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Abstract: With the advent of the Internet of Things (IoT) concept and its integration with the smart
city sensing, smart connected health systems have appeared as integral components of the smart city
services. Hard sensing-based data acquisition through wearables or invasive probes, coupled with
soft sensing-based acquisition such as crowd-sensing results in hidden patterns in the aggregated
sensor data. Recent research aims to address this challenge through many hidden perceptron layers in
the conventional artificial neural networks, namely by deep learning. In this article, we review deep
learning techniques that can be applied to sensed data to improve prediction and decision making in
smart health services. Furthermore, we present a comparison and taxonomy of these methodologies
based on types of sensors and sensed data. We further provide thorough discussions on the open
issues and research challenges in each category.
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1. Introduction

Smart cities are built on the foundation of information and communication technologies with
the sole purpose of connecting citizens and technology for the overall improvement of the quality of
lives. While quality of life includes ease of mobility and access to quality healthcare, amongst others,
effective management and sustainability of resources, economic development and growth complement
the fundamental requirements of smart cities. These goals are achieved by proper management and
processing of the data acquired from dedicated or non-dedicated sensor networks. In most cases,
the information gathered is refined continuously to produce other information for efficiency and
effectiveness within the smart city.

In the Internet of Things (IoT) era, the interplay between mobile networks, wireless
communications and artificial intelligence is transforming the way that humans live and survive
via various forms of improvements in technological advancements, more specifically improved
computing power, high performance processing and huge memory capacities. With the advent of
cyber-physical systems, which comprise the seamless integration of physical systems with computing
and communication resources, a paradigm shift from the conventional city concept towards a smart
city design has been coined as the term smart city. Basically, a smart city is envisioned to be ICT
driven and capable of offering various services such as smart driving, smart homes, smart living, smart
governance and smart health, just to mention a few [1]. ICT-driven management and control, as well
as the overwhelming use of sensors in smart devices for the good and well-being of citizens yields
the desired level of intelligence to these services. Besides continuously informing the citizens, being
liveable and ensuring the well-being of the citizens are reported among the requirements of smart
cities [2]. Therefore, the smart city concept needs transformation of health services through sensor and
IoT-enablement of medical devices, communications and decision support. This ensures availability,
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ubiquity and personal customization of services, as well as ease of access to these services. As stated
in [3], the criteria for smartness of an environment are various. As a corollary to this statement, the
authors investigate a smart city in the following dimensions: (1) the technology angle (i.e., digital,
intelligent, virtual, ubiquitous and information city), (2) the people angle (creative city, humane city,
learning city and knowledge city) and (3) the community angle (smart community).

Furthermore, in the same vein, Anthopoulus (see [4]) divides the smart city into the following eight
components: (1) smart infrastructures where facilities utilize sensors and chips; (2) smart transportation
where vehicular networks along with the communication infrastructure are deployed for monitoring
purposes; (3) smart environments where ICTs are used in the monitoring of the environment to acquire
useful information regarding environmental sustainability; (4) smart services where ICTs are used for
the the provision of community health, tourism, education and safety; (5) smart governance, which
aims at proper delivery of government services; (6) smart people that use ICTs to access and increase
humans’ creativity; (7) smart living where technology is used for the improvement of the quality of
life; and (8) smart economy, where businesses and organizations develop and grow through the use
of technology. Given these components, a smart health system within a smart city appears to be one
of the leading gateways to a more productive and liveable structure that ensures the well-being of
the community.

Assurance of quality healthcare is a social sustainability concept in a smart city. Social
sustainability denotes the liveability and wellbeing of communities in an urban setting [5]. The large
population in cities is actually a basis for improved healthcare services because one negligence or
improper health service might lead to an outbreak of diseases and infections, which might become
epidemic, thereby costing much more in curtailing them; however, for these health services to be
somewhat beneficial, the methods and channels of delivery need to be top-notch. There have been
various research studies into the adequate method required for effective delivery of healthcare. One of
these methods is smart health. Smart health basically is the provision of health services using the
sensing capabilities and infrastructures of smart cities. In recent years, smart health has gained wide
recognition due to the increase of technological devices and the ability to process the data gathered
from these devices with minimum error.

As recent research states, proper management and development of smart health is the key to
success of the smart city ecosystem [6]. Smart health involves the use of sensors in smart devices and
specifically manufactured/prototyped wearable sensors/bio-patches for proper monitoring of the
health status of individuals living within a smart city, as shown in Figure 1. This example depicts a
scenario for air quality monitoring to ensure healthier communities. Smart city infrastructure builds
upon networked sensors that can be either dedicated or non-dedicated. As an integral component of
the smart city, smart health systems utilize devices with embedded sensors (as non-dedicated sensing
components) for environmental and ambient data collection such as temperature, air quality index
(AQI) and humidity. Besides, wearables and carry-on sensors (as the dedicated sensing components)
are also utilized to acquire medical data from individuals. Both dedicated and non-dedicated sensory
data are transmitted to the data centres as the inputs of processing and further decision making
processes. To achieve this goal, the already existing smart city framework coupled with IoT networking
needs to be leveraged.
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Figure 1. Smart health embedded within a smart city. An example scenario is illustrated to detect the
air quality indicator to ensure healthier communities (figure produced by Creately Online Diagram,
Cinergix Pvt. Ltd., Mentone, Australia).

