near-infrared, and shortwave light to observe
a 185 km (115 mile) wide swath of the Earth
in 15–30 m resolution covering wide areas of

the Earth's landscape while providing
sufficient resolution to distinguish features
like urban centers, farms, forests and other

land uses.

Pleiades-1A 0.5 m 1
50 cm B&W; 50 cm color; 2 m
multispectral. Bundle: 50-cm
B&W and 2-m multispectral

It provides color products at 50 cm that
deliver an extremely high level of detail.

High location accuracy and excellent image
quality for precision mapping.

QuickBird

Pan: 65 cm (nadir) to
73 cm (20◦ off-nadir)
MS: 2.62 m (nadir) to
2.90 m (20◦ off-nadir)

1-3-5 (depending
on latitude) Panchromatic and Multispectral Useful for analyses of changes in land usage,

agricultural and forest climates

Rapideye 5 m 1 (off-nadir) 5.5
days (at nadir) Multispectral It includes the Red-Edge band, which is

sensitive to changes in chlorophyll content

Sentinel-2 10 to 60 m 5 MSI (Multispectral Imager)

Generic land cover, land use and
change detection maps

Maps of geophysical variables for leaf area
index, leaf chlorophyll content,

leaf water content

SMAP 35 km 3 radar (active sensor)

It measures the amount of water in the top
5 cm (2 inches) of soil everywhere on Earth's
surface. Surface features are used to monitor
water and energy fluxes, and play a crucial

role in understanding changes in
water availability

SMOS 35 km 3 microwaves radiation
(L-bad 1.4 GHz)

Sea Surface Salinity over oceans and Soil
Moisture over land for climatologic,

meteorological, hydrologic, and
oceanographic applications.

Spot-6 and 7 1.5 m 1 Multispectral Imagery (4 bands)

SPOT-6 and SPOT-7 are the de facto solution
to cover wide areas in record time, making
national maps regular updating as well as

thematic map creation possible.
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Table 1. Cont.

Satellite Resolution Revisit (Days) Instruments Field of Application

Worldwide-1 0.46 m 1.7 Panchromatic
Provides highly detailed imagery for precise
map creation, change detection, and in-depth

image analysis

Worldwide-2 0.46 m 1.1

High-resolution panchromatic
band and eight multispectral

bands; four standard colors (red,
green, blue, and near-infrared (1)

and four new bands (coastal,
yellow, red edge, and

near-infrared (2).

It collects very large areas of multispectral
imagery in a single pass. It performs precise

change detection and mapping.

Source: Satellite Imaging Corporation (http://www.satimagingcorp.com/satellite-sensors/); Earth Data (NASA)
https://earthdata.nasa.gov/user-resources/remote-sensors; EO-Sharing Earth Observation Resources https://
directory.eoportal.org/web/eoportal/satellite-missions/g.

Toth and Jóźków [34] reported on new satellite technologies related to microsatellites and
nanosatellites, which increment the number of observations by sharing the same orbit. One of the
first examples comes from Planet Labs, which launched four prototype satellites in order to test the
performance of the system [34].

Satellite constellations (Landsat, SPOT, Global Navigation Satellite System and
GeoEye/WorldView families; Rapid Eye) have identical satellites positioned on the same
orbit to diminish the revisit time [52,53].

Satellites that operate in dual mode are defined as a constellation, such as GOCE and the dual
GRACE satellites launched in 2009 to measure the gravitational field of the Earth [54].

In the recent past, satellites were characterized by a low spatial resolution and were used for
several purposes over large geographic areas, but were unable to assess crop yield variability within
a field [48]. Single satellite based systems continue to improve in imaging performance, including
better spatial and spectral resolution as well as sensor agility, so in-track and cross-track stereo capture
is available [55]. Currently, new opportunities for mapping and monitoring crop yield variability
are provided by high-resolution satellite sensors (e.g., SPOT 6 and 7, Ikonos, Quick-Bird) that have
narrowed the gap between image by satellite and by airborne vehicles [56,57].

Landsat series from 1 to 7, for example, had a spatial resolution ranging from 30 to 79 m and a
radiometric resolution of 6–8 bits, usable to some extent for mapping water quality parameters [58–61].
Landsat 8 (12-bit radiometric resolution) is suitable for remote sensing of water in lakes (even dark
with CDOM-rich); although the revisit time of 16 days limits its use in routine monitoring of water
body quality.

Since satellite measurements are not satisfactory for monitoring diurnal variation,
Roussel et al. [62] noted advantages from the use of electromagnetic waves constantly released by the
Global Navigation Satellite System (GNSS) satellite constellations for retrieving different geophysical
parameters of the Earth's surface. For irrigation purposes, GNSS reflectometry (GNSS-R) system is
useful for soil moisture monitoring, because it is able to monitor diurnal variation [62].

Satellite missions, labelled Sentinel 1 up to 5, were set up for environmental monitoring [63].
The launch of Sentinel-2 in 2015 opened a new era in remote sensing. This system has a medium spatial
resolution, super-spectral instrument with a field of view of 290 km, a revisit capability of 5 days
(two satellites), a resolution of 10 m, 20 m and 60 m, and a moderately large band set (13 spectral bands)
aiming to provide global land coverage. The mission ensures continuity of the previous missions
(Landsat and SPOT) and provides geochemical and physical variables, land cover maps and land
change detection maps. Its image spatial resolution (from 60 m to 10 m) allows the monitoring of several
small water bodies as reported by Toming et al. [64], who have shown that Sentinel-2 was able to map
water quality. It may monitor Chlorophyll a (Chl a) as an indicator of phytoplankton, Chromophoric
(or colored) Dissolved Organic Materials, and Dissolved Organic Material concentrations.

Immitzer et al. [65] have assessed the suitability of Sentinel 2 data in agriculture for land cover
classifications. Results appeared encouraging, although the classification results for the pixel- and

http://www.satimagingcorp.com/satellite-sensors/
https://earthdata.nasa.gov/user-resources/remote-sensors
https://directory.eoportal.org/web/eoportal/satellite-missions/g
https://directory.eoportal.org/web/eoportal/satellite-missions/g
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the object-based approach were not extremely high. The authors relied on the support of two twin S2
satellites for consistently improving spectral and temporal information with high spatial resolution.

Saadi et al. [66] have conducted an experiment on regional evapotranspiration and crop
water consumption estimated over an irrigated area in Tunisia with the SAMIR model that used
SPOT high-resolution time series. The SAMIR model was calibrated with local evapotranspiration
measurements taken from flux towers. It was validated at plot and perimeter scales using known
irrigation volumes. The objective of the work was to assess the operational feasibility and accuracy
of SAMIR outputs at plot and perimeter scales, in a context of high land cover complexity (i.e., trees,
winter cereals, summer vegetables) and limited data available for parameterization. The authors
concluded that acquisition frequency (five days) of the satellite Sentinel-2 would not answer the
problem of cloudiness, even in semi-arid conditions, as in the case of Tunisia. The authors suggested
the combination with Landsat8 or SPOT, which have VIS-NIR high-resolution sensors. Using these
time series, including clear images approximately every 20 days, would make it possible to estimate
irrigation volumes at perimeters scale. The seasonal volumes estimated by this method appeared
acceptable, even though results at finer timescales (monthly and below) need to be improved.

A variety of variables (e.g., leaf chlorophyll content, leaf water content, leaf area index) are
proposed for Sentinel-2 as inputs to earth system models. Van der Werff and van der Meer [63]
summarized spectral position (λ) and bandwidth (∆λ), spatial resolution, heritage and purpose of
Sentinel-2 bands, according to the Copernicus derived user requirements.

Escorihuela and Quintana-Seguí [67] reported recently on soil moisture measurements by remote
sensing at local and regional scales. Recent technical developments have allowed the outgrowth
of space borne L-band microwave radiometry. Two satellite missions, the Soil Moisture and Ocean
Salinity (SMOS, 2009) and the Soil Moisture Active Passive (SMAP, 2015) provide global mapping of
surface soil moisture based on radiometric measurements at L-band (21 cm, 1.4 GHz). The authors
found SMOS to be the only satellite able to detect irrigation and the only one that does not show clear
vegetation or roughness effects and is able to map irrigated areas. Entekhabi et al. [68] produced
composited maps of the difference between weekly mean soil moisture over one week, one month,
and three months.

The NASA report “Microwave Technologies Review and Strategy” [69] contained an overview
of technologies for Earth science measurements involving passive microwave radiometry for soil
monitoring. The Soil Moisture Active Passive mission goal was to produce global maps of surface
soil moisture at low (36 km) and high resolution (9 km). The mission was based on L-band
radiometer and radar/radiometer measurements for low and high-resolution maps, respectively.
The preliminary results of the Multi-Temporal Dual Channel Algorithm (MT-DCA) for retrieving
(i) soil moisture; (ii) Vegetation Optical Depth; and (iii) scattering albedo estimates, from passive
microwave measurements alone and without reliance of a priori information were reported. At L-band,
the Vegetation Optical Depth was related to total vegetation water content and albedo to structural
changes. The analysis of these two parameters, at different temporal and spatial scales, disclosed the
potential of L-band microwave sensors for ecological studies on a global scale [70]. Kojima et al. [71]
report an estimate of Soil Moisture Distributions across Small Farm Fields with ALOS/PALSAR.
The ALOS (Advanced Land Observing Satellite) has an active microwave sensor; PALSAR (Phased
Array L-band Synthetic Aperture Radar) has a fine resolution of 6.5 m. Because of the fine resolution,
PALSAR provides the possibility of estimating soil moisture distributions in small farmlands. Making
such small-scale estimates has not been possible with traditional satellite remote sensing techniques.