In other words, a smart city needs to provide the required framework for smart health to grow
rapidly and achieve its aim. Ensuring the quality of big sensed data acquisition is one key aspect
of smart health challenges, and the ability to leverage these data is an important aspect of smart
health development, as well as building a sustainable smart city structure [7–9]. Applications of smart
health within smart cities are various. For example, Zulfiqar et al. [10] proposed an intelligent system
for detecting and monitoring patients that might have voice complication issues. This is necessary
since a number of services within the smart cities are voice enabled. As such, any disorder with the
voice might translate into everyday service problems within the smart city. The same problem has
been studied by the researchers in [11], where voice data and ECG signals were used as the inputs
to the voice pathology detection system. Furthermore, with the aim of ensuring air quality within a
smart city, the researchers in [12] developed a cloud-based monitoring system for air quality to ensure
environmental health monitoring. The motivation for environmental health is ensuring the wellness of
communities in a smart city for sustainability. The body area network within a smart city can be used
for ECG monitoring with the aim of warning an individual of any heart-related problem, especially
cardiac arrest [13], and also helps in determining the nature of human kinematic actions with the aim
of ensuring improved quality of healthcare whenever needed [14]. Data management of patients is also
one of the applications of smart health in smart cities that is of paramount importance. As discussed
in [15], proper management of patient records both at the data entry and application levels ensures that
patients get the required treatment when due, and this also helps in the development of personalized
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medicine applications [16]. Furthermore, the scope of smart health in smart cities is not limited to the
physiologic phenomena in human bodies; it also extends to the environment and physical building
blocks of the smart infrastructure. Indeed, the consequences of mismanaged environment and/or
physical structures are potentially unhealthy users and communities, which is not a sustainable case for
a smart city. To address this problem, the researchers in [17] created a system to monitor the structural
health within a city using wireless sensor networks (WSN). It is worth mentioning that structural
health monitoring also leads to inferential decision making services.

With these in mind, calls for new techniques that will ensure proper health service delivery
have emerged. As an evolving concept, machine intelligence has attracted the healthcare sector by
introducing effective decision support mechanisms applied to sensory data acquired through various
media such as wearables or body area networks [18]. Machine learning techniques have undergone
substantial improvements during the evolution of artificial intelligence and its integration with sensor
and actuator networks. Despite many incremental improvements, deep learning has arisen as the most
powerful tool thanks to its high level abstraction of complex big data, particularly big multimedia
data [19].

Deep learning (DL) derives from conventional artificial neural networks (ANNs) with many
hidden perceptron layers that can help in identifying hidden patterns [20]. Although having many
hidden perceptron layers in a deep neural network is promising, when the concept of deep learning
was initially coined, it was limited mostly by computational power of the available computing systems.
However, with the advent of the improved computational capability of computing systems, as well as
the rise of cloudified distributed models, deep learning has become a strong tool for analysing sensory
data (particularly multimedia sensory data) and assisting in long-term decisions. The basic idea of
deep learning is trying to replicate what the human brain does in most cases. Thus, in a sensor and
actuator network setting, the deep learning network receives sensory input and iteratively passes it to
subsequent layers until a desirable output is met. With the iterative process, the weights of the network
links are adapted so as to match the input with the desirable output during the training process.
With the widespread use of heterogeneous sensors such as wearables, medical imaging sensors,
invasive sensors or embedded sensors in smart devices to acquire medical data, the emergence and
applicability of deep learning is quite visible in modern day healthcare, from diagnosis to prognosis to
health management.

While shallow learning algorithms enforce shallow methods on sensor data for feature
representation, deep learning seeks to extract hierarchical representations [21,22] from large-scale data.
Thus, the idea is using deep architectural models with multiple layers of non-linear transformations [23].
For instance, the authors in [24] use a shallow network with a covariance representation on the 3D
sensor data in order to recognize human action from skeletal data. On the other hand, in the study
in [25], the AlexNet model and the histogram of oriented gradients features are used to obtain deep
features from the data acquired through 3D depth sensors.

In this article, we provide a thorough review of the deep learning approaches that can be applied
to sensor data in smart health applications in smart cities. The motivation behind this study is that
deep learning techniques are among the key enablers of the digital health technology within a smart
city framework. This is due to the performance and accuracy issues experienced by conventional
machine learning techniques under high dimensional data. Thus, it is worth noting that deep learning
is not a total replacement of machine learning, but an effective tool to cope with dimensionality
issues in several applications such as smart health [26]. To this end, this article aims to highlight the
emergence of deep learning techniques in smart health within a smart city ecosystem and at the same
time to give future directions by discussing the challenges and open issues that are still pertinent.
In accordance with these, we provide a taxonomy of sensor data acquisition and processing techniques
in smart health applications. Our taxonomy and review of deep learning approaches pave the way for
providing insights for deep learning algorithms in particular smart health applications.
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This work is organized as follows. In Section 2, we briefly discuss the transition from conventional
machine learning methodologies to the deep learning methods. Section 3 gives a brief overview
of the use of deep learning techniques on sensor network applications and major deep learning
techniques that are applied on sensory data, while Section 4 provides insights for the smart health
applications where deep learning can be used to process and interpret sensed data. Section 5 presents
outstanding challenges and opportunities for the researchers to address in big sensed health data by
deep learning. Finally, Section 6 concludes the article by summarizing the reviewed methodologies
and future directions.

2. Analysis of Sensory Data in E-Health

2.1. Conventional Machine Learning on Sensed Health Data

With the advent of the WSN concept, machine learning has been identified as a viable solution to
reduce the capital and operational expenditures on the design of the network, as well as to improve
the lifetime of the network [27]. Presently, the majority of the machine learning techniques use a
combination of feature extraction and modality-specific algorithms that are used to identify/recognize
handwriting and/or speech [28]. This normally requires a dataset that is big in volume and powerful
computing resources to support tremendous amount of background tasks. Furthermore, despite
tedious efforts, there are always bound to be certain issues, and these perform poorly in the presence
of inconsistencies and diversity in the dataset. One of the major advantages of machine learning in
most cases is feature learning where a machine is trained on some datasets and the output provides
valuable representation of the initial feature.

Applications of machine learning algorithms on sensory data are various such as
telemedicine [18,29,30], air quality monitoring [31], indoor localization [32] and smart
transportation [33]. However, conventional machine learning still has certain limitations such as
inability to optimize non-differentiable discontinuous loss functions or not being able to obtain results
following a feasible training duration at all times. These and many other issues encountered by machine
learning techniques paved the way for deep learning as a more robust learning tool.

2.2. Deep Learning on Sensed Health Data

In [34], deep learning is defined as a collection of algorithmic procedures that ‘mimic the brain’.
More specifically, deep learning involves learning of layers via algorithmic steps. These layers enable
the definition of hierarchical knowledge that derives from simpler knowledge [35]. There have been
several attempts to build and design computers that are equipped with the ability to think. Until
recently, this effort has been translated into rule-based learning, which is a ‘top down’ approach
that involves creating rules for all possible circumstances [36]. However, this approach suffers from
scalability since the number of rules is limited while its rule base is finite.

These issues can be remedied by adopting learning from experience instead of rule-based learning
via a bottom-up approach. Labelled data form the experience. Labelled data are used as training input
to the system where the training procedure is built upon past experiences. The learning from experience
approach is well suited for applications such as spam filtering. On the other hand, the majority of the
data collected by multimedia sensors (e.g., pictures, video feeds, sounds, etc.) are not properly labelled
[37].

Real-world problems that involve processing of multimedia sensor data such as speech or face
recognition are challenging to represent digitally due to the possibly infinite the problem domain. Thus,
describing the problem adequately suffers especially in the presence of multi-dimensional features,
which in turn leads to an increase in the volume of the space in such a way that the available data
become sparse, and training on sparse data would not lead to meaningful results. Nevertheless,
such ‘infinite choice’ problems are common in the processing of sensory data that are mostly acquired
from multimedia sensors [38]. These issues pave the way for deep learning as deep learning algorithms
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have to work with hard and/or intuitive problems, which are defined with no or very few rules on high
dimensional features. The absence of a rule set enforces the system to learn to cope with unforeseen
circumstances [34].

Another characteristic of deep learning is the discovery of intricate structure in large datasets.
To achieve this, deep learning utilizes a back propagation algorithm to adjust the internal parameters
in each layer based on the representation of the parameters in the previous layer [34]. As such, it can
be stated that representation learning is possible on partially labelled or unlabelled sensory data.

Acharya et al. [39] used deep learning techniques (specifically CNN) in the diagnosis and detection
of coronary artery disease from the signals acquired from the electrocardiogram (ECG) and achieved
an accuracy of 94.95%. The authors in [38] proposed the use of deep neural networks (DNN) for
the active and automatic classification of ECG signals. Furthermore, in order to detect epileptic
conditions early enough, deep learning with edge computing for the localization of epileptogenicity
using electroencephalography (EEG) data has been proposed in [40]. Emotional well-being is a key
state in the life of humans. With this in mind, the authors in [41] classified positive and negative
emotions using deep belief networks (DBN) and data from EEG. The aim is to accurately capture
the moment an emotional swing occurs. Their work yielded an 87.62% classification accuracy. The
authors in [42] designed a BGMonitor for detecting blood glucose concentration and used a multi-task
deep learning approach to analyse and process the data, and to make further inferences. The research
yielded an accuracy of 82.14% when compared to the conventional methods.

3. Deep Learning Methods and Big Sensed Data

3.1. Deep Learning on Sensor Network Applications

Sensors are key enablers of the objects (things) of the emerging IoT networks [43]. The aggregation
of sensors forms a network whose purpose amongst others is to generate and aggregate data for
inferential purposes. The data generated from sensors need to be fine-tuned prior to undergoing any
analytics procedure. This has led to various methods to formulate proper and adequate processing
of sensed data from sensor and actuator networks. These methods are dependent on the type and
applications of the sensed data. Deep learning (one of such methods) can be applied on sensor and
actuator network applications to process data generated from sensors effectively and efficiently [44].
The output of a deep learning network can be used for decision making. Costilla-Reyes et al. used a
convolutional neural network to learn spatio-temporal features that were derived from tomography
sensors, and this yielded an effective and efficient way of performance classification of gait patterns
using a limited number of experimental samples [45]. Transportation is another important service
in a smart city architecture. The ability to acquire quality (i.e., high value) data from users is key to
developing a smart transportation architecture. As an example study, the authors in [46] developed a
mechanism using a deep neural network to learn the transportation modes of mobile users. In the same
study, the integration of a deep learning-driven decision making system with a smart transportation
architecture has been shown to result in 95% classification accuracy. Besides these, deep learning helped
in the power usage pattern analysis of vehicles using the sensors embedded in smart phones [47].
The goal of the study in [47] is the timely prediction of the power consumption behaviour of vehicles
using smart phones. The use of sensors in healthcare has been leading to significant achievements, and
deep learning is being used to leverage the use of sensors and actuators for proper healthcare delivery.
For instance, in assessing the level of Parkinson’s disease, Eskofier et al. [48] used convolutional
neural networks (CNN) for the classification and detection of the key features in Parkinson’s disease
based on data generated from wearable sensors. The results of the research proved that deep learning
techniques work well with sensors when compared to other methods. Moreover, deep learning
techniques, particularly CNNs, were used in estimating energy consumption while using wearable
sensors for health condition monitoring [49]. Furthermore, by using sensory data generated from an
infrared distance sensor, a deep learning classifier was developed for fall detection especially amongst
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the elderly population [50]. Besides these, with respect to security, combining biometric sensors and
CNNs has resulted in a more robust approach for spoofing and security breach detection in digital
systems [51]. Yin et al. [52] used a deep convolution network for proper visual object recognition as
another application area of deep learning in the analysis of big sensed data, whereas for early detection
of deforestation, Barreto et al. [53] proposed using a multilayer perceptron technique. In both studies,
the input data are acquired via means of remote sensing.