3.2.2. Airborne Platforms

Airborne platforms (from 50 m to 50 km) carry out downward or sideward sensors to obtain
earth’s surface images. Airborne platforms give images with a spatial resolution of 20 cm or less, much
higher than satellite maps, but they have low coverage area and high cost per unit area. For these
reasons, it is not profitable to monitor and map large areas. Airborne missions are one-time operations,
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whereas satellites provide continuous target monitoring [72]. The quality of images acquired may be
degraded by factors that introduce blurring, improper focusing, atmospheric scattering and target
motion [34,40]. The fields of application of airborne remote sensing are numerous, such as biodiversity,
biogeochemical cycles, climate change, eco-hydrology, infectious disease, land use, invasive species.

For natural and agricultural environments, it is worth mentioning airborne remote sensing studies
on vegetation: (i) cover amount; (ii) dominant type; (iii) canopy structure (height and Leaf Area Index);
(iv) crop status; (v) canopy chemistry (nitrogen index); (vi) crop greenness; and (vii) crop health in
relation to topography (elevation, slope and aspect) [73–77].

Most data seen in Google Earth, and the imagery of towns and cities, are supplied by Bluesky and
DigitalGlobe, and are not taken from a satellite. On a plane or helicopter it is simple to remove/replace
the old sensor with a new one that is more precise and accurate. Furthermore, it is possible to take
several flights until the proper and correct image is acquired. Moreover, a plane or helicopter, different
from satellites, can fly with unfavorable weather conditions (high-level clouds). Even imperfect images
can undergo a post-processing stage for correcting atmospheric problems. Helicopters are usually used
for low altitude applications where the ability to hover is required. Airborne hyperspectral imagery
has been evaluated for estimating crop yields [78,79], green biomass [80], and crop disease [81].

In one of the first examples of application of airborne imaging to crop farming, Alvino and
Zerbi [82] set up an experimental field capable of creating a continuous gradient of water table level
during the rainy season. Four inclined water tables were obtained (Figure 1). Figure 1b was taken
in summer 1986 by an aircraft with conventional imaging equipment. Figure 1c is the conversion of
the color photo to grayscale image, and then conversion to false colors. The upper part of the image
(darker soil color) corresponds to the most drained part of the field during the winter season, which
was then excluded from measurements. Results of the experiment are published by Alvino et al. [83],
reporting the effect of shallow water tables on peach trees grafted on three peach seedlings.

There was was a pioneering attempt to achieve airborne RS, unfortunately not supported by
knowledge appropriate to the task, and this is the main reason that the RS image was not orthogonal.
The goal was to integrate ground photos of each plant with airborne images to calculate the leaf area
of each tree. For this goal, several trees were fully defoliated to have an accurate measure of Leaf Area
Index (LAI).
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At present, unmanned airborne vehicles (UAVs) are the most common airborne platforms for 
civilian and military aircraft remote sensing applications [84].  

Remote sensing with UAVs has very high resolution. It provides fast and low-cost data, and 
cloud cover does not prevent acquisition, so it is an important instrument for monitoring and 
managing crops during the growing season [85,86].  

Figure 1. (a) Layout of the experimental field: (a) a=observation wells; b=pumping well; c=water
supply ditch; d= drainage ring. (b) Airborne images. (c) False color image of Figure 1b.

3.2.3. UAV (Unmanned Aerial Vehicle)

At present, unmanned airborne vehicles (UAVs) are the most common airborne platforms for
civilian and military aircraft remote sensing applications [84].
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Remote sensing with UAVs has very high resolution. It provides fast and low-cost data, and cloud
cover does not prevent acquisition, so it is an important instrument for monitoring and managing
crops during the growing season [85,86].

UAVs come in different sizes related to their total weight. The small systems were defined
as an UAV of a maximum weight of 25 kg. Watts et al. [87], Matese et al. [51], DeBell et al. [88],
Candiago et al. [89], and Toth and Jóźków [34] describe current UAS systems (fixed and rotating wing),
solutions and applications. The following description provides only the basics for the UAV remote
sensing field; an extended recent review (monograph) on the topic can be found in Pajeres [90], as well
as in Toth and Jóźków [34].

Large volumes of UAVs are expected to fly in upcoming years, so safe operation is essential for
the user and the public. There are extremely large numbers of UAV applications to remote sensing [34].
Colomina and Molina [91] reported the evolution of the use of UAVs in the field of photogrammetry
and remote sensing.

Another state-of-the-art example is available in Sankaran et al. [92], who studied the use of UAV
technology for various crop applications (crop emergence, vigor, characterization of yield potential).
The review also reported the potential and future perspectives of using UAV imaging to evaluate the
effect of biotic and abiotic stresses for crop breeding and precision crop yield management.

DeBell et al. [88] suggested that UAVs are set to become a crucial factor of a water-resource
management toolkit. They can ensure high-resolution data (not available from other platforms such as
satellites or aircrafts), in a cost-effective way and in a more sustainable way for water-resource
targets. The authors suggest the use of UAVs for data analysis of water resource information
(e.g., regular surveys of reservoir resources, soil moisture assessments by thermal imaging, more
effective consumption).

An interesting point of view was reported by Anderson [53], who put an emphasis on remote and
proximal sensing changes due to a variety of sensors fitted to drones and kites to improve fine-grained
understanding of environmental processes. Anderson et al. [93] also proposed a grassroots remote
sensing and democratic mapping for delivering rapid spatial data (GeoTIFF images) from lightweight
drones and kites with open-source geospatial toolkits and android smartphone apps.

UAVs offer many advantages with respect to other platforms, the main one relying on readiness
and repeatability of the measurements. The UAV operator can monitor the procedure and decide
to repeat the flight if something went wrong. Conversely, each satellite has a specific revisit time
(see Table 1), and it is almost impossible to replicate a survey. The airborne flights try to reduce costs
by bringing together several targets and actions (e.g., one strip on different subjects or many strips on
the same one). This prevents modification of the flight plan. The operation costs are the lowest for
the UAVs, which are flexible and may change sensors/missions/objectives easily. However, satellite
sensors cannot be replaced when they are obsolete or out of service.

3.2.4. Ground-Based Platforms

The more common ground-based platforms (up to 50 m) are tripods, towers, poles, and cranes,
as well as instruments mounted on vehicles. They are characterized by different land coverage:
short (50–100 m), medium (150–250 m), and long (up to 1 km). Platforms may be temporary
or permanent and are usually used to support research projects, even for micro-meteorological
measurements like, for example, for Bowen-ratio and Eddy-covariance [94].

Important data can be also collected in the field using vehicle-mounted instruments.
O’Shaughnessy et al. [95] have studied how to enhance crop-water-use efficiency by reducing
irrigation losses and enhancing soil water availability. The authors underline that abiotic and biotic
factors can increase the yield gap through a reduction of water use and of crop yield potential.
Emerging technologies, such as wireless communication, may be integrated with soil and plant sensors
(variable-rate irrigation equipment, and decision support systems).
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Aqeel-ur-Rehman et al. [96] discussed different examples of the use of sensors and their networks
for agriculture and irrigation purposes. Damas et al. [97] developed an automatic irrigation system
with significant water conservation (i.e., up to 30–60%). Evans and Bergman [98] worked on precision
irrigation control of self-propelled, linear-movement and center-pivot irrigation systems, controlled by
wireless technology. To improve water use efficiency, Morais et al. [99] implemented a smart irrigated
system piloted by a wireless data acquisition network to acquire environmental (climate) and soil
moisture data. Basu et al. [100] set a drip-irrigation-control system characterized by remote sensing
data acquisition. Kim et al. [101] devised a site-specific sprinkler irrigation system equipped with a
real time sensor (using Bluetooth and GPS technologies) and control software based on soil moisture,
temperature and weather information data. Kim and Evans [102] and Evans et al. [103] improved
the above noted irrigation system with “in-field data feedback to support the decision-making and real-time
monitoring of irrigation operations via Bluetooth wireless radio communication”. Thompson et al. [104]
studied soil moisture sensors to support the decision-making irrigation management scheduling.
The study was aimed at determining threshold values of soil water characteristics (matric potential
and available soil water content), using appropriate values of leaf water potential for pepper, melon,
spring tomato and winter tomato crops.

4. Approaches to Precision Irrigation

Remote sensing has many potential applications in many fields and at different scales. Table 2
lists field applications of remote sensing in agriculture. Moran et al. [28] summarized the important
role of remote sensing in site-specific farming.

Remote Sensing can provide non-destructive, automatic, and continuous measurements, easily
implemented with data transmission systems for the user to have nearly real time access to the
collected data from a remote computer, smart phone or similar [30]. Most of these methods
and related systems are highly sensitive and capable of working under field conditions for long
periods. These characteristics confer great potential for both monitoring water stress and scheduling
irrigation [105].