3.2. Major Deep Learning Methods in Medical Sensory Data

In this subsection, we discuss the major deep learning methods that are used in e-health
applications on medical sensory data. The following are the major deep learning methods in e-health,
and a table of all notation used is given as Table 1.

Table 1. Basic notations used in the article. Notations are grouped into three categories: stand-alone
symbols, vectors between units of different layers and symbols for functions.

Notations Definition

x Samples
y Outputs
v Visible vector
h Hidden vector
q State vector

W Matrix of weight vectors
M Total number of units for the hidden layer

wij Weights vector between hidden unit hj and visible unit vi
Sj Binary state of a vector
sq

i Binary state assigned to unit i by state vector q
Z Partition factor
dj Biased weights for the j-th hidden units
ci Biased weights for the i-th visible units
zi Total i-th inputs
vi Visible unit i

w2
kj Weight vector from the k-th unit in the hidden Layer 2 to the j-th output unit

w1
ji Weight vector from the j-th unit in the hidden Layer 1 to the i-th output unit

W1
ji Matrix of weights from the j-th unit in the hidden Layer 1 to the i-th output unit

E(q) Energy of a state vector q
σ activation function

Pr(q) Probability of a state vector q
E(v, h) Energy function with respect to visible and hidden units

pd f (v, h) Probability distribution with respect to visible and hidden units

3.2.1. Deep Feedforward Networks

Deep feed-forward networks can be counted among the first generation deep learning models and
are based on multilayer perceptrons [34,54]. Basically, a feed-forward network aims at approximating
a function f *. A mapping y = f (x; Θ) is defined by a feed-forward network to learn the value of the Θ
parameters by approximating with respect to the best function. Information flow in these networks is
usually from the variables x being evaluated with respect to the outputs y.

During training, the aim is to ensure matching of f (x) to f *(x), where each example of x is
accompanied by a label y ≈ f *(x). In most cases, the learning algorithm decides how to use these
layers in order to get the best approximation of f *. Since these layers do not obtain the desired output
from the training data, they are referred to as hidden layers such as Layer 2 in the illustration in
Figure 2 below.
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Figure 2. A basic deep feed-forward network.

A typical model for the deep forward network is described as follows. Given K outputs y1, ..., yk
for a given input x and the hidden layer, which consists of M units, then the output is formulated as
shown in Equation (1) where σ is the activation function, W(1)

ji denotes the matrix of weights from unit

j of hidden Layer 1 to the output unit i. In the equation, w(1)
ji and w(2)

ki stand for the weight vector from
unit j of hidden Layer 1 to output unit i, and the weight vector from unit k of hidden Layer 2 to output
unit i, respectively.

yk(x, w) = σ(
M

∑
j=1

w(2)
kj h(

M

∑
j=1

w(1)
ji xi + W(1)

ji ) + w(2)
ki ) (1)

3.2.2. Autoencoder

An autoencoder is a neural network that is trained to copy its input to its output [22,55]. In most
cases, an autoencoder is implemented as a three-layer neural network (see Figure 3) by directly
connecting output units back to input units. In the figure, every output i is linked back to input i.
The hidden layer h in the autoencoder represents the input by a code. Thus, a minimalist description
of the network can be made by two main components as follows: (1) an encoder function h = f (x);
(2) a decoder function that is used to reconstruct the input, r = g(h). Previously, autoencoders were
used for dimensionality reduction or feature learning, but currently, the main purpose of autoencoder
use is generative modelling because of the connection between autoencoders and latent variables.

Figure 3. Autoencoder network.
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Below are the various types of autoencoders.

• Undercomplete autoencoders [54] are suitable for the situation where the dimension of the code is
less than the dimension of the input. This phenomenon usually leads to the inclusion of important
features during training and learning.

• Regularized autoencoders [56] enable training any architecture of autoencoder successfully by
choosing the code dimension and the capacity of the encoder/decoder based on the complexity of
the distribution to be modelled.

• Sparse autoencoders [54] have a training criterion with a sparsity penalty, which usually occurs in
the code layer with the purpose of copying the input to the output. Sparse autoencoders are used
to learn features for another task such as classification.

• Denoising autoencoders [22] change the reconstruction error term of the cost function instead of
adding a penalty to the cost function. Thus, a denoising autoencoder minimizes L(x, g( f (x̄))),
where x̄ is a copy of x that has been distorted by noise.

• Contractive autoencoders [57] introduce an explicit regularizer on h = f (x) making the derivatives
of f as small as possible. The contractive autoencoders are trained to resist any perturbation of
the input; as such, they map a neighbourhood of input points to a smaller neighbourhood of
output points.

3.2.3. Convolutional Neural Networks

Convolutional neural networks (CNNs) replace matrix multiplication with convolutions in at least
one of their layers [54,58,59]. CNNs have multiple layers of fields with small sets of neurons where
an input image is partially processed [60]. When the outputs of these sets of neurons are tiled, their
input regions overlap, leading to a new representation of the original image with higher resolution.
This sequence is repeated in each sublayer. It is also worth mentioning that the dimensions of a CNN
are mostly dependent on the size of the data.

The CNN architecture consists of three distinct layers: (1) the convolutional layer, (2) pooling
layer and (3) fully-connected layer. Although it is not a requirement for the CNNs, as illustrated in
Figure 4, fully-connected layers can follow a number of convolutional and subsampling layers.

Figure 4. CNN architecture.

• Convolutional layer: The convolutional layer takes an m×m× r image as the input, where m and r
denote the height/width of the image and the number of channels, respectively. The convolutional
layer contains k filters (or kernels) of size n× n× q, where n < m and q can be less than or equal
to the number of channels r (i.e., q ≤ r). Here, q may vary for each kernel, and the feature map in
this case has a size of m− n + 1.

• Pooling layers: These are listed as a key aspect of CNNs. The pooling layers are in general
applied following the convolutional layers. A pooling layer in a CNN subsamples its input.
Applying a max operation to the output of each filter is the most common way of pooling.
Pooling over the complete matrix is not necessary. With respect to classification, pooling gives an
output matrix with a fixed size thereby reducing the dimensionality of the output while keeping
important information.
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• Fully-connected layers: The layers here are all connected, i.e., both units of preceding and
subsequent layers are connected

3.2.4. Deep Belief Network

The deep belief network (DBN) is a directed acyclic graph that builds on stochastic variables.
It is a type of neural network composed of latent variables connected between multiple layers [36,61].
Despite the connections between layers, there are no connections between units within each layer.
It can learn to reconstruct its inputs, then is trained to perform classification. In fact, the learning
principle of DBNs is “one layer at a time via a greedy learning algorithm”.

The properties of DBN are:

• Learning generative weights is through a layer-by-layer process with the purpose of determining
the dependability of the variables in layer ` on the variables in layer `′ where ` denotes the index
of any upper layer.

• Upon observing data in the bottom layer, inferring the values of the latent variables can be done
in a single attempt.

It is worth noting that a DBN with one hidden layer implies a restricted Boltzmann machine
(RBM). To train a DBN, first an RBM is trained using constructive divergence or stochastic maximum
likelihood. The second RBM is then trained to model the defined distribution by sampling the hidden
units in the first RBM. This process can be iterated as many times as possible to add further layers to
the DBN.

3.2.5. Boltzmann Machine

As a special type of neural network, the Boltzmann machine (BM) consists of nodes that are
connected symmetrically as shown in Figure 5, where neurons help a BM make on/off decisions [62].
In order to identify features that exhibit complex data regularities, a BM utilizes learning algorithms
that are well-suited for search and learning problems.

Figure 5. Boltzmann network.

To visualize the operation of a BM better, suppose unit i is able to continuously change its state.
First, the node calculates the total input zi, which is formulated as the sum of bi (bias) and all the
weights on the connections from other units as formulated in Equation (2). In the equation, wij denotes
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the weights on connections between i and j, and sj is defined as in Equation (3). The probability for
unit i is formulated as shown in Equation (4).

zi = bi + ∑
j

sjwij (2)

sj = {
1, i f j is on
0, i f j is o f f . (3)

Pr(si = 1) =
1

1 + e−zi
(4)

If all neurons are updated sequentially, the network is expected to reach a BM distribution with
state vector probability q and energy E(q) as shown in Equations (5) and (6), respectively

Pr(q) =
e−E(q)

∑u e−E(u)
(5)

E(q) = −∑
i

sq
i bi −∑

i<j
sq

i sq
j wij (6)

With a view toward discarding the local optima, the weights on the connections could be chosen
in such a way that each energy of the individual vectors represents the cost of these vectors. Learning
in BM takes place in two different manners; either with hidden units or without hidden units.

There are various types of BM, and some of them are listed below:
Conditional Boltzmann machines model the data vectors and their distribution in such a way that

any extension, no matter how simple it is, leads to conditional distributions.
Mean field Boltzmann machines compute the state of a unit based on the present state of other

units in the network by using the real values of mean fields.
Higher-order Boltzmann machines have structures and learning patterns that can accept complex

energy functions.
Restricted Boltzmann machines (RBMs): Two types of layers (i.e., visible vs. hidden) are included

in the RBMs with no two similar connections [21,55].
In order to obtain unbiased elements from the set 〈sisj〉data, the hidden units h need to be

conditionally independent of the visible unit v. However, heavy computation is required to get
unbiased samples from 〈sisj〉data [63].

Mathematically, the energy function of an RBM is given as formulated in Equation (7) and has
a probability distribution as shown in Equation (8). In the equations, dj and ci stand for the biased
weights for the hidden and visible units, respectively, whereas Z in the probability distribution function
denotes the partition factor.

E(v, h) = −∑
i

civi −∑
j

djhj −∑
i

∑
j

viwi,jhj (7)

pd f (v, h) =
1
Z

e−E(v,h) (8)

Upon learning one hidden layer, the outcome can be treated as the input data required for training
another RBM. This in turn leads to cascaded learning of multiple hidden layers, thus making the entire
network be viewed as one model with improvements done on the lower bound [64].

4. Sensory Data Acquisition and Processing Using Deep Learning in Smart Health

Accurate data acquisition and processing is key to effective healthcare delivery. However,
ensuring the accuracy of the acquired data has been one of the typical challenges in smart healthcare
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systems. This is due to the nature of data needed for quality assurance of healthcare delivery and the
methods used for data acquisition. This phenomenon in the acquisition of sensory data in healthcare
applications has led to the development of innovative techniques for data acquisition with the aim
of complementing the “already in use”, but upgraded methods. Due to these improvements in
data acquisition methods, processing and interpreting sensory data have experienced an upward
improvement, as well. These improvements have recently translated into improved quality of
healthcare delivery. In this section, we briefly discuss the methods of sensory health data acquisition
and processing as they relate to deep learning. Furthermore, we discuss how the generated sensory
data types are processed using deep learning techniques. Figure 6a presents a brief taxonomy of
data acquisition and processing. Data acquisition is performed mainly via wearables and probes as
dedicated sensors and via built-in sensors of mobile devices as non-dedicated sensors.