Table 2. Applications of remote sensing in agriculture

• Precision farming
• Surveillance of farms
• Crop yield potential assessment
• Sampling procedure (soil and crop)
• Improving assessment of irrigation water use at regional scale
• Field-based plant phonemics
• Plant abiotic stresses (water, heat, nutritional, pollution stress)
• Plant biotic stress (diseases, weeds)
• Crop water status
• Canopy volume/crop biomass detection, crop cover fraction
• Light penetration of the canopy
• Application of canopy measurements
• Soil nutrients and other soil characteristics
• Visible (VIS)/NIR spectroscopy
• Mapping soil types
• Wind and water erosion, flooding
• Monitoring the extent and type of vegetation
• Assessing water resources

Remote sensing can provide precise information of irrigated crop areas [106] by monitoring the
phenological development of crops through multi-temporal image [107].
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Crop water status is the crucial biophysical property, used in particular to manage irrigation
by remote sensing. It is, in most cases, directly associated to the available soil water content, and in
other conditions to soil salt content when salinity is a limiting factor of water uptake. Similarly, plant
diseases, which may be obstacles to plant-water flow, may negatively influence crop water status,
which becomes an indicator of disease presence and severity [108,109]. Crop water status can be
quantified at the canopy and leaf levels, by monitoring leaf or stem water potential, or leaf water
content [110]. Unfortunately, this simplistic view is complicated by several plant factors (root signaling,
aerodynamic characteristics of vegetation, genetic control of crop performance, etc.), which interact
in a complicated way with environmental factors, such as solar radiation (intensity and insulation),
wind speed and direction, air humidity, and air temperature. Plant species may or may not be highly
coupled to the environment [111]. The Ω coefficient (or decoupling coefficient) is a measure of the
coupling between conditions at the canopy surface and in the free airstream (well above the crop), and
can vary between 0 (for perfect coupling) to 1 (for complete isolation). Jones [111] reports Ω values of
0.85, 0.7, 0.4, 0.3 for strawberry, tomato, raspberry, and citrus orchards, respectively. In other words, a
citrus orchard is more coupled to the environment than more dense horticultural crops. The concept is
summarized by Hsiao [112], who stated that relatively open, tall and aerodynamically rough canopies
made of small leaves facilitate turbulence and air movement within the canopy, and therefore, are
closely coupled to the air overhead. Conifer forests show a low decoupling factor Ω. In contrast, dense,
smooth and short canopies, with all the leaves packed into the limited vertical space, would obstruct air
movement and therefore are nearly uncoupled from the air overhead. For many field and horticultural
crops with short and dense canopies, control of transpiration may be expected to be minimal until
stomata close, and canopy conductance decreases markedly. Another crucial point is the ability of
some crops to limit their leaf water potential, preventing it from falling below a critical level (isohydric
behavior). Marino et al. [113] have reported that daytime leaf water status (or water potential) was
maintained relatively constant as long as the potential transpiration exceeded the hydraulic threshold.
This means that water potential of the leaves remained relatively constant during the day and during
periods of minor-to-moderate water stress events, regardless of soil water status, because of active
stomatal control. The assessment of the isohydric crop response is important for crop-water-use
predictions and requirements, and photosynthetic productivity under uneven irrigation conditions.
In contrast, many species show unisohydric behavior with leaf water potential relatively coupled
to the environment. The different behavior of isohydric and unisohydric plants may affect Remote
Sensing measurements based on thermography. Two crops, one isohydric and the other unisohydric,
both held in non-limiting soil water conditions, would be expected to return different values of Crop
Water Stress Index (CWSI). Since both crops are well-watered, the differing behaviors of isohydric and
unisohydric crops may affect irrigation scheduling if appropriate corrections are not applied to each
species (e.g., by using different thermal index threshold values).

According to Casa et al [114], several methodologies are available for estimating crop water use
and water use efficiency. Evett [115] developed a theoretical approach to precision irrigation based on
remote sensing, considered a powerful, practical and cost-effective tool for obtaining comparable yield,
crop quality, and water and nutrient use efficiencies profitably and sustainably. In the field of irrigation,
five major approaches to irrigation management using remote sensing were reported (Table 3).

The five approaches can be grouped into three major categories related to ET estimation (point 1
and 4); infrared thermography (point 2 and 3) and crop characteristics (point 5). Many papers report
“new methods” to calculate precision irrigation based on remote sensing, combining, simplifying or
integrating the methods described above.
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Table 3. Five major approaches to irrigation management using remote sensing. From Evett [115].

1 Scheduling irrigation to replace ET estimated from a reference ET (ETo), calculated from local weather data,
which is multiplied by a crop coefficient estimated with a crop coefficient function, Kc (NDVI), where NDVI is
the normalized difference vegetative index (NDVI) or a similar index adjusted for reflectance from soil.
The NDVI is based on canopy irradiance in the red and near-infrared bands, which can be remotely sensed.

2 Scheduling irrigation at a fixed amount of water whenever a trigger to irrigate is generated by the crop water
stress index (CWSI), which is estimated using remotely sensed surface temperature (Ts) and local weather data.

3 Scheduling irrigation at a fixed amount when triggered by the time-temperature threshold index (TTTI) reaching
a crop and region-specific value. The TTTI is calculated using Ts.

4 Scheduling irrigation to replace ET estimated with the field surface energy balance (FSEB), which uses remotely
sensed surface temperature, Ts, determined from thermal infrared data, and data on canopy cover and surface
emissivity deduced from the near-infrared (NIR) and visible bands.

5 Sensing of crop and soil characteristics in order to guide timing, placement, and amount of fertilizer and water
through irrigation (or fertigation) systems of various orders of precision. The characteristics, including crop cover
fraction, nitrogen status of leaves, disease, and pest damage, all of which vary spatially and temporally, are
inferred from various remotely sensed vegetative indices.

Evett proposed an electronic hardware and software system that acquires data from sensors and controls the
operation of other hardware to pilot irrigation. This Supervisory control and data acquisition system (SCADA)
acquires in situ, remotely sensed, or near-surface remotely sensed crop, soil, and micrometeorological properties as
inputs for a decision-making algorithm. The system applies defined amounts of water at defined times automatically
through control of an integrated irrigation application system.

4.1. ET Estimation

Satellite Remote Sensing retrieval of evapotranspiration has become a popular tool and a focus of
study in the past two to three decades. High-resolution daily evapotranspiration (ET) maps would
greatly improve irrigation crop management [116]. Remote Sensing based ET estimation roughly
started in the 1980s and has evolved into a variety of approaches and models as reported in an
exhaustive paper by Zhang et al. [117]. In addition, Liou and Kar [118] reported the estimation of ET
with RS and various surface-energy-balance algorithms (SEBAL). The authors reviewed these different
satellites based approaches and the main physical bases and assumptions of these algorithms.

It is difficult to categorize these methods, since they try to compensate for the empirical modules
and physically based modules used. Table 4 lists a classification by Courault et al. [119]

Table 4. Evapotranspiration (ET) estimation model categories. From Courault et al. [119]

1 Empirically direct methods (remote sensing data are introduced directly in semi-empirical models to estimate ET)

2 Residual methods of the energy budget (combining some empirical relationships and physical modules in
models such as SEBAL)

3 Deterministic methods (more complex models such as Soil–Vegetation–Atmosphere Transfer models (SVAT),
which compute the different components of energy budget (ISBA, Meso-NH)

4 Vegetation-index methods (remote sensing to compute Kc or Priestley Taylor-alpha parameters).

Remote sensing techniques for estimating ET from satellites [120] have been developed from
energy balances, thus generating estimates of actual evapotranspiration [121,122]. The University
of Idaho (USA) has developed a model to estimate ET called Mapping Evapo Transpiration
with high Resolution and Internalized Calibration (METRIC) [122], based on the Surface Energy
Balance Algorithms from the Land (SEBAL) model of Bastiaanssen et al. [121]. In METRIC, the
evapotranspiration is calculated from Landsat imagery calculating the available energy using the
earth surface temperature (Ts) derived from satellite imagery thermal bands, to constrain the heat
flux for one or more layers (canopy and soil), and then computing the latent heat as a residual to the
surface energy balance [123]. In other words, the energy utilized by the ET process is considered as a
residual of the SEBAL equation. The ratio between actual evapotranspiration (Etcrop) and reference
evapotranspiration (Eto) can be calculated only when ET is measured; this ratio is the Kcact, namely
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the actual crop coefficient [124]. Allen et al. [122] reported this method (Crop ET estimations based on
Kcact) is a useful tool for field and regional water management.

The energy-balance approach has the benefit that it can be utilized to quantify the dimensions
of irrigated fields and their water-use dynamics, without reference to source of water as opposed to
a water balance model. This latter model necessitates the information of both the magnitude and
temporal distribution of rainfall and irrigation applied to fields [125]. Temperature-based methods, as
SEBAL, can be automated and likely outperform vegetation-based methods in irrigated areas, especially
under conditions of low vegetation cover and high soil evaporation. According to Biggs et al. [126],
an automated SEBAL can estimate the evaporative fraction from irrigated crops with a mean error of
14% of Rn (range 218% to 124%). Allen et al. [127] confirmed the maturing technology of SEBAL and
METRIC for deriving a satellite-driven surface energy balance for estimating ET from the ground’s
surface. The authors foresee a great future for these models in the scientific groups dealing with
water resources.

Santos et al. [120] have combined METRIC-derived estimates of ET with a water balance model
named LORMOD [128] to evaluate, at a plot level, the use of near-real time ET estimates to update
and correct irrigation scheduling predictions and to assess its impact on WUE. ET estimates derived
from satellites were used in a daily soil-water-balance model to improve accuracy of field-by-field ET
demands and, as a consequence, field-scale irrigation schedules. This approach combined high spatial
resolution (satellite RS) data with high temporal resolution data (daily soil-water-balance), providing
significant advances in irrigation schedules, as reported for cotton (a 24% reduction) increasing field
irrigation efficiency to 0.72; the field irrigation efficiency reached 0.90 for sugar beet [120].

Trezza et al. [129] reported an estimation of actual ET for central New Mexico. They matched ET
images derived from MODIS with those taken by Landsat. The adoption of a METRIC model based on
MODIS imageries produced monthly and annual ET estimates, comparable to those obtained with
Landsat imagery.