(a) (b)

Figure 6. Data acquisition methods and processing techniques. (a) Taxonomy of sensory data
acquisition and processing techniques; (b) types of wearables/carry-ons.

4.1. Sensory Data Acquisition and Processing via Wearables and Carry-Ons

Wearables and carry-ons have appeared as crucial components of personalized medicine aiming
at performance and quality improvement in healthcare delivery. All wearables are equipped with
built-in sensors that are used in data acquisition, and these smart devices with built-in sensors are
in various forms as shown in the Figure 6b. The sensors in smart watches acquire data for the heart
rate, movement, blood oxygen level and skin temperature. The virtual reality (VR) goggle captures
video/image data, whereas the emotive headset senses mostly the brain signals. The wrist band and
bracelets sense heart rate, body mass index (BMI), movement data (i.e., accelerometer and gyroscope)
and temperature. Mobile devices provide non-dedicated sensing by acquiring sensory data regarding
location, movement and BMI. While they all have similar functions, sensing functions mainly depend
on the situations or needs for which they are required. The sensors embedded in these devices are
the main resources for data acquisition and generation. The data output can be in the form of signals,
images or videos; all with various importance and usefulness.

Processing of data generated from wearables and carry-ons is done based on the data types.
Deep learning techniques used in this regards are also dependent on the data types and intended
applications. This section aims to discuss the various deep learning methods used to process various
data types generated from wearables and carry-ons.

• Image processing: Deep learning techniques play a major role in image processing for health
advancements. Prominent amongst these methods are CNN, DBN, autoencoders and RBM.
The authors in [65] use CNNs to help create a new network architecture with the aim of
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multi-channel data acquisition and also for supervised feature learning. Extracting features
from brain images (e.g., magnetic resonance imaging (MRI), functional Magnetic resonance
imaging (fMRI)) can help in early diagnosis and prognosis of severe diseases such as glioma.
Moreover, the authors in [66] use DBN for the classification of mammography images in a bid to
detect calcifications that may be the indicators of breast cancer. With high accuracy achieved in
the detection, proper diagnosis of breast cancer becomes possible in radiology. Kuang and He
in [67] modified and used DBN for the classification of attention deficit hyperactivity disorder
(ADHD) using images from fMRI data. In a similar fashion, Li et al. [68] used the RBM for
training and processing the dataset generated from MRI and positron emission tomography (PET)
scans with aim of accurately diagnosing Alzheimer’s disease. Using deep CNN and clinical
images, Esteva et al. [69] were able to detect and classify melanoma, which is a type of skin
cancer. According to their research, this method outperforms the already available skin cancer
classification techniques. In the same context, Peyman and Hamid [70] showed that CNN performs
better in the preprocessing of clinical and dermoscopy images in the lesion segmentation part of
the skin. The study argues that CNN requires less preprocessing procedure when compared to
other known methods.

• Signal processing: Signal processing is an area of applied computing that has been evolving
since its inception. Signal processing is an utmost important tool in diverse fields including the
processing of medical sensory data. As new methods are being improved for accurate signal
processing on sensory data, deep learning, as a robust method, appears as a potential technique
used in signal processing. For instance, Ha and Choi use improved versions of CNN to process
the signals derived from embedded sensors in mobile devices for proper recognition of human
activities [71]. Human activity recognition is an important aspect of ubiquitous computing and
one of the examples of its application is the diagnosis and provision of support and care for
those with limited movement ability and capabilities. The authors in [72] propose applying a
CNN-based methodology on sensed data for the prediction of sleep quality. In the corresponding
study, the CNN model is used with the objective of classifying the factors that contribute to
efficient and poor sleeping habits with wearable sensors [72]. Furthermore, deep CNN and deep
feed-forward networks on the data acquired via wearable sensors are used for the classification
and processing of human activity recognition by the researchers in this field [73].

• Video processing: Deep learning techniques are also used for processing of videos generated
from wearable devices and carry-ons. Prominent amongst these applications is the human
activity recognition via CNNs to process video data generated by wearables and/or multimedia
sensors [74–76].

4.2. Data Acquisition via Probes

Data acquisition using probes was an early stage data gathering technique. Their development
has been made possible using technological enhancements attached to these probing tools. With these
enhancements, acquiring sensory readings of medical data has become possible. Probes can be in
the form of needles, drills and sometimes knocks, with feedbacks generated via the technological
enhancements attached to the probing tools. Probes have seen a revolution since modern science and
traditional medicine are being harmonized, with both playing vital roles in healthcare delivery.

Data generated via probes are usually in the form of signals. Processing probe data requires
certain deep learning techniques that are augmented in most cases for this purpose. As an example,
Cheron et al. [77] used the invasive electrode injection method to acquire signals needed to formulate
the kinematic relation between electromyography (EMG) and the trajectory of the arm during
movements. To this end, the authors used a dynamic recurrent neural network to process these
signals and showed the correlation between EMG and arm trajectory.



J. Sens. Actuator Netw. 2017, 6, 26 14 of 22

4.3. Data Acquisition via Crowd-Sensing

Mobile crowd-sensing is a non-dedicated sensing concept where data are acquired using built-in
sensors of smart devices. As the capabilities of smart devices such as smartphones and tablets have
tremendously improved during the last decade, any smartphone today is equipped with tens of built-in
sensors. Thus, ubiquity, improved sensing, computing and communication capabilities in mobile smart
devices have enabled these devices to be used as data acquisition tools in critical applications including
smart health and emergency preparedness [78,79]. This type of data acquisition involves users moving
towards a particular location and being implicitly recruited to capture required data by the built-in
sensors in their smart devices [80]. Crowdsensing envisions a robust data collection approach where
users have the leverage and the ability to choose and report more data for experimental purposes in
real time [81]. Consequently, this type of data acquisition increases the amount of data required for any
purpose especially for the applications under smart health and smart cities [82]. Moreover, it is worth
noting that crowd-sensed data are big especially in volume and velocity; hence, application-specific and
effective processing methods are required to analyse crowd-sensed datasets. Application-specific data
analytics techniques are required for the following reason in mobile crowd-sensing: Besides volume
and velocity, the variety and heterogeneity of sensors in mobile crowd-sensing are also phenomenal,
which results in producing a gigantic amount of data, which might be partially labelled in some cases.