Elhaddad and Garcia [130] reported a ReSET model based on wind from multiple weather stations
and the use of a weather station for the model calibration. This flexible approach generated raster
interpolated weather parameters, accounting for spatial variation of weather parameters between
weather stations, which can be significant. They found that ET calculated using this approach could
vary by 17% compared with ET calculated with point values.

Subsequently, Elhaddad and Garcia [131] assessed the use of actual ET calculated by ReSET to
estimate seasonal crop water use at regional scale instead of the traditional ET estimation method
based on reference ET and crop coefficients.

Ortega-Farías et al. [132] estimated the energy balance components over a drip-irrigated olive
orchard, using thermal and multispectral cameras placed on a helicopter-based unmanned aerial
vehicle, acquiring high-resolution images to assess intra-field spatial variability.

In the field of irrigation scheduling/WUE, there are very few concrete outcomes. In particular,
D’Urso et al. [133] analyzed, from the PLEIADeS framework, five agricultural systems, in a broad
range of arid and semi-arid conditions characteristic for the European, Southern Mediterranean, and
American regions. The aim of the project was to improve the efficiency of the irrigation schemes, made
possible through wide space–time coverage of Earth Observation data and interactive networking
capabilities of Information and Communication Technologies. They included the following: canopy
parameters, fractional vegetation cover, LAI, albedo, crop coefficients, potential ET, irrigation water
requirements. They confirmed the possibility of estimating crop coefficient from NDVI, relying upon
advances in spatial and radiometric accuracy of new sensors (e.g., Sentinel-2), for a full exploitation of
their applications.

Peña-Arancibia et al. [107] quantified irrigation water use and water provenance (surface water
or groundwater), combining t remote sensing data on irrigation dynamics and actual ET linked with
a river-reach hydrological model. They concluded that the results were as accurate as those of more
traditional irrigation area modelling using remotely sensed irrigated areas. Actual ET data can be used
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to understand irrigation dynamics, the constraints in irrigation models, and specific areas that require
better monitoring.

Vanino et al. [134] estimated the ET and crop coefficients of table grape vineyards trained on
overhead “tendone” systems in the Apulia region (Italy). The FAO direct methodology for estimating
potential evapotranspiration (ETp) was used to estimate maximum vineyard transpiration. The model,
based on existing validated methodologies, used appropriate values of canopy variables (albedo and
the LAI) derived by means of multispectral satellite data. ETp values (mean seasonal daily ET) ranged
between 4.2 and 4.1 mm·d−1, and from 0.88 to 0.93 in 2013 and 1.02 to 1.04 in 2014 for the midseason
values, respectively. The results indicated that the values of Kc are site- and year-specific and depend
on local ET0 rates, rainfall frequency, cumulative thermal requirements, and effective canopy cover.
The resulting crop water requirements were lower than the actual average irrigation volumes applied
by farmers, thus suggesting the possibility of improving the water use efficiency of these crops by
adopting the proposed methodology. We agree with the authors that, in the Mediterranean, few studies
have investigated the satellite Kc estimation for vineyards.

López-López et al. [135] estimated ET starting from field weather data and Kc estimated with a
function related to vegetation indices such as NDVI or index adjusted for reflectance from soil.

Kamble et al. [136] studied how to estimate Kc directly from reflectance and VIs derived from
a satellite. The authors found that NDVI-Kc quantified from remote sensing could be useful for
estimating WUE, irrigation scheduling and performance, and agricultural water budgets. The NDVI-Kc

may be also utilized for agriculture water conservation, starting from local to continental scales.
Recently, Battista et al. [137] published a paper with the aim of demonstrating how spatialized

meteorological data and remote sensing techniques may allow one to estimate actual ET and the soil
water content of a small plot (about 0.1 ha) of an olive orchard. As a rule, for Mediterranean areas,
trees were covered by several herbaceous species. The authors found that the NDVI-Cws (coefficient of
water stress) method is a suitable tool for estimating daily olive tree actual transpiration and soil water
content in complex and multi-layer Mediterranean agricultural ecosystems. The novelty of the adopted
method was to consider the spatially fragmented, two-layer structure of an olive orchard. For instance,
the ETa of trees and grasses were combined with weather data (precipitation) to assess the site-specific
water balance, which was assessed through comparison with daily measurements of soil water content.
Moreover, this highlighted the importance of separating trees and grasses for estimation of the NDVI,
adopting statistical operations to satellite imagery with different spatio-temporal properties.

Marshall et al. [138], with the aim of partitioning ET into soil evaporation and crop transpiration,
studied the ratio-based vegetation indices (NDVI, SAVI, EVI) retrieved from optical remote sensing,
highlighting their limitations and how VIs can induce large model error. NDVI explained half of the
variability in transpiration, the largest component of ET. However, to estimate total ET one should
consider the Photochemical Reflectance Index (PRI). To estimate soil evaporation, the authors suggest
two new ratio-based indices derived from NIR bands 743 and 953 nm and visible blue 428 nm and
from SWIR1 bands 1518 nm.

González-Dugo and Mateos [139] used an approach based on the conjecture that variations in
the size of the crop have much stronger effects on its ET than variations in stomatal conductance.
This assumption seems to be valid for irrigated crops, according to several studies [140–142]. The results
showed the potential of this method for field application. Since there is little agreement on the nature
of the relationships between VIs and Kc, the latter can be estimated from spectral measurements.
The rationale is that both the component of the crop coefficient that represents transpiration (Kcb)
and VIs are sensitive to crop biomass (LAI and ground cover fraction—fc). The relationships between
Kcb and VIs could be linear or non-linear. The linearity of these relationships depends on the crop
architecture [143]. Er-Raki et al. [142] used the same approach to derive Kcb values of wheat crops,
analyzing the relationships between VIs, and both LAI and fc.

The use of remotely-sensed-vegetation indices has been tested to predict crop coefficients at
different scales. In fact, González-Dugo and Mateos [139] found that the NDVI and SAVI were strictly
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related to LAI, vegetation ground cover and biomass. These relationships were obtained by radiometric
measurements obtained from satellite and ground-based platforms. The relationship is simple and
robust and may be used for studying WUE and water productivity at a regional level.

The statistical analyses of field data and remote sensing data, derived from multispectral imagery
using an UAV, confirms the feasibility of applying the proposed methods to assess physiological and
structural properties of Citrus under water and saline stress. The novelty of this study was to show
that diurnal changes in physiological and structural traits of citrus irrigated with RW combined with
RDI could be determined by multispectral images from UAVs. NIR was a useful indicator of s, A and
gs on both crops. The NDVI was strictly related to gas exchange in both species and on mandarin [144].

Zarco-Tejada et al. [145] hypothesized that the index PRI (normalized by canopy chlorophyll
content), might be a strong indicator of the diurnal dynamics of water stress. They acquired
narrow-band multispectral and thermal imageries over a vineyard cultivated under three different
irrigation treatments, and evaluated the relationships between the normalized PRI, field-physiological
parameters (stomatal conductance) and plant water potential. Relationships with CWSI, which were
used as a remote sensing benchmark for water stress detection, were also discussed by the authors,
who reasoned that CWSI can be used as a remote sensing benchmark for water stress detection. Some
critical points were suggested for integrating VIs derived by UAVs and everyday water resource
management, such as the integration of differential global positioning and the development of
intelligent control of UAV platforms to improve positional accuracy and spatial data capture.

A review by Kang et al. [146] set up the first worldwide dataset to analyze the global LAI-VI
relationships at different spatial and temporal scales. Analysis was derived from low-resolution (30 m)
satellite Landsat images, with the goal of producing large-scale fine resolution LAI maps, essential
for agricultural applications, especially in mosaic agriculture. The authors reported that the LAI-VI
relationships were crop-specific and may explain why the largest amount of variance in field-measured
LAI was obtained using only remotely sensed observations.

4.2. Infrared Thermography

4.2.1. CWSI

Scientists tried to find indexes that describe the relationship between and thermal characteristics
of plants and water stress [147]. Jackson et al. [148] set up the CWSI, Jackson [149] the Surface
Temperature (ST), Moran et al. [150] the Water Deficit Index (WDI), Vidal et al. [151] the Stress Index
(SI), and Guilioni et al. [152] the Stomatal conductance index. Plants showing symptoms of wilting emit
more longwave infrared radiation, revealing canopy temperature. Unfortunately, canopy temperature
is affected by meteorological conditions at the time of measurement, so it cannot be an absolute
indicator of water stress.

We recommend several papers related to theoretical approaches dealing with infrared
thermography: Jones and Vaughan [40] provided a rigorous and detailed explanation of the theory
and practical applications of remote sensing; Maes and Steppe [153] wrote an exhaustive review
on thermal remote sensing technique and field variation of plants and environmental parameters
involved. Other key papers include those from Mulla [94], Gago et al. [154], Thenkabail et al. [155],
and Jones [156].

Among the indexes cited above, the most studied is the CWSI, which was developed at the U.S.
Water Conservation Laboratory in the 1970s and 1980s [148,157,158] and has been commercialized and
widely used in irrigation management. Jackson et al. [148] found that CWSI was defined by the ratio of
actual to potential ET calculated from the Penman-Monteith equation, and highlighted the usefulness
and limitation of the index. Although it appeared to be a promising tool for quantifying crop water
stress, it was unable to quantify crop water needs, or the time threshold for watering a crop.

A long list of indices is available at the website IDB (http://www.indexdatabase.de/db/i.
php?offset=1), which reports the basic information for each index including the following: name,

http://www.indexdatabase.de/db/i.php?offset=1
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abbreviation, formula, variables, explanations of variables, wavelengths, source, description; sensors,
visualization of required spectral range; visualization of Sensor-Bands, applications, references.
Given defined environmental conditions (air humidity, air temperature), the CWSI index is based
on the quantification of the behaviour of a crop both when it is fully transpiring and when it is not.
López-López et al. [135] expressed CWSI in terms of evapotranspiration:

CWSI = 1 − ETc/ET0

where, ETc is the actual crop evapotranspiration and ET0 is the reference evapotranspiration.
According to López-López [135], the relation between ETc and ET0 approaches the theoretical values
proposed by Jackson [148], because it is decoupled from the wind velocity as in the classical form,
according to Idso et al. [158].

Idso [159] suggested replacing the estimations of VPD from minimum temperature with air
temperature measurements in direct radiation on irrigated plots, with the goal of increasing and partly
correcting the influence of the superficial soil temperature on LAI. The accurate assessment of the ET
by means of the CWSI is assumed by the relation between ETc and the leaf’s water potential (ET0) at
dawn, according to Itier et al. [160].

Evett [115] defined the CWSI as:

CWSI = ((Tc − Ta)m − (Tc − Ta)l)/((Tc − Ta)u − (Tc − Ta)l)

It uses the crop canopy temperature (measured by an IR thermometer or thermal images) and
environmental parameters (air temperature, air humidity, wind speed, solar radiation). The canopy-air
temperature difference (Tc − Ta) is normalized to the lower and upper limits of canopy-air temperature
differences, which represent non-water-stressed and completely water-stressed crops, respectively.
The subscript “m” denotes measured data, while “l” denotes a lower baseline (non-water-stressed
crop), “u” denotes an upper limit (completely water stressed crop), which is an estimated parameter.
The (Tc − Ta)l and (Tc − Ta)u limits may be estimated either on an empirical or theoretical basis as
described by Idso et al. [158] and Jackson et al. [148]. Both approaches require readings of air humidity
and air temperature but it works better with wind speed and solar radiation data, and estimates of
bulk canopy resistances.

Irrigation scheduling based on (Tc − Ta) has often been determined by the stress degree day
method (SDD), originally suggested by Idso et al. [157] and Jackson [161]:

SDD =
n

∑
i=l

(Tc − Ta)i

with Tc and Ta measured 1–1.5 h after solar noon at day i, during a n-day period. Irrigation was
initiated as soon as SDD exceeded 0. The formula was used successfully for different crops [162], and
according to Maes and Steppe [153] SDD worked well for wheat, and in semi-arid climates where
weather conditions were expected to differ little between consecutive days.

According to King and Shellie [163], the CWSI is also defined as:

CWSI = (Tcanopy − Tnws)/(Tdry − Tnws)

where Tcanopy is the temperature of fully sunlit canopy leaves (◦C), Tnws is the temperature of
fully sunlit canopy leaves (◦C) when the crop is non-water-stressed (well-watered) and Tdry is the
temperature of fully sunlit canopy leaves (◦C) when the crop is severely water stressed due to low soil
water availability. Temperatures Tnws and Tdry are the lower and upper baselines used to normalize
CWSI for the effects of environmental conditions (air temperature, relative humidity, radiation, wind
speed, etc.) on Tcanopy. Maes and Steppe [153] emphasized the limited application of the CWSI by the
difficulty of estimating without actually measuring Tnws and Tdry.
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Jones [164] proposed a stress index (SICWSI) analogous to the Idso-Jackson CWSI, using wet
surface conductance rather than the finite value for a well-watered crop.

SIcwsi = (Tleaf − Twet)/(Tdry − Twet)

Rojo et al. [165] suggested a modified CWSI (MCWSI) in grape and almond using the
continuous leaf monitor data, where the well-watered and dry conditions were measured using
a well-watered tree and a simulated dry leaf. The CWSI and MCWSI indices were calculated and
were capable of representing the stress level of the grape and almond crops, so variable rate irrigation
was implemented.

The CWSI is considered a sensitive tool for monitoring and assessing plant water stress for a
wide range of crops. CWSI was inversely correlated to cotton yields [166], and positively correlated
with soil water depletion for a fully developed canopy when no soil reflectance was present [167].
The CWSI was also able to foresee a yield of several crops under stress and to develop schemes for
managing irrigation [168,169]. Furthermore, the Water Deficit Index, which is a two-dimensional CWSI
normalized for vegetation cover, was related to crop water stress [150,170].

Orta et al. [171] studied the upper and lower baselines, and CWSI values on watermelon were
slightly different. They tested CWSI for scheduling irrigation for watermelon grown with five irrigation
treatments (0%, 25%, 50%, 75%, and 100%) in terms of the replenishment of the water depletion (0.90 m
soil profile depth). The CWSI was calculated from IR canopy temperatures, air temperatures, and
vapor pressure deficit values. In two years, the fully irrigated treatment gave the highest yield and
water use. The CWSI values tended to be consistent with the soil water content. The authors proposed
a linear equation of CWSI versus yield prediction, and suggested testing in long-term experiments a
critical value of CWSI at which a farmer should irrigate.

Recently, Bellvert et al. [172] measured the CWSI in three peach cultivars (Prunus persica L.)
throughout different growing seasons. They measured the canopy temperature of well-watered trees
using high-resolution thermal imagery obtained from an airborne platform and related it to leaf water
potential (ψL) as a water stress indicator. Results demonstrated that (i) the CWSI had similar seasonal
responses and (ii) a common “non-water-stressed baseline” can be used during the course of the entire
crop season. The CWSI is a practical method for evaluating the spatial variability of peach tree water
status in heterogeneous orchards, and for deriving ψL maps throughout a complete growing season.

Santesteban et al. [173] evaluated the ability of high-resolution UAV-based thermal imaging
to estimate instantaneous and seasonal variability of plant water status within a vineyard.
CWSI correlated well with ψs and gs at the moment of image acquisition, showing great potential
for monitoring instantaneous variations in water status, but it did not provide a good estimation of
variations of plant water status on a single day. The results added evidence regarding the suitability of
this approach, and reinforced the potential role UAV thermal imaging may have as an instantaneous
water-stress mapping tool. Similarly, Baluja et al. [174] conducted an airborne study over a vineyard,
with the goal of computing image-derived spectral and thermal indices, and indicators of water status
in vines including (i) the crop water stress index (CWSI), stomatal conductance index (Ig) [164] and
(ii) a formulation of the stomatal conductance index (I3) [164]. They concluded that the relationship
between thermal imagery and derived indices can be considered as a short-term response, a kind
of instantaneous “picture” of the plant water status situation, while spectral vegetation indices are
probably the result of cumulative water deficits.

Berni et al. [84] validated a methodology for producing high-resolution maps of canopy
conductance and CWSI, potentially useful for calculating actual ET and as an input for scheduling
irrigation. The canopy of conductance and CWSI maps of olive orchards were acquired by airborne
and UAV platforms for two years with different irrigation treatments.

Testi et al. [175] showed that the CWSI measured in the first afternoon hours were a good tool
for identifying seasonal changes in the water status of a pistachio orchard submitted to variable



Horticulturae 2017, 3, 40 18 of 36

water stress by regulated deficit irrigation practices. The temperature of pistachio trees showed great
responsiveness to variations in plant water status.

López-López et al. [135] analyzed ET and CWSI in tomato confirming that the use of infrared
thermometry to calculate the CWSI is a reliable technique for scheduling irrigation using the
determined upper and lower CWSI baselines in a husk tomato crop. The CWSI value increased
until it reached 0.7 in the treatment with severe irrigation restrictions (40% ETo).

González-Dugo et al. [176] used UAV systems to derive CWSI from high-resolution thermal
imagery. They assessed the spatial variability of crop water status in a pistachio orchard for precision
irrigation purposes. The authors estimated a possible reduction of irrigation costs moving from
common irrigation system to a variable rate irrigation system [177].

González-Dugo et al. [178] also used IR imagery taken by UAVs to evaluate the variability in the
water status of five fruit tree species. They compared the daily differential between Tc − Ta (canopy
and air temperature) with the tree water status. Since the slope of the differential with time was
highly correlated with water status, the authors proposed the slope as an indicator of the stomatal
behavior. An empirical approach was used to define the upper and lower limits of Tc − Ta; CWSI
was calculated using the temperature data from a 13-h flight. Another important contribution of the
paper was the assessment of variability in the water status based on the differences in relative canopy
temperatures. The authors concluded that their approach (i) was worthwhile for managing precision
irrigation; (ii) could identify water stressed areas; and (iii) could define threshold CWSI values, a great
help for farmers and for irrigation strategies at different phenological stages.

Sezen et al. [179] analyzed the CWSI of red pepper irrigated with two systems (drip and furrow)
and with different irrigation regimes. The authors concluded that CWSI could measure crop water
status and improve irrigation scheduling. For high-quality yields, the authors suggested CSWI values
of 0.26 for drip irrigation and 0.38 for furrow irrigation. For both irrigation methods, linear relations
were found between CWSI and red pepper yield.

Agam et al. [180] tested CWSI for analyzing the changes in water status of olive trees when
entering into and recovering from stress on a diurnal scale. CWSI was tested in an empirical form
and in two analytical configurations. The results showed that the empirical CWSI was capable even
given its limitations, while the analytical forms of CWSI needed enhancement for monitoring the water
status of olive. The authors proposed calculating the wet temperature analytically and fixing the dry
temperature at a level of 5 ◦C higher than the air temperature. Thermal imaging and water status
measurements were recorded between 12:00 and 14:00.