As an example smart health application where mobile crowd-sensed data are used, Pan et al. [83]
have introduced AirTick, which utilizes crowd-sensed image data to obtain air quality information.
To this end, AirTick applies Boltzmann machines as the deep learning method on the crowd-sensed
image to process the data for eventual results. Furthermore, the authors in [84] have introduced
a proposal for cleaner and healthier neighbourhoods and have developed a mobile crowd-sensing
application called SpotGarbage, which allows users to capture images of garbage in their locality and
send them to the data hub where the data are analysed. In the SpotGarbage application, CNNs are
used as the deep learning method to analyse the crowd-sensed images.

Based on the review of different data acquisition techniques and the corresponding deep learning
methodologies applied to sensed data under those acquisition techniques, a brief review is presented
in Table 2. The table provides a summary of data acquisition techniques, their corresponding data
types and some examples of the deep learning techniques used.

Table 2. Summary of data acquisition methods, data types and examples of deep learning technique
used. Three types of data acquisition categories are defined, which acquire images, one-dimensional
signals and videos. CNN, DBN, restricted Boltzmann machine (RBM) and BM are the deep learning
methods that are used to analyse big sensed data.

Data Acquisition Technique Data Type Deep Learning Technique

Wearables
Image CNN [65,69,70], DBN [66,67], RBM [68],
Signal CNN [71–73]
Video CNN [74–76]

Probes Signal RNN [77]

Crowd-sensing Image BM [83], CNN [84]

5. Deep Learning Challenges in Big Sensed Data: Opportunities in Smart Health Applications

Deep learning can assist in the processing of sensory data by classification, as well as prediction
via learning. Training a dataset by a deep learning algorithm involves prediction, detection of errors
and improving prediction quality with time. Based on the review of the state of the art in the previous
sections, it can be stated that integration of sensed data in smart health applications with deep learning
yields promising outcomes. On the other hand, there are several challenges and open issues that need
to be addressed prior to realization of such integration. As those challenges arise from the nature of
deep learning, sensor deployment and sensory data acquisition, addressing those challenges paves the
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way towards robust smart health applications. As a corollary, in this section, we introduce challenges
and open issues in the integration of deep learning with smart health sensory data; and pursuant
to these, we present opportunities to cope with these challenges in various applications with the
integration of deep learning and the sensory data provided.

5.1. Challenges and Open Issues

Deep learning techniques have attracted researchers from many fields recently for sustainable and
efficient smart health delivery in smart environments. However, it is worth noting that the application
of deep learning techniques on sensory data still experiences challenges. Indeed, in most smart health
applications, CNNs have been introduced as revolutionized methodologies to cope with the challenges
that deep learning networks suffer. Thanks to the improvements in CNNs, to date, CNN has been
identified as the most useful tool in most cases when smart health is involved.

To be able to fully exploit deep learning techniques on medical sensory data, certain challenges
need to be addressed by the researchers in this field. The challenges faced by deep learning techniques
in smart health are mostly related to the acquisition, quality and dimensionality of data. This is due
to the fact that inferences or decisions are made based on the output/outcome of processed data.
As seen in the previous section, data acquisition takes place on heterogeneous settings, i.e., various
devices with their own sampling frequency, operating system and data formats. The heterogeneity
phenomenon generally results in a data plane with huge dimensions. The higher the dimension gets,
the more difficult the training of the data, which ultimately leads to a longer time frame for result
generation. Moreover, determining the depth of the network architecture in order to get a favourable
result is another challenge since the depth of the network impacts the training time, which is an
outstanding challenge to be addressed by the researchers in this field.

Value and trustworthiness of the data comprise another challenge that impacts the success of
deep learning algorithms in a smart health setting. As any deep learning technique is supposed to be
applied to big sensed health data, novel data acquisition techniques that ensure the highest level of
trustworthiness for the acquired data are emergent.

Uncertainty in the acquired sensor data remains a grand challenge. A significant amount of the
acquired data is partially labelled or unlabelled. Therefore, novel mechanisms to quantify and cope
with the uncertainty phenomenon in the sensed data are emergent to improve the accuracy, as well as
the efficiency of deep learning techniques in smart health applications.

Furthermore, data acquisition via non-dedicated sensors is also possible in smart cities sensing [85].
In the presence of non-dedicated sensors for data acquisition in smart health, it is a big challenge to
know how much data should be acquired prior to processing. Since dedicated and non-dedicated
sensors are mostly coupled in smart health applications, determining the amount of data required
from different wearables becomes a grand challenge, as well. Recent research proposes the use
of compressing sensing methods in participatory or opportunistic sensing via mobile devices [86];
hence, data explosion in non-dedicated acquisition can be prevented. However, in the presence of
non-dedicated sensing system, dynamic determination of the number of wearables/sensors that can
ensure the desired amount of data is another open issue to be addressed prior to analysing the big
sensed data via deep learning networks.