Wang et al. [181] conducted a two-year experiment on early-ripening peach exposed to postharvest
deficit irrigation schemes, concluding that IR measurements might estimate plant water stress,
particularly in high-radiative arid and semi-arid climates. They found that the temperature differences
(infrared-canopy temperature and air temperature) where correlated to stem water potential and
proved to be a useful tool for water stress assessment for managing regulated deficit irrigation.
Temperature differences (midday canopy to air temperature) ranged from 5 to 7 ◦C in the water-stressed
postharvest deficit irrigation treatments, while they ranged from 1.4 to 2 ◦C in the non-water-stressed
control treatments.

Taghvaeian et al. [182] calculated CWSI for four 1-hour periods, ranging from 10:00 to 14:00,
each day for 29 days. The estimated CWSI was smallest from 10:00 to 11:00 and largest from
12:00 to 13:00. These values may be used for precise (amounts and timing) irrigation scheduling.
When measurements were taken during earlier hours, the authors suggested adopting a conservative
threshold value of CWSI; in contrast, they suggested higher levels when measurements were recorded
one hour after solar noon.

García-Tejero et al. [183] conducted a study using thermal data to monitor crop-water status in
irrigated Mediterranean viticulture. They found that CWSI and IG might provide more meaningful
information about the crop-water status than Tcanopy-air. The authors also found that TC was
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significantly correlated with gs and net assimilation, suggesting that it can be used as a simpler
parameter to support thermal remote sensing of water stress in grapevines.

Kullber et al. [184] compared and evaluated the accuracy of several water-stress coefficient
methods for estimating crop ETc under different levels of deficit irrigation. Four canopy temperature
based methods were used to calculate Ks: CWSI, Canopy Temperature Ratio (Tc ratio), Degrees Above
Non-Stressed Temperature (DANS), Degrees Above Canopy Threshold (DACT). Methods using only
canopy temperature measurements (DANS, DACT, and Tc ratio) performed with comparable error to
more data intensive methods such as CWSI and demonstrated their potential for irrigation scheduling.

Osroosh et al. [185] carried out an experiment on apple trees, to compare two empirical indexes, a
CWSId (averaged over daylight hours) and a CWSIm (midday CWSI). Since CWSI was very sensitive
to mild variations in the soil water content, the authors suggested using CWSId and CWSIm for
estimating soil water availability. These indices were also stable under transitional weather conditions.

Mangus et al. [186] considered the time changes of IR for monitoring corn water stress at high
spatial and temporal resolution for managing irrigation water within large agricultural production
systems. In the 80-day study, they observed a statistical decrease in soil moisture “only when the
CWSI value increased past 0.6 with 82% of soil moisture variation explained by the CWSI”. The CWSI
was negatively correlated to soil moisture, demonstrating the potentiality of CWSI (i) as an alternate
irrigation scheduling method; and (ii) for quantifying spatial soil moisture by IR canopy temperatures.

4.2.2. Time-Temperature Threshold (TTT)

The TTT is a method based on a canopy temperature threshold and a time threshold [187,188].
Because it is a response method of automatic control, the TTT method does not need supplementary
inputs for activating irrigation; and it has been credited for regulating water-use efficiency.
Evett et al. [188] found no statistical differences in yield and WUE, when comparing TTT and with
manually irrigated plots, in soybean and corn.

O’Shaughnessy et al. [189] studied the relationship between cotton irrigation scheduling, using
soil water measurements and two thermal indices. An automatic irrigation scheduling determined by
a TTT algorithm reduced applied water volumes that did not negatively affect yield. In well-watered
conditions (full irrigation), the TTT method increased WUE with respect to the water balance method;
differences were not significant at reduced water depths (rates of 33 and 67% of full irrigation).
The authors also found similar trends between two thermal indices, although the daily theoretical
CWSI resulted in over-irrigation when it was over 0.5.

Lamm et al. [190] compared the TTT and ET-based irrigation scheduling for corn production.
The TTT method accumulated time when the crop was above a specified temperature. An irrigation
event signal was triggered when the accumulated time exceeded the specified TTT threshold.
The authors compared (i) three irrigation treatments with TTT values of 2.5 h, 4.0 h or 5.5 h above a
canopy temperature of 28 ◦C; and (ii) two ETc treatments (100% and 65%), plus a treatment receiving
no further irrigation after mid-July in Kansas. The results indicated that a TTT with a threshold of 2.5 h
corresponded to a fully irrigated treatment.

O’Shaughnessy et al. [191] developed a method of integrating the CWSI over a day for presenting
clear CWSI signals occurring in some environmental conditions, near solar noon. CWSI-TT was the
accumulated time when CWSI was greater than a threshold value of 0.45; this cumulated time value
was compared with a CWSI-TT value obtained for a well-watered crop. The use of CWIS-TT, however,
can lead to an over-irrigation due to false positive triggers that may be generated early in the season.
CWSI-TT provided yield results similar to scientific irrigation scheduling using a neutron probe.

Osroosh et al. [192] tested an automatic control system along with a wireless network of soil,
thermal and weather sensors, developed for an apple orchard. Seven irrigation-scheduling algorithms
were tested: TTT, CWSI, soil-based using granular matrix sensors (SOIL), an ET model, a soil water
balance (WB), a combination of SOIL and WB, a conventional irrigation practice used in the region,
and soil-based using a neutron probe (NP) as benchmark. The treatments TTT, CWSI, NP and WB
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substantially reduced water (70%) while maintaining ψstem within the non-stressed range. WB seemed
to demonstrate the characteristics of being economical, easy to implement and accurate.

DeJonge et al. [193] conducted an experiment on corn to evaluate several water stress indices based
on canopy temperature. All thermal indices responded quickly to irrigation-treatment differences at
major growth stages, in particular Degrees Above Non-Stressed index and Degrees Above Canopy
Threshold index were highly correlated with CWSI above the corn threshold of 28 ◦C used in the
TTT method. Furthermore, all indices showed a linear relationship with soil water deficit at high
temperatures. Degrees Above Canopy Threshold was the best index due to (i) the strong relationships
with other indices and crop water measurements; and (ii) because it was derived from a single canopy
temperature measurement.

4.2.3. Thermography Issue and Critical Aspects

The infrared thermometry measurements suffer from several critical points, which may affect
negatively the accuracy of the results. Jones et al. [156] found many important deficiencies in the
general applications of CWSI. In particular deficiencies included (i) the absolute temperature ranges
may be small in humid environments; (ii) the canopy temperature was negatively affected when crop
surface target accidentally includes areas such as soil, sky, and trunks; (iii) there existed a different
distribution of temperatures of sunlit and shaded parts of the canopy; and (iv) the sunlit part of the
canopy showed a wider range of temperatures when viewed normal to the rows or down the rows.

Evett et al. [115] reported some other critical points including that (i) the signal was not stable
during cloudy periods; (ii) the lower base line and upper limit were difficulty to determine and (iii)
no uniqueness of these limits. Others problems were related to the first growth stages, when soil
background was visible and it was more difficult to measure the canopy temperature.

Baselines

The theoretical definition of the two baselines, the lower baseline (well-watered crop, or more
precisely non-water-stressed crop), and the upper baseline (completely water stressed crop).

The lower baseline (non-water-stressed crop) depends on the plant species, and even among
varieties of the same species, which have different canopy and leaf structures. The energy balance of
crops may differ consistently, since each canopy structure has its own radiometric properties, which
can facilitate in some cases eradiation capture, and, in other cases, that which can escape excessive
radiation loads.

Leaf Temperature Variability

Optical parameters of leaves of 30 plant species were presented by Gausman and Allen [194],
demonstrating that each species demonstrated its own coefficient of leaf emissivity. Leaves showed
wide ranges of temperature within a crop, often several degrees within and between plants because of
several factors. Each plant had (i) specific leaf angles, that may vary during the day for several reasons
(e.g., leaf turgidity; radiation load, etc.); (ii) specific dimensions of (young and old) leaves, (iii) unique
canopy architecture, (iv) different LAI, (v) different radiation loads that impacted the crop, and (vi)
aerodynamic properties related to the wind speed and direction. Therefore, Jones et al. [195] stated that
“is desirable to measure the canopy surface temperature (Tc) as an aggregate of all leaf temperatures”. Maes and
Steppe [153] noted that measurements of Tc differed from those of a single leaf for two main reasons.
Canopy emissivity was larger than leaf emissivity, which has the function of capturing radiation
for photosynthesis. The estimation of canopy emissivity is quite difficult because it requires night
measurements. A second difference with canopy temperature measurements include branches and, in
particular, soil which have temperatures usually higher than the canopy. This is particularly evident in
orchards and croplands when the canopy cover (crop fraction) is low. Furthermore, they reported that
in stressed conditions, at very low leaf stomatal conductance, the total range in surface temperature
between leaves is larger than in unstressed conditions, so that canopy temperature variability often
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reported as an index of drought stress. The sunlit side of a crop tends to have a greater variance of
temperature among leaves than the shade side.

Sunlit and Shade Leaves

Both baselines account for fully sunlit canopy leaves, but it is evident that the average canopy
temperature is a summary of attributes of different leaves, an extensive variety of leaf temperatures,
with sunlit leaves showing much higher temperatures than shaded leaves [156,196]. Both shade
and sunlit leaves constantly move to adjust light interception to maximize their water use efficiency
and protect leaves from excessive heat and radiation load. In both well-watered transpiring and
water-stressed canopies, there will be a wide range of sunlit and shaded leaves, since it is known that
that dry matter accumulation in crops is directly related to the interception of solar radiation, up to the
critical LAI.

Alvino et al. [196] reported that the fraction of light absorbed by leaves, which controls crop
growth rate, plant development, crop biomass accumulation, is directly related to the interception of
solar radiation, up to the critical LAI [197]. The light distribution within the canopy affects, inter alia,
the photosynthetic efficiency. Under comparable environmental conditions, the most important are the
light levels, since leaf photosynthetic rates decline with age after leaf full expansion. The complexity is
made worse by the difficulty of estimating the true age of each leaf in a plant community. Furthermore,
the head-on viewing of a crop may increase the number of leaves that appear shaded, even though
they are sunlit. As reported by Jones [156], “there are always a few sunlit leaves on the shaded side and some
shaded leaves visible on the sunlit side”.

Testi et al. [175] reported that measurements of tall trees are particularly challenging, because
(i) open sky is within the sensor field of view; (ii) a tree canopy has a vertical rather than horizontal
structure; and (iii) there is a canopy temperature difference between the shaded and the sunlit sides.
Crops with genetic modifications (reduced leaf and modified stipule morphology) may result in
enhanced yield when water is a limiting factor, avoiding drought stress [198].

It is still critical to define a well-watered crop, which according to definition should transpire
at a rate regulated by physical conditions (e.g., VPD), and not present any physical resistance
to transpiration fluxes. However, even well-watered plants show a midday depression of
stomatal conductance in case of high VPD [199]. Different indices and procedures have been
proposed [108,111,115,153,164,200].

As correctly stated by King and Shellie [163], the CWSI has not been widely used for irrigated
crops since it is necessary to acquire the temperature difference of both transpiring and non-transpiring
leaves under the same environmental conditions. Stated below King and Shellie [163] obtained
CWSI values ranging from 0 to 1, when adopting the Tair + 5 ◦C for estimating the temperature
of non-transpiring leaves (Tdry), as proposed by Irmak et al. [201] and Möller et al. [108] for corn
and grape, respectively. The authors found that the maximum temperature difference between the
canopy of deficit-irrigated vines and Tair was influenced by irrigation frequency. Greater maximum
temperature differences were found for vines irrigated once a week compared to those irrigated three
times per week. The cultivar response to deficit irrigation was different with ‘Syrah’ vines, which were
2–4 ◦C cooler than ‘Malbec’ vines [202], and differences were also detected in leaf surface temperature
among grapevine cultivars undergoing water stress. Bellvert et al. [202] reported Tnws − Tair values
more than 7.5 ◦C for ‘Pinot-noir’ vines subject to water stress, when air temperature was 32.3 ◦C and
air humidity 2.37 kPa. In more stressful conditions (37 ◦C and very low air humidity), the authors
measured a difference of 13 ◦C in ‘Syrah’ and 17 ◦C in ‘Malbec’ (Tnws − Tair). King and Shellie [163]
report that a difference between canopy and air temperature of vines of about 17 ◦C, which is much
higher than with Tdry values assumed in other studies and slightly less than the energy balance models
developed by Jones [111]. Tdry for calculation of the CWSI was estimated as Tair + 15 ◦C for both grape
cultivars, resulting in a CWSI value between 0 and 1 for irrigation scheduling purposes. The CWSI
value obtained was a good representation of a measure of plant water stress.
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Möller et al. [108] studied the effect of different irrigation treatments on grapevines for achieving
a higher fruit quality when the vineyard was subjected to mild-to-moderate levels of water stress.
The authors found a higher accuracy for determining CWSI combining thermal and visible images,
and adopting the following assumptions: (i) CWSI calculated with air temperature +5 ◦C and
(ii) Twet assumed to be the average temperature of the wet artificial reference surface. Other surface
temperatures were obtained by wetting the canopy surface before thermal image acquisition and from
the energy balance according to Jones [164]. There was a stable linear relationship when Twet was
derived from the energy balance and from image analysis of a wetted part of the canopy. The authors
suggested in-depth study was needed to develop this calculation as a tool for irrigation management
on a field scale.

López-López et al. [135] reported that in case of no transpiration, the difference between the
Tair and the Tcrop averaged 2.8 ◦C (n = 25). Irmak et al. [201] determined an average value of 4.6 ◦C
for corn.

Orta et al. [171] determined in a study of trickle-irrigated watermelon upper baseline limits of
3.3 and 3.4 ◦C. Santesteban et al. [173] preferred the approach suggested by Jones et al. [156], whereby
leaves of two sampled grapevines were coated on both sides with petroleum jelly to prevent leaf
transpiration and interrupt the transpiration-cooling phenomenon, simulating the leaf physiological
response to water stress conditions. The authors report a variation in vineyard temperature range of
the (Tdry and Twet) h of about 1.3 ◦C and 2.4 ◦C, respectively.

King and Shellie [163] adopted a neural model to estimate daily mean CWSI starting from
well-watered leaf temperatures and air temperature plus 15 ◦C for a non-transpiring leaf temperature
(between 13:00 and 15:00 MDT). They were able to discriminate between deficit irrigation amounts,
irrigation events, and rainfall. In contrast, Park et al. [203] estimated the lower boundary temperature,
representing the temperature of fully transpiring leaves, while the temperature of a non-transpiring
leaf (Tdry) was determined by air temperature at + 6 ◦C.

Zarco-Tejada et al. [145] found Tc − Tair of well-irrigated grapes was effectively determined as
Tc − Tair = 0695 − 1.575 × VPD.

Mangus et al. [186] derived an instantaneous CWSI using air temperature, relative humidity, and
solar radiance. Twet reference were empirically found using well-watered plants, while a standardized
Tdry reference of 5 ◦C above air temperature was utilized to represent the upper leaf temperature.
The same results were obtained by DeJonge et al. [192] with an upper baseline of 5◦ C and a linear
relation with VPD.

Grant et al. [204] studied the effect of the canopy architecture on the crop temperatures of two
grapevine cultivars grown under two irrigation regimes (fully and not irrigated). They concluded that
it was desirable to calculate an average over several leaves per canopy in order to reduce the effect of
variation in leaf angles. The simple CWSI, without further data acquisition, was sufficient for detecting
the relative stress required for scheduling irrigation.

Time of Measurements

Testi et al. [175] found that the CWSI measured in the early afternoon hours was a good
descriptor of water status of a pistachio orchard. Ghaemi et al. [205] developed baseline equation to
calculate eggplant CWSI reflecting water deficit and salinity stresses, and also studied the effect of
growth environment (field and greenhouse) on eggplant CWSI values and its relationship with crop
evapotranspiration and yield. CWSI values were significantly affected by water deficit and salinity,
and rising levels of water salinity decreased the slope of the lower baseline in both crop conditions,
along with a rise in the upper baseline.

García-Tejero et al. [183] found that the best time to obtain robust and more physiologically
meaningful thermal data to assess grapevine water status was between 11:00 h and 14:00 h, independent
of the variety.
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Taghvaeian et al. [182] found differences in estimating CWSI at different times of day. The smallest
difference was from 10:00 to 11:00 h and the highest from 12:00 to 13:00 h periods. In their study,
they combined IR thermometry with some weather parameters to develop non-water-stressed and
non-transpiring baselines for irrigated maize in of Colorado (USA).

King and Shelliey [163] reported that clouds (thin cirrus), often present during the best
two-hour-time for CWSI monitoring, rapidly caused changes in levels of solar radiation and, as
a consequence, an effect on Tnws. They also provided a detailed description of physiological variations
within a canopy; particular attention was given to rapid changes of leaf temperature in response to
environmental fluctuations (e.g., air turbulence, changing radiation). For this reason, they proposed
the adoption of a 2-h-averaged CWSI value based on 15-min average measured values (canopy
temperature, air temperature, solar radiation, relative humidity, and wind speed), which provided
a sound daily CWSI value under variable climatic conditions. The results appeared to be consistent
even when comparing two grape cultivars, characterized by different canopy temperature in response
to climatic conditions and irrigation conditions.

Bellvert et al. [172] found a good estimate for the calculated daily mean CWSI of well-watered
leaves between 10:00 and 16:00 h. Berni et al. [84], using airborne thermal data of an olive orchard,
found the best results from 07:30 to 09:30; however, at 12:30 h there was an overestimate of canopy
conductance values. Bellvert et al. [202] found that the correlation between CWSI and ΨL had different
R2 values at different hours of measurements (0.46 at 09:30 and 0.71 at 12:30), suggesting that the latter
was the more favorable time for obtaining thermal images that were linked with ΨL values.

In Zarco-Tejada et al. [145], CWSI was measured from 13:00 to 15:30 coinciding with the times at
which the non-stressed baseline was obtained.

4.3. Remote Sensing and Soil

Soil moisture measurements are critical components for climate studies, hydrology, weather
predictions, analysis of flooded areas or the recharge of aquifers. Real time analysis of the soil water
content is crucial for optimizing water management of agricultural fields.

Nichols et al. [206] presented an overview of soil-moisture retrieval methods using different
remote sensing data (active or passive). They reported the advantages and limitations of each method,
and the evaluation of the most robust methods for retrieving soil-moisture information from bare and
vegetated soils. The best results come from a combination of active and passive sensing methods.
A backscatter empirical model (active method) gave a 95–97% correlation between the estimated and
the field soil measurements. The “neural networks method” (passive method) gave a 100% correlation
between the estimated and field soil measurements.