In addition to all this, ensuring trustworthiness of the acquired sensory data prior to deep learning
analysis remains an open issue, while auction and game theoretic solutions have been proposed to
increase user involvement in the trustworthiness assurance stage of the data that are acquired via
non-dedicated sensors [87,88]. In the presence of a collaboration between dedicated and non-dedicated
sensors in the data acquisition, coping with the reliability of the non-dedicated end still requires
efficient solutions. It is worth noting that deep learning can also be used for behaviour analysis of
non-dedicated sensors in such an environment with the aim of eliminating unreliable sensing sources
in the data acquisition.
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Last but not least, recent research points out the emergence of IoT-driven data acquisition
systems [78,89].

5.2. Opportunities in Smart Health Applications for Deep Learning

In this section, we discuss some of the applications of deep learning. To this end, we categorize
these applications into three main groups for easy reference. Table 3 shows a summary of these
applications together with the deep learning methods used under the three categories, namely
medical imaging, bioinformatics and predictive analysis. The table is a useful reference to select
the appropriate deep learning technique(s) while aiming to address the challenges and open issues in
the previous subsection.

Table 3. Smart health applications with their respective deep learning techniques on medical sensory
data. Applications are grouped into three categories: Medical imaging, bioinformatics and predictive
analysis. Each application addresses multiple problems on sensed data through various deep
learning techniques. DNN, deep neural network.

Application Problem Deep Learning Techniques References

Medical Imaging

Neural Cells Classification CNN [65]
3D brain reconstruction Deep CNN [90]
Brain Tissue Classification DBN [67,68]
Tumour Detection DNN [65,66]
Alzheimer’s Diagnosis DNN [91]

Bioinformatics
Cancer Diagnosis Deep Autoencoder [92]
Gene Classification DBN [93]
Protein Slicing DBN [94,95]

Predictive Analysis Disease prediction and analysis
Autoencoder [96]

RNN [97]
CNN [97,98]

• Medical imaging: Deep learning techniques have actually helped the improvement of healthcare
through accurate disease detection and recognition. An example is the detection of melanoma.
To do this, deep learning algorithms learn important features related to melanoma from a group
of medical images and run their learning-based prediction algorithm to detect the presence or
likelihood of the disease.

Furthermore, using images from MRI, fMRI and other sources, deep learning has been able to
help 3D brain construction using autoencoders and deep CNN [90], neural cell classification using
CNN [65], brain tissue classifications using DBN [67,68], tumour detection using DNN [65,66]
and Alzheimer’s diagnosis using DNN [91].

• Bioinformatics: The applications of deep learning in bioinformatics have seen a resurgence in
the diagnosis and treatment of most terminal diseases. Examples of these could be seen in
cancer diagnosis where deep autoencoders are used using gene expression as the input data [92];
gene selection/classification and gene variants using micro-array data sequencing with the
aid of deep belief networks [93]. Moreover, deep belief networks play a key role in protein
slicing/sequencing [94,95].

• Predictive analysis: Disease predictions have gained momentum with the advent of learning-based
systems. Therefore, with the capability of deep learning to predict the occurrence of
diseases accurately, predictive analysis of the future likelihood of diseases has experienced
significant progress. Particular techniques that are used for predictive analysis of diseases are
autoencoders [96], recurrent neural networks [97] and CNNs [97,98]. On the other hand, it is worth
mentioning that in order to improve the accuracy of prediction, sensory data monitoring medical
phenomena have to be coupled with sensory data monitoring human behaviour. Coupling of data
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acquired from medical and behavioural sensors helps in conducting effective analysis of human
behaviour in order to find patterns that could help in disease predictions and preventions.

6. Conclusions

With the growing need and widespread use of sensor and actuator networks in smart cities, there is
a growing demand for top-notch methods for the acquisition and processing of big sensed data. Among
smart city services, smart healthcare applications are becoming a part of daily life to prolong the lifetime
of members of society and improve quality of life. With the heterogeneous and various types of data
that are being generated on a daily basis, the existence of sensor and actuator networks (i.e., wearables,
carry-ons and other medical sensors) calls for effective acquisition of sensed data, as well as accurate
and efficient processing to deduce conclusions, predictions and recommendations for the healthiness
state of individuals. Deep learning is an effective tool that is used in the processing of big sensed data
especially under these settings. Although deep learning has evolved from the traditional artificial
neural networks concept, it has become an evolving field with the advent of improved computational
power, as well as the convergence of wired/wireless communication systems. In this article, we
have briefly discussed the growing concept of smart health within the smart city framework by
highlighting its major benefits for the social sustainability of the smart city infrastructure. We have
provided a comprehensive survey of the use of deep learning techniques to analyse sensory data
in e-health and presented the major deep learning techniques, namely deep feed-forward networks,
autoencoders, convolutional neural networks, deep belief networks, Boltzmann machine and restricted
Boltzmann machine. Furthermore, we have introduced various data acquisition mechanisms, namely
wearables, probes and crowd-sensing. Following these, we have also linked the surveyed deep learning
techniques to existing use cases in the analysis of medical sensory data. In order to provide a thorough
understanding of these linkages, we have categorized the sensory data acquisition techniques based
on the available technology for data generation. In the last part of this review article, we have studied
the smart health applications that involve sensors and actuators and visited specific use cases in those
applications along with the existing deep learning solutions to effectively analyse sensory data. To
facilitate a thorough understanding of these applications and their requirements, we have classified
these applications under the following three categories: medical imaging, bioinformatics and predictive
analysis. In the last part of this review article, we have studied smart health applications that involve
sensors and actuators and visited specific problems in those applications along with the existing deep
learning solutions to effectively address those problems. Furthermore, we have provided a thorough
discussion of the open issues and challenges in big sensed data in smart health, mainly focusing on the
data acquisition and processing aspects from the standpoint of deep learning techniques.
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