Roussel et al. [62] reported the adoption of GNSS reflectometry (GNSS-R) based on a low-cost
device and an airborne solution. For irrigation purposes, the GNSS-R system was useful for soil
moisture monitoring. Classical probes were not considered representative of the field-soil moisture
since they return punctual measurements. The authors considered the soil moisture monitored on a
large scale to be appropriate, even at the expense of temporal and/or spatial resolution. Even satellite
measurements were not sufficient to monitor diurnal variations.

Yueh et al. [207] provided a review of the calibration, validation and assessment of Soil Moisture
Active Passive (SMAP) instruments. The project conducted two activities aimed at enhancing the
products’ resolution: (i) the Backus Gilbert interpolation and de-convolution techniques based on the
oversampling characteristics of the SMAP radiometer; (ii) the disaggregation of the SMAP radiometer
data using the Sentinel-1 C-band synthetic aperture radar data to obtain a resolution from 1 km to
3 km.

Mulder et al. [208] studied microwave remote sensing of soil moisture content. The system was
founded on the different dielectric properties of water with respect to dry soil. The Soil Water Index
(SWI) was combined with the METOP ASCAT and ENVISAT ASAR GM to obtain one layer with
high resolution (1 km). The authors reported another way of assessing soil moisture, the Soil Energy
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BALance (SEBAl). All of these models were applied on a local scale to produce the actual ET linked to
soil water. The authors indicated that the most broadly used methods were the SEBAL, the Two-Source
Energy Balance (TSEB) modeling approach, and the Surface Energy Balance System (SEBS).

Mangus et al. [186] performed a full-season experiment in a greenhouse with several objectives.
Since CWSI (values between 0.6 and 1.0) was negatively correlated to soil moisture, the index may be
considered “as an alternate irrigation scheduling method to quantify spatial soil moisture”.

Other information is reported in the previous Sections 3.2.1 and 3.2.4.

4.3.1. Vegetation Indices

Different indexes have been set up to estimate different crop parameters (e.g., crop density,
biomass, chlorophyll, nitrogen, water content, etc.); the Enhanced Vegetation Index (EVI), the Soil
Adjusted Vegetation Index (SAVI), the Simple Ratio (SR), and the Normalized Difference Vegetation
Index (NDVI), are measures of canopy greenness, which may be related to physiological processes
such as transpiration and photosynthesis [209–211].

Zhao et al. [212] studied the relationship between stem water potential (SWP) and VIs extracted
from high spatial resolution images. A circle mission was conducted to evaluate the effects
of bidirectional reflectance distribution fraction (BRDF) and canopy NDVI mean. The authors
demonstrated the importance of BRDF to infer SWP from NDVI mean. Circle missions indicated that
view angle influenced the canopy NDVI. This could lead to a prediction error of SWP of up to 12 bars.
Further analysis of images identified a non-normalized difference vegetation index (NNDVI) based
on ground-derived measurements over three weeks that showed a more significant relationship with
SWP than the canopy NDVI mean.

Zúñiga et al. [213], in a study on a remote sensing-based WUE evaluation of sub-surface irrigated
grape vines, compared several irrigation methods. Differences in NDVI values occurred among
different irrigation strategies (surface and subsurface irrigation methods) and when irrigation rates
were compared. Multispectral satellite imagery, particularly with a red edge waveband, demonstrated
the potential for quantifying soil-moisture-tension variability, and hence could be used for variable rate
irrigation management. Red Edge Normalized Difference Vegetation Index (RENDVI) was especially
sensitive to soil moisture tension and demonstrated that a single image could be representative of
variability up to two weeks after acquisition. However, it will be necessary to confirm the repeatability
of these results at more maize growth stages and with other crops. Finally, an economic study to
evaluate the monetary and environmental implications of such management at a field scale would
help transition these findings into adoption by growers [214].

Toureiro et al. [215] presented work on the use of remote sensing for measuring soil water
availability for optimizing crop growth. Data were determined by satellite and integrated with
atmosphere and crop parameters to calculate biophysical indicators and indices of water stress
by NDVI, Kc, and Kcb. The results showed that remote sensing based on multispectral images
may be used, with a high degree of accuracy and spatial representation, to calculate crop water
and irrigation requirements. However, frequent mapping of soil water status and crop irrigation
requirements would be required; this is the weakest point of the satellite imagery methodology used.
Temporal representation, once each 16 days with the Landsat 5 satellite, would not be enough for
irrigation management. The Sentinel 2 satellite is available and could be combined with data from
other satellites to provide more frequent images of the land surface.

4.3.2. WUE

Marino et al. [216] evaluated the use of soil and vegetation spectroradiometry to investigate crop
water use efficiency of drip-irrigated tomato. A new instrument to measure in-depth soil moisture was
tested combined with the Hargreaves method and VIs with the goal of reducing irrigation volume, to
assess crop spatial variability, and to identify the best VIs related to WUE, at a field scale. The tomato
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crop was drip irrigated by an automated precision system, which maintained the soil water content
within a specific range related to growth stage and environmental conditions.

The instrument recorded the soil moisture at different soil depths, providing information on
the amount of water to apply, taking into account—at each watering—the volume of the root zone
explored by the crop. The results confirmed that the system saved water, applying lower soil water
depths than those calculated with the Hargreaves formula. The field was divided into three clusters,
characterized by increasing WUE. The highest (H) cluster showed a WUE value of 35.1 kg·m−3;
the lowest (L) showed WUE a value of 23.1 kg·m−3. Among VIs tested, the Perpendicular vegetation
index (PVI), Soil Adjustment Vegetation Index (SAVI), optimized Soil Adjustment Vegetation Index
(OSAVI), and Weighted Difference Vegetation (WDVI) were significantly related to tomato crop yield.
The authors concluded that “PVI proved to be a useful tool for (i) a better understanding of the different field
productive areas and for (ii) the adoption of variable water rate application according to the different PVI values.
The irrigation system adopted proved to be effective from agronomic and environmental point of view”.

Similar probes were used by Nolz et al. [217] to monitor soil water in a vineyard for irrigation
management. Wang et al. [218] studied the application of quick techniques based on thermal imaging
and visual-NIR spectroscopy for measuring WUE in millet. The authors suggested that the exact
spectral parameters used for measuring physiological factors (e.g., E, gs, leaf and WUE) may be used
for estimating response of crops to changes in the environmental conditions.

5. Conclusions

The advances in electronic and information technologies have developed various non-invasive
sensing systems, which return accurate georeferred information on spatial variability within fields.
The sensing systems utilize sensors and instruments that produce a huge amount of data at
different scales (temporal and spatial) and distances from the target. Remote (satellite, airborne
and UAV imageries) and proximal sensors (mounted on tractors, poles or towers, and portable
specto-radiometers) are able to detect soil and crop information, such as soil status and traits, crop yield,
canopy volume and biomass, crop water status, and pests (disease, weeds, and insects). These sensing
technologies cane be used for precision agriculture and irrigation management.

Soaring investments in R&D have spurred all branches of knowledge linked to RS, boosting the
production of reliable and accurate sensors. Temporal frequency of RS imagery has also improved
consistently, although it has been impaired by considerable lengthening of the average times for data
processing. Data processing of images necessitates adequate hardware, specific expertise, skills and
funds, which are likely to be provided only by specialized reprocessing companies.

Overall, there are numerous studies with spatially distributed information on ET and plant
water status. These approaches use reflectance, including thermal radiance, measurements of the
surface, vegetation index-based crop coefficients, surface energy balance models, and soil water balance
(although limited to the upper soil layer).

On a small scale, the focus on time and space has significantly improved the monitoring of the
crop water status of many crops, especially orchards and vineyards. The estimation of ET and kc,
of appearance of biotic and abiotic stresses, of crop spatial variability, and of canopy volume have
been improved significantly. On a field scale, the attention paid to soil-water status seems inadequate,
although soil moisture monitoring is a prerequisite for professionally controlled irrigation that satisfies
crop water requirements (precision irrigation) and reduces inefficient spatial allocation of irrigation
water, in particular over irrigation that causes N leaching. There are current limits of RS, which can
answer the question of “when to apply water”, because the irrigation volume needs to be estimated
based on other methods, as wisely pointed out by Taghvaeian et al. [182] These other methods,
include—amongst many—the use of electronic probes measuring crop water consumption [113], with
the aim of defining the right water depth to apply to a field, and hopefully to each homogeneous area.
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Since positive correlations between crop-water status and yield vary among crops, RS studies on
irrigation should pay more attention to field production, either in absolute terms (maximizing field
productivity) or in relative terms (higher WUE).

In the near future, it is likely that all available tools (multi-temporal images combined with
models and improved sensors) will contribute to monitoring crop status for triggering irrigation.
As mentioned above, doubts persist on their ability to estimate the water delivery to the field for each
crop, or to different zones in the case of high crop spatial variability.

A holistic approach is necessary for moving toward precision irrigation. It will be necessary
to set up networks that contemplate the participation of public/private partnerships, universities,
and research institutes, for producing multi-temporal images, models, sensors and data sets [94] for
managing precision irrigation. Among several EU hubs of excellence, the Quantalab IAS—CSIC in
Spain focuses on quantitative methods for remote sensing in agriculture and forestry, for a wide
application of precision agriculture and precision irrigation, for the assessment of environmental
impacts and stress detection.

Other scientists are pursuing grassroots remote sensing and democratic mapping.
Anderson et al. [93] have generated a toolkit using drones, live coding, smartphones and kites.

For all institutions developing RS, a key factor will be the operational readiness of information
provided to farmers and technicians for managing irrigation. For irrigation purposes, it will be
necessary to develop techniques and interpretative frameworks to provide low-cost and affordable
tools and real-time information to stakeholders involved in the management and security of
agricultural and related sectors.
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